Difference between revisions of "Partitions"

From HPC users
Jump to navigationJump to search
 
(128 intermediate revisions by 5 users not shown)
Line 1: Line 1:
To manage the large amount of nodes on CARL and EDDY, its important to work with partitions. Partitions will optimize the way resources are given out to users and to ensure that everyone can submit jobs and receive results as fast as possible. Since we are using the [[SLURM Job Management (Queueing) System|SLURM]]
== Introduction ==
 
The basic resource in Slurm for computations is a compute node. Compute nodes are organized into partitions, which are simply logical sets of compute nodes. Partitions may also overlap, and typically but not always they correspond to specific node configurations.
 
Partitions define limitations that restrict the resources that can be requested for a job submitted to that partition. The limitations affect the maximum run time, the amount of memory, and the number of available CPU cores (which are called CPUs in Slurm). In addition, partitions may also define default resources that are automatically allocated for jobs if nothing has been specified.
 
Jobs should be submitted to the partition that best matches the required resources. For example, a job that requires 50G of RAM should better be submitted to a partition that offers a RAM limit of 117G than to a partition that offers a RAM limit of 495G. That way, as few resources as possible are blocked and another user with a higher demand in RAM can run a job earlier. Of course, other considerations may also influence the choice of a partition.
 
== Summary of Available Partitions ==
 
CARL and EDDY have several partitions available, and most of them are directly connected to a node type (which may differ in the number of CPU cores, the amount of RAM, and so on). Exceptions are the partitions <tt>carl.p</tt> and <tt>eddy.p</tt>, which serve as default partitions and combine nodes of different types. The following table gives an overview of the available partitions and their resource limits.
 
{| class="wikitable"
|-
!colspan="8" style="background-color:#6B8E23;"| CARL
|-
! Partition            !! Node Type        !!style="text-align:center"| Node Count !!style="text-align:center"| CPU Cores  !!Default RunTime      !! Default Memory per Core      !! Max Memory per Node !! Misc
|-
| mpcs.p              ||MPC-STD          ||style="text-align:center"| 158 ||style="text-align:center"|24      || style="text-align:center" rowspan="5"|2h    || style="text-align:center"|10 375M || style="text-align:center"|243G            || 
|-
| mpcl.p              ||MPC-LOM          ||style="text-align:center"| 128 ||style="text-align:center"|24                              ||style="text-align:center"|5 000M || style="text-align:center"| 117G            ||                                 
|-
| mpcb.p              ||MPC-BIG          ||style="text-align:center"| 30 ||style="text-align:center"|16                              ||style="text-align:center"|30G  || style="text-align:center"| 495G                ||GTX 1080 (4 nodes á 2 GPUs)
|-
|mpcp.p                ||MPC-PP          ||style="text-align:center"| 2 ||style="text-align:center"|40                              ||style="text-align:center"|50G    || style="text-align:center"| 1975G              ||
|-
|mpcg.p                ||MPC-GPU          ||style="text-align:center"| 9 ||style="text-align:center"|24                                ||style="text-align:center"|10 375M  || style="text-align:center"| 243G            ||1-2x Tesla P100 GPU
|-
|carl.p                || colspan="7"| Combines mpcl.p and mpcs.p, defaults are as for mpcl.p
|-
!colspan="8" style="background-color:#6B8E23;" |EDDY 
|-
|cfdl.p                ||CFD-LOM          ||style="text-align:center"| 160 ||style="text-align:center"|24      || style="text-align:center" rowspan="3"|2h    || style="text-align:center"|2 333M || style="text-align:center"| 56G
|-
|cfdh.p                ||CFD-HIM          ||style="text-align:center"| 81 ||style="text-align:center"|24                                  ||style="text-align:center"|5 000M || style="text-align:center"| 117G
|-
|cfdg.p                ||CFD-GPU          ||style="text-align:center"| 3 ||style="text-align:center"|24                                  ||style="text-align:center"|10G  || style="text-align:center"| 243G              ||    1x Tesla P100 GPU                       
|-
|eddy.p                || colspan="7"| Combines cfdl.p and cfdh.p, defaults are as for cfdl.p
|}
 
The default time is used if a job is submitted without specifying a maximum runtime with the option <tt>--time</tt>. Likewise, a job submitted without one of the options <tt>--mem</tt> or <tt>--mem-per-cpu</tt> allocated automatically the default memory per requested core.
 
== Getting Information about the Partitions on CARL and EDDY ==
 
To get more detailed information about a partition and its resource limits, you can use the command <tt>scontrol</tt>:
<pre>
$ scontrol show part carl.p
PartitionName=carl.p
  AllowGroups=carl,hrz AllowAccounts=ALL AllowQos=ALL
  AllocNodes=ALL Default=NO QoS=N/A
  DefaultTime=02:00:00 DisableRootJobs=YES ExclusiveUser=NO GraceTime=0 Hidden=NO
  MaxNodes=UNLIMITED MaxTime=21-00:00:00 MinNodes=1 LLN=NO MaxCPUsPerNode=24
  Nodes=mpcl[001-128],mpcs[001-158]
  PriorityJobFactor=1 PriorityTier=1 RootOnly=NO ReqResv=NO OverSubscribe=NO PreemptMode=OFF
  State=UP TotalCPUs=6864 TotalNodes=286 SelectTypeParameters=NONE
  DefMemPerCPU=5000 MaxMemPerNode=120000
</pre>
 
The [[SLURM Job Management (Queueing) System|SLURM job scheduler]] can also provide information about the current status of the cluster and the partitions using the command <tt>sinfo</tt>. Since we have quite a few partitions, it is a good idea to add an option to only view the information about a specific partitions:
<pre>
$ sinfo -p carl.p
PARTITION AVAIL  TIMELIMIT  NODES  STATE NODELIST
carl.p      up 21-00:00:0      2  mix$ mpcl032,mpcs112
carl.p      up 21-00:00:0      4 drain* mpcl[076,106,113],mpcs019
carl.p      up 21-00:00:0    132    mix mpcl[006-009,013,016,018,020,022-029,033,038-040,043,046,063-070,074-075,087-105,107,112,114-126],mpcs[001,003,005,008,018,044,055-059,063-105,113,136-139,152-158]
carl.p      up 21-00:00:0    143  alloc mpcl[001-005,010-012,014-015,017,019,021,030-031,034-037,041-042,044-045,047-062,071-073,077-086,108-111,127-128],mpcs[002,004,006-007,009-017,020-043,045-054,060,062,106-111,114-135,144-151]
carl.p      up 21-00:00:0      5  idle mpcs[061,140-143]
</pre>
In the output, you can see the <tt>STATE</tt> of the nodes, which can be <tt>idle</tt> if the node is free, <tt>alloc</tt> if the node is busy, and <tt>mix</tt> if the node is busy but has free resources available. Other states can be <tt>drain</tt> or <tt>down</tt>, if the node is not available.
 
The command <tt>sinfo</tt> has many additional options to modify the output. Some important ones are:
 
*'''-a, --all'''
:Display information about ''all'' partitions. You will even see partitions that are not available for your group and hidden partitions.
*'''-l, --long'''
:Display more detailed informations about the available partitions.
*'''-N, --Node'''
:Display a list of every available node.
*'''-n <nodes>, --nodes=<nodes>'''
:Display informations about a specific node. Multiple nodes may be comma separated. You can even specify a range of nodes, e.g. mpcs[100-120].
*'''-O <output_format>, --Format=<output_format>'''
:Specify the information you want to be displayed.
:If you want to, for example, display the node hostname, the number of CPUs, the CPU load, the amount of free memory, the size of temporary disk, the size of memory per node (in megabytes) you could use the following command:
<pre>$ sinfo -O nodehost,cpus,cpusload,freemem,disk,memory
HOSTNAMES          CPUS                CPU_LOAD            FREE_MEM            TMP_DISK            MEMORY
cfdh076            24                  1.01                97568              115658              128509
.
.
.
</pre>
 
:The size of each field can be modified (syntax: <tt>type[:[.]size]</tt>) to match your needs, for example like this:
<pre>$ sinfo -O nodehost:8,cpus:5,cpusload:8,freemem:10,disk:10,memory:8
HOSTNAMECPUS CPU_LOADFREE_MEM  TMP_DISK  MEMORY
cfdh076 24  1.01    97568    115658    128509
.
.
.
</pre>
 
The full list and further informations about the command <tt>sinfo</tt> can be found here: [https://slurm.schedmd.com/sinfo.html sinfo]
 
== Usage of the Partitions on CARL/EDDY ==
 
To select a partition for your job you can either use an option with the <tt>sbatch</tt>-command, e.g.
sbatch --partition carl.p jobscript.sh
or you add a corresponding line to your job script, e.g.
#SBATCH --partition carl.p
You can overwrite a setting in a job script by using the command-line option. You should always specify a partition when submitting a job to the cluster.
 
{{warningbox|To simplify job submission, you can always specify either the <tt>carl.p</tt>- or the <tt>eddy.p</tt>-partition if your job has no special resource requirements. Do not use the <tt>all_nodes.p</tt>-partition unless you have a good reason for it and your job does not run for more than one day.}}
 
=== Using GPU Partitions ===
 
When using GPU partitions, it is also necessary to use the following options for your Slurm jobs in order to allocate the GPUs (GPUs are not allocated by selecting the partition). In the command-line it would look like this:
$ sbatch --partition mpcg.p --gres=gpu:1 job_with_gpu.sh
Alternatively, you can add the options to the job script
#SBATCH --partition mpcg.p
#SBATCH --gres=gpu:1
The option <tt>--gres</tt> allocates a '''G'''eneric '''RES'''ource in the form <tt><type>:<count></tt>. The <tt><count></tt> is defined per compute node, so in the case of GPUS the <tt><count></tt> can be <tt>1</tt> or <tt>2</tt> (because we have GPU nodes with up to two GPUs).
 
{{warningbox|If you are running non-GPU jobs in one of the GPU-partitions, make sure that there are always a few cores available so that a GPU job is not blocked from using that node.}}
 
To learn more about submitting jobs, you might want to take a look at [https://wiki.hpcuser.uni-oldenburg.de/index.php?title=SLURM_Job_Management_(Queueing)_System#Information_on_sbatch-options this page].

Latest revision as of 13:57, 5 July 2021

Introduction

The basic resource in Slurm for computations is a compute node. Compute nodes are organized into partitions, which are simply logical sets of compute nodes. Partitions may also overlap, and typically but not always they correspond to specific node configurations.

Partitions define limitations that restrict the resources that can be requested for a job submitted to that partition. The limitations affect the maximum run time, the amount of memory, and the number of available CPU cores (which are called CPUs in Slurm). In addition, partitions may also define default resources that are automatically allocated for jobs if nothing has been specified.

Jobs should be submitted to the partition that best matches the required resources. For example, a job that requires 50G of RAM should better be submitted to a partition that offers a RAM limit of 117G than to a partition that offers a RAM limit of 495G. That way, as few resources as possible are blocked and another user with a higher demand in RAM can run a job earlier. Of course, other considerations may also influence the choice of a partition.

Summary of Available Partitions

CARL and EDDY have several partitions available, and most of them are directly connected to a node type (which may differ in the number of CPU cores, the amount of RAM, and so on). Exceptions are the partitions carl.p and eddy.p, which serve as default partitions and combine nodes of different types. The following table gives an overview of the available partitions and their resource limits.

CARL
Partition Node Type Node Count CPU Cores Default RunTime Default Memory per Core Max Memory per Node Misc
mpcs.p MPC-STD 158 24 2h 10 375M 243G
mpcl.p MPC-LOM 128 24 5 000M 117G
mpcb.p MPC-BIG 30 16 30G 495G GTX 1080 (4 nodes á 2 GPUs)
mpcp.p MPC-PP 2 40 50G 1975G
mpcg.p MPC-GPU 9 24 10 375M 243G 1-2x Tesla P100 GPU
carl.p Combines mpcl.p and mpcs.p, defaults are as for mpcl.p
EDDY
cfdl.p CFD-LOM 160 24 2h 2 333M 56G
cfdh.p CFD-HIM 81 24 5 000M 117G
cfdg.p CFD-GPU 3 24 10G 243G 1x Tesla P100 GPU
eddy.p Combines cfdl.p and cfdh.p, defaults are as for cfdl.p

The default time is used if a job is submitted without specifying a maximum runtime with the option --time. Likewise, a job submitted without one of the options --mem or --mem-per-cpu allocated automatically the default memory per requested core.

Getting Information about the Partitions on CARL and EDDY

To get more detailed information about a partition and its resource limits, you can use the command scontrol:

$ scontrol show part carl.p
PartitionName=carl.p
   AllowGroups=carl,hrz AllowAccounts=ALL AllowQos=ALL
   AllocNodes=ALL Default=NO QoS=N/A
   DefaultTime=02:00:00 DisableRootJobs=YES ExclusiveUser=NO GraceTime=0 Hidden=NO
   MaxNodes=UNLIMITED MaxTime=21-00:00:00 MinNodes=1 LLN=NO MaxCPUsPerNode=24
   Nodes=mpcl[001-128],mpcs[001-158]
   PriorityJobFactor=1 PriorityTier=1 RootOnly=NO ReqResv=NO OverSubscribe=NO PreemptMode=OFF
   State=UP TotalCPUs=6864 TotalNodes=286 SelectTypeParameters=NONE
   DefMemPerCPU=5000 MaxMemPerNode=120000

The SLURM job scheduler can also provide information about the current status of the cluster and the partitions using the command sinfo. Since we have quite a few partitions, it is a good idea to add an option to only view the information about a specific partitions:

$ sinfo -p carl.p
PARTITION AVAIL  TIMELIMIT  NODES  STATE NODELIST
carl.p       up 21-00:00:0      2   mix$ mpcl032,mpcs112
carl.p       up 21-00:00:0      4 drain* mpcl[076,106,113],mpcs019
carl.p       up 21-00:00:0    132    mix mpcl[006-009,013,016,018,020,022-029,033,038-040,043,046,063-070,074-075,087-105,107,112,114-126],mpcs[001,003,005,008,018,044,055-059,063-105,113,136-139,152-158]
carl.p       up 21-00:00:0    143  alloc mpcl[001-005,010-012,014-015,017,019,021,030-031,034-037,041-042,044-045,047-062,071-073,077-086,108-111,127-128],mpcs[002,004,006-007,009-017,020-043,045-054,060,062,106-111,114-135,144-151]
carl.p       up 21-00:00:0      5   idle mpcs[061,140-143]

In the output, you can see the STATE of the nodes, which can be idle if the node is free, alloc if the node is busy, and mix if the node is busy but has free resources available. Other states can be drain or down, if the node is not available.

The command sinfo has many additional options to modify the output. Some important ones are:

  • -a, --all
Display information about all partitions. You will even see partitions that are not available for your group and hidden partitions.
  • -l, --long
Display more detailed informations about the available partitions.
  • -N, --Node
Display a list of every available node.
  • -n <nodes>, --nodes=<nodes>
Display informations about a specific node. Multiple nodes may be comma separated. You can even specify a range of nodes, e.g. mpcs[100-120].
  • -O <output_format>, --Format=<output_format>
Specify the information you want to be displayed.
If you want to, for example, display the node hostname, the number of CPUs, the CPU load, the amount of free memory, the size of temporary disk, the size of memory per node (in megabytes) you could use the following command:
$ sinfo -O nodehost,cpus,cpusload,freemem,disk,memory
HOSTNAMES           CPUS                CPU_LOAD            FREE_MEM            TMP_DISK            MEMORY
cfdh076             24                  1.01                97568               115658              128509
.
.
.
The size of each field can be modified (syntax: type[:[.]size]) to match your needs, for example like this:
$ sinfo -O nodehost:8,cpus:5,cpusload:8,freemem:10,disk:10,memory:8
HOSTNAMECPUS CPU_LOADFREE_MEM  TMP_DISK  MEMORY
cfdh076 24   1.01    97568     115658    128509
.
.
.

The full list and further informations about the command sinfo can be found here: sinfo

Usage of the Partitions on CARL/EDDY

To select a partition for your job you can either use an option with the sbatch-command, e.g.

sbatch --partition carl.p jobscript.sh

or you add a corresponding line to your job script, e.g.

#SBATCH --partition carl.p

You can overwrite a setting in a job script by using the command-line option. You should always specify a partition when submitting a job to the cluster.

To simplify job submission, you can always specify either the carl.p- or the eddy.p-partition if your job has no special resource requirements. Do not use the all_nodes.p-partition unless you have a good reason for it and your job does not run for more than one day.

Using GPU Partitions

When using GPU partitions, it is also necessary to use the following options for your Slurm jobs in order to allocate the GPUs (GPUs are not allocated by selecting the partition). In the command-line it would look like this:

$ sbatch --partition mpcg.p --gres=gpu:1 job_with_gpu.sh

Alternatively, you can add the options to the job script

#SBATCH --partition mpcg.p
#SBATCH --gres=gpu:1

The option --gres allocates a Generic RESource in the form <type>:<count>. The <count> is defined per compute node, so in the case of GPUS the <count> can be 1 or 2 (because we have GPU nodes with up to two GPUs).

If you are running non-GPU jobs in one of the GPU-partitions, make sure that there are always a few cores available so that a GPU job is not blocked from using that node.

To learn more about submitting jobs, you might want to take a look at this page.