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Overview MPI

319.09.2017 Introduction HPC - Session 05

• Introduction to the Message Passing Interface

• Point-to-Point Communication

• Collective Communication

• Other and New Features of MPI

– Derived Datatypes

– Virtual Topologies

– Process Creation and Management

– One-sided Communication and Shared Memory

– MPI and Threads

– Parallel File I/O
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History of MPI
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• MPI is a standard with the prime goals

– to provide a message-passing interface

– to provide source-code portability

– to allow efficient implementations

• MPI exists for more than 20 years

– MPI-1.0 was released in June, 1994

– MPI-2.0 was released in July, 1997 and provided additional 

functionality

– MPI-3.0 (current standard MPI-3.1) was released in October, 

2012 and was developed for better platform and application 

support (in particular clusters of SMP nodes)

http://mpi-forum.org/docs/

http://mpi-forum.org/docs/


Scientific Computing
V. School of Mathematics and Science

A Message-Passing Interface
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• sequential program vs. message-passing program

• message-passing programming paradigm:

– each processor runs a (sub)program, typically the same (SPMD)

– variables of subprograms have the same name but different (distributed) data

– communication by special library routines  message passing
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Message Passing
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• messages are passed through the communication network

• messages require the 

following information:

– sending and receiving

process

– data location

– data type

– data size

• in order to use the message-passing interface the program must be

– connected to the MPI library (at compile time)

– started with the MPI startup tool (mpirun or mpiexec)

– at runtime MPI is initialized with special library calls (MPI_Init())
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Process Identification
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• processes in MPI are identified by their rank

– determined by calling a library function

– rank is used for addressing when sending messages

– rank is used for making decisions, e.g. when distributing the data and work
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Example: MPI_HelloWorld
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#include <iostream>

#include <mpi.h>

using namespace std;

int main(int argc, char *argv[])

{

MPI_Init(&argc, &argv);

cout << "Hello world!“ << endl;

MPI_Finalize();

}
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MPI Header and Module Files
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MPI standard defines language bindings for C and Fortran

• C/C++: #include <mpi.h>

• Fortran: include "mpif.h"

or use mpi

or use mpi_f08

– the use of the old style include-statement is strongly discouraged 

as no compile-time argument checking can be done

– highly recommended is the use of mpi_f08
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MPI with other Languages

• C++ is supported through the C bindings
– special C++ bindings are no longer part of the standard although 

many MPI implementation may still support them

– the C++ Boost library includes an MPI implementation

• Python
– MPI is supported through the mpi4py package

• R
– the package Rmpi provides MPI functionality

• Matlab
– parallel computing uses MPI in the background

– includes low-level functions for message passing

1019.09.2017 Introduction HPC - Session 05



Scientific Computing
V. School of Mathematics and Science

MPI Library Calls
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• in general an MPI library call has the form

C/C++: error = MPI_Xxxxx(parameter, …);

MPI_Xxxxx(parameter, …);

Fortran: CALL MPI_Xxxxx(parameter, …, ierror)

– in Fortran the use of ierror has changed with MPI-3.0:

if (and only if!) you are using the module file mpi_f08, ierror is an 

optional argument. In any other case ierror cannot be omitted otherwise 

terrible unforeseen things may happen.

– refer to the MPI-3.0 standard document to look up the definitions and 

argument list of available MPI functions

http://www.mpi-forum.org/docs/

http://www.mpi-forum.org/docs/
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MPI_Init() and MPI_Finalize()
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• MPI is initialized with

– C/C++: MPI_Init(&argc, &argv);

– Fortran: CALL MPI_Init(ierror)

– must be the first MPI-routine that is called (few exceptions)

– call as early as possible in your program

– in C/C++ argv and argc are passed by reference (possibly cleans argv from 

unwanted MPI arguments)

• MPI is finalized with

– C/C++: MPI_Finalize();

– Fortran: CALL MPI_Finalize(ierror)

– must be the last MPI-routine that is called (few exceptions)
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Compiling an MPI Program
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• programs are compiled using a wrapper command:

C: $ mpicc [options] <source.c> -o <executable> 

C++: $ mpicxx [options] <source.cpp> -o <executable> 

Fortran: $ mpifort [options] <source.f90> -o <executable> 

– uses the standard compiler (GCC, Intel) with some extra options

• example on CARL:

[abcd1234@carl ~]$ # module load gompi/5.2.01 # if you want GCC/OpenMPI

[abcd1234@carl ~]$ module load intel/2016b

[abcd1234@carl ~]$ mpicxx MPI_HelloWorld.cpp -o MPI_HelloWorld
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Running an MPI Program
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• programs are executed using the MPI startup tool

$ mpirun –np <N> [options] <executable>

• example on CARL:

– note: do not normally run programs on the head nodes

[abcd1234@hpcl002 ~]$ mpirun -np 4 MPI_HelloWorld

Hello world!

Hello world!

Hello world!

Hello world!
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Running an MPI Program

• running an MPI program on the compute nodes

– using sbatch with a job script (see next slide)

– using srun interactively 

– only starts when resources are available

– srun can be used a replacement for mpirun (recommended) but it 

requires additional setting of environment variable for Intel MPI
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$ export I_MPI_PMI_LIBRARY=/cm/shared/apps/slurm/current/lib64/libpmi.so

$ srun -p carl.p -n 4 MPI_HelloWorld

Hello world!

Hello world!

Hello world!

Hello world!
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Job Script for an MPI Program

• minimal example batch script

– note that the executable will only work with the MPI used for 

compilation

– srun and mpirun are SLURM aware and know the number of 

processes to start
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#!/bin/bash

#### SLURM settings

#SBATCH --partition=carl.p

#SBATCH --job-name=MPI_HelloWorld

#SBATCH --ntasks=4

module load intel/2016b

export I_MPI_PMI_LIBRARY=/cm/shared/apps/slurm/current/lib64/libpmi.so

srun MPI_HelloWorld



Scientific Computing
V. School of Mathematics and Science

Setting the Number of Processes

• typically the number of processes is set by requesting the 

resources

– can be changed with the -n or -np option to srun or mpirun

• number of tasks is the number of processes spawned

• number of tasks can be requested in different ways

– simple: --ntasks=<number> or -n <number>

– restricted: --nodes=<min>-<max> and --ntasks=<number> 

– control: --nodes=<min>-<max> and --tasks-per-node=<number>

– user can decide how the job can be distributed 
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EXERCISE
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MPI_HelloWorld v2.0
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• modify the MPI_HelloWorld example so that

– only one process (the root process) prints „Hello World!“

– all processes print a message

„I am process %i of %n processes running on %host“

– try out the different SLURM-options and see how the process

distribution is changed

–

• look up how to use the following MPI library calls

– MPI_Comm_rank(…)

– MPI_Comm_size(…)

– MPI_Get_processor_name(…)
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MPI Point-to-Point 

Communication
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MPI Point-to-Point Communication
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communication by sending messages within an MPI communicator
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Sending and Receiving Messages
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• the MPI library provides functions to send and receive 

messages:

– sending: MPI_Send(…)

– receiving: MPI_Recv(…)

– any message sent must be received, otherwise  deadlock

– function prototypes (here C/C++, Fortran is analogous)

int MPI_Send(const void *data, int count, MPI_Datatype datatype,

int destination, int tag, MPI_Comm comm)

int MPI_Recv(void *data, int count, MPI_Datatype datatype,

int source, int tag, MPI_Comm comm, MPI_Status* status)
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MPI Send/Recv Data
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• the data send or received by a message is passed as a 

void pointer

– a void pointer can be cast on a pointer of any data type

– MPI does not care about the data type, the message is just a 

collection of bits (continueous in memory)

– variables require a reference, arrays are already a pointer

• the integer count argument gives the number of data

values

• the MPI_Datatype argument gives the data type and

allows MPI to interpret the data correctly

– using the wrong data type can produce interesting errors
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MPI Data Types
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• MPI needs to know the type of data that is send

• predefined handles are provided for standard data types, 

e.g.:
– MPI_INT, MPI_FLOAT, MPI_DOUBLE, MPI_CHAR, …

• you can also define handles for your own data types
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Other MPI Send/Recv Arguments
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• source and destination give the rank of the sending and

receiving process

• the tag is an integer identifier for each message sent

– useful if more than one message is sent at the same time from

one source to the same destination

• the MPI_Status object contains information about the

received message

– required for non-blocking communication

• MPI::Comm:Recv allows the use of wildcards

– MPI_ANY_SOURCE 

– MPI_ANY_TAG
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MPI Send and Receive Example

2919.09.2017 Introduction HPC - Session 05

...

int number;

if (rank == 0) {

number = 42;

MPI_Send(&number, 1, MPI_INT, 1, 0, MPI_COMM_WORLD);

} else if (rank == 1) {

MPI_Recv(&number, 1, MPI_INT, 0, 0, MPI_COMM_WORLD,

MPI_STATUS_IGNORE);

cout << "Process 1 received number” << number << endl;

}

...
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Sending and Receiving Messages
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• message can be sent in different ways

– synchronous vs. asynchronous: 

sender receives a confirmation receiving of the message is 

initiated

– unbuffered vs. buffered:

the message can be buffered so the sender can continue using 

the sent variable, requires additional memory 

– blocking vs. non-blocking:

send or receive functions return immediately allowing to overlap 

communication and computation

for details refer to the MPI-3.0 standard
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Communication Modes

• the standard function MPI_Send and MPI_Recv are 

blocking operations

– MPI_Send may use a buffer and thus can return before the 

message was received

– the use of the buffer depends on the MPI implementation and 

situation

• for optimal performance you can control the 

communication mode by using

– MPI_Isend/IRecv for non-blocking communication

– MPI_Bsend for buffered sending

– …

3119.09.2017 Introduction HPC - Session 05



Scientific Computing
V. School of Mathematics and Science

Deadlocks
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• every MPI_Send() must be matched by a corresponding MPI_Recv() 

and vice versa

– otherwise the program hangs waiting forever for a communication to

finish  deadlock

typical pitfalls:

• every process is sending data to a neighbour process

– only one process must send data before receiving

– use non-blocking send or receive

– use MPI_Sendrecv(…)

• a condition prevents one or more processes to initiate

communication
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Deadlock Example
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...

int number = 42 + rank;

int other  = 1 – rank;

MPI_Recv(&number, 1, MPI_INT, other, 0, MPI_COMM_WORLD, 

MPI_STATUS_IGNORE);

MPI_Send(&number, 1, MPI_INT, other, 0, MPI_COMM_WORLD);

cout << “Received number” << number << endl;

}

...

consider two processes:
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MPI_Sendrecv

• in some situations MPI_Sendrecv can be used for 

effective and dead-lock free P2P communication

– syntax
int MPI_Sendrecv(const void *sbuf, int scount, MPI_Datatype stype, int dest, int stag,

void *rbuf, int rcount, MPI_Datatype rtype, int source, int rtag,

MPI_Comm comm, MPI_Status *status)

– note that sendbuf and recvbuf have to be different variables

– typical situation is exchange of borders
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0 1 2
distribute

border 

exchange
0 1 2
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EXERCISE
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MPI_PingPong
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• another MPI_PingPong program to run with two 

processes doing the following:

– initialize a counter

– one process increments the counter and sends it to the other

– the other process receives the message and then increments the 

counter and sends it back

– repeat until n messages have been sent
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MPI_RingSend
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• Complete the MPI_RingSend program to run with exactly 

12 processes:

– each process, beginning with root (rank==0), should send text to 

the right neighbor and receive text from the left neighbor

– after receiving but before sending text each process should 
modify text as follows: text[rank] -= rank;

– the ring is terminated after one round when text reaches root 

again (the final output should tell you if you code is correct)

– note: the left/right neighbor for rank 0/(size-1) is (size-1)/0



Scientific Computing
V. School of Mathematics and Science

MPI_Summation

• Complete the MPI_Summation program so that the root 

process calculates the sum of all my_val values

– my_val is rank+1 so the sum is n*(n+1)/2

– only use MPI_Send and MPI_Recv (or variants with different 

communications modes)
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MPI PingPong
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Bandwidth 4.6 GB/s (6.8 GB/s)

Latency 1.9 ms (0.7 ms)
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MPI Collective Communication

4019.09.2017 Introduction HPC - Session 05



Scientific Computing
V. School of Mathematics and Science

Collective Communication
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• so far we have looked at point-to-point communication

• MPI allows also knows collective communications

– one-to-all

– all-to-one communication

– all-to-all 

• example: calculate the sum of the elements of an array
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Calculate Sum in Parallel
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Calculate Sum in Parallel

4319.09.2017 Introduction HPC - Session 05

1

rank 0

my_val 2

1

3

2

4

3

5

4

6

5

p-1

p-2

p

p-1

• even processes become receiver, odd process sender



Scientific Computing
V. School of Mathematics and Science

Calculate Sum in Parallel
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• even processes become receiver, odd process sender

• the last process can be
• a sender (size p even) with matching receiver
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Calculate Sum in Parallel

4519.09.2017 Introduction HPC - Session 05
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• even processes become receiver, odd process sender

• the last process can be
• a sender (size p even) with matching receiver

• a receiver (size p odd) with no matching sender (from >= p)
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Calculate Sum in Parallel
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1
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• every process copies my_val to local_sum

• every sender sends local_sum to the left to receiver’s rbuf

• every receiver adds rbuf to its local_sum

• rightmost receiver may not receive value (and adds 0)

• all sender also add 0

local_sum 1 2 3 4 5 6 p-1 p

2 4 6 0rbuf

local_sum 3 2 7 4 11 6 p-1 p
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Calculate Sum in Parallel
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• every sender becomes inactive (value was added to sum)
• every other receiver becomes a sender

local_sum 3 2 7 4 11 6 p-1 p
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Calculate Sum in Parallel
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• previous steps of sending, receiving and adding to local sum are 

repeated

• after each send more processes become inactive

• final result is obtained on root when all other processes are inactive

local_sum 3 2 7 4 11 6 p-1 p

7 15rbuf

local_sum 10 2 7 4 26 6 p-1 p
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Collective Communication
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• so far we have looked at point-to-point communication

• MPI allows knows

– one-to-all

– all-to-one communication

– all-to-all 

• example: calculate the sum of the elements of an array

• MPI collective communication is very efficient due to tree-

based communication

• collective communication can still be very expensive, in 

particular all-to-all
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Collective Communication
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• a selection of collective MPI communications:

– MPI_Bcast(…) sending data from one process to all others

– MPI_Scatter(…) distributing an array of data from one to all

– MPI_Gather(…) collecting an array of data from all to one

– MPI_Reduce(…) reduction operation defined by a handle, 

e.g. MPI_SUM

– MPI_Barrier(…) used to synchronize all processes

– …

• some also have all-to-all variant, e.g. MPI_Allreduce

• since MPI-3.0 also non-blocking calls
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MPI_Reduce

• MPI function to reduce values from all processes

– syntax
int MPI_Reduce(const void *sendbuf, void *recvbuf, int count,

MPI_Datatype datatype, MPI_Op op, int root,

MPI_Comm comm)

– the reduce operation is defined by op

– can be selected from pre-defined list or user-defined

– reduce operation is applied for every element in sendbuf

separately

– result is only obtained on root (unless MPI_Allreduce is used)

– see example MPI_Reduce_Sum.cpp
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MPI_Reduce Operators

• pre-defined operators for MPI_Reduce
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MPI_MAX             maximum

MPI_MIN             minimum

MPI_SUM             sum

MPI_PROD            product

MPI_LAND            logical and

MPI_BAND            bit-wise and

MPI_LOR             logical or

MPI_BOR             bit-wise or

MPI_LXOR            logical xor

MPI_BXOR            bit-wise xor

MPI_MAXLOC          max value and location

MPI_MINLOC          min value and location
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Synchronization of MPI Processes

• in MPI this can be achieved with a barrier

– syntax
int MPI_Barrier(MPI_Comm comm)

– every process must reach barrier call before proceeding

• barriers are normally not needed in MPI

– synchronization is done by data communication automatically

– maybe used for debugging purposes (make sure all processes 

write debug message in order)

– for profiling to measure communication times and/or load 

imbalances
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MPI_Bcast

• one process sending data to all other processes is 

achieved with a broadcast

– syntax
int MPI_Bcast(void *buffer, int count,

MPI_Datatype datatype, int root, 

MPI_Comm comm);

– typical example

if (rank==root) cin >> value;

MPI_Bcast(&value, 1, MPI_INT, root,

MPI_COMM_WORLD);
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Distributing Arrays

• MPI provides a function to scatter arrays across 

processes

– syntax:
int MPI_Scatter(void *sbuf, int scount, MPI_Datatype stype, 

void *rbuf, int rcount, MPI_Datatype rtype,

int root, MPI_Comm comm)

– sends a continuous number of elements from an array on the root 

process to every other process including the root process
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MPI_Scatter
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• the value of scount is given by sizeof(sbuf)/size

• what happens if division is not even?
– if scount*size < sizeof(sbuf) only part of the array is

scattered incorrect result

– with (scount+1)*size > sizeof(sbuf) out-of-bounds
elements are scattered anything can happen

– possible solution is padding of global vector but then one process
has (much) less work to do  load imbalancing

• better solution
– scatter global vector so that scount differs by 1 at most for all 

processes

– can be achieved with MPI_Send/Recv or MPI_Scatterv
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MPI_Scatterv

• MPI_Scatterv gives additional control for data distribution

– syntax:
int MPI_Scatterv(void *sbuf, int *scounts, int *displs

MPI_Datatype stype, 

void *rbuf, int rcount, MPI_Datatype rtype,

int root, MPI_Comm comm)

– arrays scounts and displs to define data distribution
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Gathering Data

• the opposite of MPI_Scatter is called MPI_Gather

– syntax:
int MPI_Gather(void *sbuf, int scount, MPI_Datatype stype, 

void *rbuf, int rcount, MPI_Datatype rtype,

int root, MPI_Comm comm)

– each process (including root) sends a block of data to the root 

process where all data blocks are collected in continuous array
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Gathering Data

• variants of MPI_Gather

– MPI_Allgather

– MPI_Gatherv

– MPI_AllGatherv
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Example Collective Communication
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• modification of the program Random.cpp to

MPI_Random.cpp

– prepare for MPI (MPI_Init, … - already provided)

– parallelize the computation of the mean value

– parallelize the computation of the standard deviation


