
Scientific Computing
V. School of Mathematics and Science

Introduction to

High-Performance Computing

Session 05

Introduction to MPI

Scientific Computing
V. School of Mathematics and Science

PARALLEL COMPUTING

WITH MPI

219.09.2017 Introduction HPC - Session 05

Scientific Computing
V. School of Mathematics and Science

Overview MPI

319.09.2017 Introduction HPC - Session 05

• Introduction to the Message Passing Interface

• Point-to-Point Communication

• Collective Communication

• Other and New Features of MPI

– Derived Datatypes

– Virtual Topologies

– Process Creation and Management

– One-sided Communication and Shared Memory

– MPI and Threads

– Parallel File I/O

Scientific Computing
V. School of Mathematics and Science

History of MPI

419.09.2017 Introduction HPC - Session 05

• MPI is a standard with the prime goals

– to provide a message-passing interface

– to provide source-code portability

– to allow efficient implementations

• MPI exists for more than 20 years

– MPI-1.0 was released in June, 1994

– MPI-2.0 was released in July, 1997 and provided additional

functionality

– MPI-3.0 (current standard MPI-3.1) was released in October,

2012 and was developed for better platform and application

support (in particular clusters of SMP nodes)

http://mpi-forum.org/docs/

http://mpi-forum.org/docs/

Scientific Computing
V. School of Mathematics and Science

A Message-Passing Interface

519.09.2017 Introduction HPC - Session 05

• sequential program vs. message-passing program

• message-passing programming paradigm:

– each processor runs a (sub)program, typically the same (SPMD)

– variables of subprograms have the same name but different (distributed) data

– communication by special library routines message passing

program

data memory

processor program

data

program

data

program

data

program

data
distributed

memory

parallel

processors

communication network

Scientific Computing
V. School of Mathematics and Science

Message Passing

619.09.2017 Introduction HPC - Session 05

• messages are passed through the communication network

• messages require the

following information:

– sending and receiving

process

– data location

– data type

– data size

• in order to use the message-passing interface the program must be

– connected to the MPI library (at compile time)

– started with the MPI startup tool (mpirun or mpiexec)

– at runtime MPI is initialized with special library calls (MPI_Init())

program

data
distributed

memory

parallel

processors

communication network

Scientific Computing
V. School of Mathematics and Science

Process Identification

719.09.2017 Introduction HPC - Session 05

• processes in MPI are identified by their rank

– determined by calling a library function

– rank is used for addressing when sending messages

– rank is used for making decisions, e.g. when distributing the data and work

program

data

program

data

program

data

program

data
distributed

memory

parallel

processors

communication network

myrank = 0 = 1 = 2 = p

Scientific Computing
V. School of Mathematics and Science

Example: MPI_HelloWorld

819.09.2017 Introduction HPC - Session 05

#include <iostream>

#include <mpi.h>

using namespace std;

int main(int argc, char *argv[])

{

MPI_Init(&argc, &argv);

cout << "Hello world!“ << endl;

MPI_Finalize();

}

Scientific Computing
V. School of Mathematics and Science

MPI Header and Module Files

919.09.2017 Introduction HPC - Session 05

MPI standard defines language bindings for C and Fortran

• C/C++: #include <mpi.h>

• Fortran: include "mpif.h"

or use mpi

or use mpi_f08

– the use of the old style include-statement is strongly discouraged

as no compile-time argument checking can be done

– highly recommended is the use of mpi_f08

Scientific Computing
V. School of Mathematics and Science

MPI with other Languages

• C++ is supported through the C bindings
– special C++ bindings are no longer part of the standard although

many MPI implementation may still support them

– the C++ Boost library includes an MPI implementation

• Python
– MPI is supported through the mpi4py package

• R
– the package Rmpi provides MPI functionality

• Matlab
– parallel computing uses MPI in the background

– includes low-level functions for message passing

1019.09.2017 Introduction HPC - Session 05

Scientific Computing
V. School of Mathematics and Science

MPI Library Calls

1119.09.2017 Introduction HPC - Session 05

• in general an MPI library call has the form

C/C++: error = MPI_Xxxxx(parameter, …);

MPI_Xxxxx(parameter, …);

Fortran: CALL MPI_Xxxxx(parameter, …, ierror)

– in Fortran the use of ierror has changed with MPI-3.0:

if (and only if!) you are using the module file mpi_f08, ierror is an

optional argument. In any other case ierror cannot be omitted otherwise

terrible unforeseen things may happen.

– refer to the MPI-3.0 standard document to look up the definitions and

argument list of available MPI functions

http://www.mpi-forum.org/docs/

http://www.mpi-forum.org/docs/

Scientific Computing
V. School of Mathematics and Science

MPI_Init() and MPI_Finalize()

1219.09.2017 Introduction HPC - Session 05

• MPI is initialized with

– C/C++: MPI_Init(&argc, &argv);

– Fortran: CALL MPI_Init(ierror)

– must be the first MPI-routine that is called (few exceptions)

– call as early as possible in your program

– in C/C++ argv and argc are passed by reference (possibly cleans argv from

unwanted MPI arguments)

• MPI is finalized with

– C/C++: MPI_Finalize();

– Fortran: CALL MPI_Finalize(ierror)

– must be the last MPI-routine that is called (few exceptions)

Scientific Computing
V. School of Mathematics and Science

Compiling an MPI Program

1319.09.2017 Introduction HPC - Session 05

• programs are compiled using a wrapper command:

C: $ mpicc [options] <source.c> -o <executable>

C++: $ mpicxx [options] <source.cpp> -o <executable>

Fortran: $ mpifort [options] <source.f90> -o <executable>

– uses the standard compiler (GCC, Intel) with some extra options

• example on CARL:

[abcd1234@carl ~]$ # module load gompi/5.2.01 # if you want GCC/OpenMPI

[abcd1234@carl ~]$ module load intel/2016b

[abcd1234@carl ~]$ mpicxx MPI_HelloWorld.cpp -o MPI_HelloWorld

Scientific Computing
V. School of Mathematics and Science

Running an MPI Program

1419.09.2017 Introduction HPC - Session 05

• programs are executed using the MPI startup tool

$ mpirun –np <N> [options] <executable>

• example on CARL:

– note: do not normally run programs on the head nodes

[abcd1234@hpcl002 ~]$ mpirun -np 4 MPI_HelloWorld

Hello world!

Hello world!

Hello world!

Hello world!

Scientific Computing
V. School of Mathematics and Science

Running an MPI Program

• running an MPI program on the compute nodes

– using sbatch with a job script (see next slide)

– using srun interactively

– only starts when resources are available

– srun can be used a replacement for mpirun (recommended) but it

requires additional setting of environment variable for Intel MPI

1519.09.2017 Introduction HPC - Session 05

$ export I_MPI_PMI_LIBRARY=/cm/shared/apps/slurm/current/lib64/libpmi.so

$ srun -p carl.p -n 4 MPI_HelloWorld

Hello world!

Hello world!

Hello world!

Hello world!

Scientific Computing
V. School of Mathematics and Science

Job Script for an MPI Program

• minimal example batch script

– note that the executable will only work with the MPI used for

compilation

– srun and mpirun are SLURM aware and know the number of

processes to start

1619.09.2017 Introduction HPC - Session 05

#!/bin/bash

SLURM settings

#SBATCH --partition=carl.p

#SBATCH --job-name=MPI_HelloWorld

#SBATCH --ntasks=4

module load intel/2016b

export I_MPI_PMI_LIBRARY=/cm/shared/apps/slurm/current/lib64/libpmi.so

srun MPI_HelloWorld

Scientific Computing
V. School of Mathematics and Science

Setting the Number of Processes

• typically the number of processes is set by requesting the

resources

– can be changed with the -n or -np option to srun or mpirun

• number of tasks is the number of processes spawned

• number of tasks can be requested in different ways

– simple: --ntasks=<number> or -n <number>

– restricted: --nodes=<min>-<max> and --ntasks=<number>

– control: --nodes=<min>-<max> and --tasks-per-node=<number>

– user can decide how the job can be distributed

1719.09.2017 Introduction HPC - Session 05

Scientific Computing
V. School of Mathematics and Science

EXERCISE

1819.09.2017 Introduction HPC - Session 05

Scientific Computing
V. School of Mathematics and Science

MPI_HelloWorld v2.0

1919.09.2017 Introduction HPC - Session 05

• modify the MPI_HelloWorld example so that

– only one process (the root process) prints „Hello World!“

– all processes print a message

„I am process %i of %n processes running on %host“

– try out the different SLURM-options and see how the process

distribution is changed

–

• look up how to use the following MPI library calls

– MPI_Comm_rank(…)

– MPI_Comm_size(…)

– MPI_Get_processor_name(…)

Scientific Computing
V. School of Mathematics and Science

MPI Point-to-Point

Communication

2319.09.2017 Introduction HPC - Session 05

Scientific Computing
V. School of Mathematics and Science

MPI Point-to-Point Communication

2419.09.2017 Introduction HPC - Session 05

communication by sending messages within an MPI communicator

Scientific Computing
V. School of Mathematics and Science

Sending and Receiving Messages

2519.09.2017 Introduction HPC - Session 05

• the MPI library provides functions to send and receive

messages:

– sending: MPI_Send(…)

– receiving: MPI_Recv(…)

– any message sent must be received, otherwise deadlock

– function prototypes (here C/C++, Fortran is analogous)

int MPI_Send(const void *data, int count, MPI_Datatype datatype,

int destination, int tag, MPI_Comm comm)

int MPI_Recv(void *data, int count, MPI_Datatype datatype,

int source, int tag, MPI_Comm comm, MPI_Status* status)

Scientific Computing
V. School of Mathematics and Science

MPI Send/Recv Data

2619.09.2017 Introduction HPC - Session 05

• the data send or received by a message is passed as a

void pointer

– a void pointer can be cast on a pointer of any data type

– MPI does not care about the data type, the message is just a

collection of bits (continueous in memory)

– variables require a reference, arrays are already a pointer

• the integer count argument gives the number of data

values

• the MPI_Datatype argument gives the data type and

allows MPI to interpret the data correctly

– using the wrong data type can produce interesting errors

Scientific Computing
V. School of Mathematics and Science

MPI Data Types

2719.09.2017 Introduction HPC - Session 05

• MPI needs to know the type of data that is send

• predefined handles are provided for standard data types,

e.g.:
– MPI_INT, MPI_FLOAT, MPI_DOUBLE, MPI_CHAR, …

• you can also define handles for your own data types

Scientific Computing
V. School of Mathematics and Science

Other MPI Send/Recv Arguments

2819.09.2017 Introduction HPC - Session 05

• source and destination give the rank of the sending and

receiving process

• the tag is an integer identifier for each message sent

– useful if more than one message is sent at the same time from

one source to the same destination

• the MPI_Status object contains information about the

received message

– required for non-blocking communication

• MPI::Comm:Recv allows the use of wildcards

– MPI_ANY_SOURCE

– MPI_ANY_TAG

Scientific Computing
V. School of Mathematics and Science

MPI Send and Receive Example

2919.09.2017 Introduction HPC - Session 05

...

int number;

if (rank == 0) {

number = 42;

MPI_Send(&number, 1, MPI_INT, 1, 0, MPI_COMM_WORLD);

} else if (rank == 1) {

MPI_Recv(&number, 1, MPI_INT, 0, 0, MPI_COMM_WORLD,

MPI_STATUS_IGNORE);

cout << "Process 1 received number” << number << endl;

}

...

Scientific Computing
V. School of Mathematics and Science

Sending and Receiving Messages

3019.09.2017 Introduction HPC - Session 05

• message can be sent in different ways

– synchronous vs. asynchronous:

sender receives a confirmation receiving of the message is

initiated

– unbuffered vs. buffered:

the message can be buffered so the sender can continue using

the sent variable, requires additional memory

– blocking vs. non-blocking:

send or receive functions return immediately allowing to overlap

communication and computation

for details refer to the MPI-3.0 standard

Scientific Computing
V. School of Mathematics and Science

Communication Modes

• the standard function MPI_Send and MPI_Recv are

blocking operations

– MPI_Send may use a buffer and thus can return before the

message was received

– the use of the buffer depends on the MPI implementation and

situation

• for optimal performance you can control the

communication mode by using

– MPI_Isend/IRecv for non-blocking communication

– MPI_Bsend for buffered sending

– …

3119.09.2017 Introduction HPC - Session 05

Scientific Computing
V. School of Mathematics and Science

Deadlocks

3219.09.2017 Introduction HPC - Session 05

• every MPI_Send() must be matched by a corresponding MPI_Recv()

and vice versa

– otherwise the program hangs waiting forever for a communication to

finish deadlock

typical pitfalls:

• every process is sending data to a neighbour process

– only one process must send data before receiving

– use non-blocking send or receive

– use MPI_Sendrecv(…)

• a condition prevents one or more processes to initiate

communication

Scientific Computing
V. School of Mathematics and Science

Deadlock Example

3319.09.2017 Introduction HPC - Session 05

...

int number = 42 + rank;

int other = 1 – rank;

MPI_Recv(&number, 1, MPI_INT, other, 0, MPI_COMM_WORLD,

MPI_STATUS_IGNORE);

MPI_Send(&number, 1, MPI_INT, other, 0, MPI_COMM_WORLD);

cout << “Received number” << number << endl;

}

...

consider two processes:

Scientific Computing
V. School of Mathematics and Science

MPI_Sendrecv

• in some situations MPI_Sendrecv can be used for

effective and dead-lock free P2P communication

– syntax
int MPI_Sendrecv(const void *sbuf, int scount, MPI_Datatype stype, int dest, int stag,

void *rbuf, int rcount, MPI_Datatype rtype, int source, int rtag,

MPI_Comm comm, MPI_Status *status)

– note that sendbuf and recvbuf have to be different variables

– typical situation is exchange of borders

3419.09.2017 Introduction HPC - Session 05

0 1 2
distribute

border

exchange
0 1 2

Scientific Computing
V. School of Mathematics and Science

EXERCISE

3519.09.2017 Introduction HPC - Session 05

Scientific Computing
V. School of Mathematics and Science

MPI_PingPong

3619.09.2017 Introduction HPC - Session 05

• another MPI_PingPong program to run with two

processes doing the following:

– initialize a counter

– one process increments the counter and sends it to the other

– the other process receives the message and then increments the

counter and sends it back

– repeat until n messages have been sent

Scientific Computing
V. School of Mathematics and Science

MPI_RingSend

3719.09.2017 Introduction HPC - Session 05

• Complete the MPI_RingSend program to run with exactly

12 processes:

– each process, beginning with root (rank==0), should send text to

the right neighbor and receive text from the left neighbor

– after receiving but before sending text each process should
modify text as follows: text[rank] -= rank;

– the ring is terminated after one round when text reaches root

again (the final output should tell you if you code is correct)

– note: the left/right neighbor for rank 0/(size-1) is (size-1)/0

Scientific Computing
V. School of Mathematics and Science

MPI_Summation

• Complete the MPI_Summation program so that the root

process calculates the sum of all my_val values

– my_val is rank+1 so the sum is n*(n+1)/2

– only use MPI_Send and MPI_Recv (or variants with different

communications modes)

3819.09.2017 Introduction HPC - Session 05

Scientific Computing
V. School of Mathematics and Science

MPI PingPong

3919.09.2017 Introduction HPC - Session 05

Bandwidth 4.6 GB/s (6.8 GB/s)

Latency 1.9 ms (0.7 ms)

Scientific Computing
V. School of Mathematics and Science

MPI Collective Communication

4019.09.2017 Introduction HPC - Session 05

Scientific Computing
V. School of Mathematics and Science

Collective Communication

4119.09.2017 Introduction HPC - Session 05

• so far we have looked at point-to-point communication

• MPI allows also knows collective communications

– one-to-all

– all-to-one communication

– all-to-all

• example: calculate the sum of the elements of an array

Scientific Computing
V. School of Mathematics and Science

Calculate Sum in Parallel

4219.09.2017 Introduction HPC - Session 05

1

rank 0

my_val 2

1

3

2

4

3

5

4

6

5

p-1

p-2

p

p-1

Scientific Computing
V. School of Mathematics and Science

Calculate Sum in Parallel

4319.09.2017 Introduction HPC - Session 05

1

rank 0

my_val 2

1

3

2

4

3

5

4

6

5

p-1

p-2

p

p-1

• even processes become receiver, odd process sender

Scientific Computing
V. School of Mathematics and Science

Calculate Sum in Parallel

4419.09.2017 Introduction HPC - Session 05

1

rank 0

my_val 2

1

3

2

4

3

5

4

6

5

p-1

p-2

p

p-1

• even processes become receiver, odd process sender

• the last process can be
• a sender (size p even) with matching receiver

Scientific Computing
V. School of Mathematics and Science

Calculate Sum in Parallel

4519.09.2017 Introduction HPC - Session 05

1

rank 0

my_val 2

1

3

2

4

3

5

4

6

5

p-1

p-2

p

p-1

• even processes become receiver, odd process sender

• the last process can be
• a sender (size p even) with matching receiver

• a receiver (size p odd) with no matching sender (from >= p)

Scientific Computing
V. School of Mathematics and Science

Calculate Sum in Parallel

4619.09.2017 Introduction HPC - Session 05

1

rank 0

my_val 2

1

3

2

4

3

5

4

6

5

p-1

p-2

p

p-1

• every process copies my_val to local_sum

• every sender sends local_sum to the left to receiver’s rbuf

• every receiver adds rbuf to its local_sum

• rightmost receiver may not receive value (and adds 0)

• all sender also add 0

local_sum 1 2 3 4 5 6 p-1 p

2 4 6 0rbuf

local_sum 3 2 7 4 11 6 p-1 p

Scientific Computing
V. School of Mathematics and Science

Calculate Sum in Parallel

4719.09.2017 Introduction HPC - Session 05

1

rank 0

my_val 2

1

3

2

4

3

5

4

6

5

p-1

p-2

p

p-1

• every sender becomes inactive (value was added to sum)
• every other receiver becomes a sender

local_sum 3 2 7 4 11 6 p-1 p

Scientific Computing
V. School of Mathematics and Science

Calculate Sum in Parallel

4819.09.2017 Introduction HPC - Session 05

1

rank 0

my_val 2

1

3

2

4

3

5

4

6

5

p-1

p-2

p

p-1

• previous steps of sending, receiving and adding to local sum are

repeated

• after each send more processes become inactive

• final result is obtained on root when all other processes are inactive

local_sum 3 2 7 4 11 6 p-1 p

7 15rbuf

local_sum 10 2 7 4 26 6 p-1 p

Scientific Computing
V. School of Mathematics and Science

Collective Communication

4919.09.2017 Introduction HPC - Session 05

• so far we have looked at point-to-point communication

• MPI allows knows

– one-to-all

– all-to-one communication

– all-to-all

• example: calculate the sum of the elements of an array

• MPI collective communication is very efficient due to tree-

based communication

• collective communication can still be very expensive, in

particular all-to-all

Scientific Computing
V. School of Mathematics and Science

Collective Communication

5019.09.2017 Introduction HPC - Session 05

• a selection of collective MPI communications:

– MPI_Bcast(…) sending data from one process to all others

– MPI_Scatter(…) distributing an array of data from one to all

– MPI_Gather(…) collecting an array of data from all to one

– MPI_Reduce(…) reduction operation defined by a handle,

e.g. MPI_SUM

– MPI_Barrier(…) used to synchronize all processes

– …

• some also have all-to-all variant, e.g. MPI_Allreduce

• since MPI-3.0 also non-blocking calls

Scientific Computing
V. School of Mathematics and Science

MPI_Reduce

• MPI function to reduce values from all processes

– syntax
int MPI_Reduce(const void *sendbuf, void *recvbuf, int count,

MPI_Datatype datatype, MPI_Op op, int root,

MPI_Comm comm)

– the reduce operation is defined by op

– can be selected from pre-defined list or user-defined

– reduce operation is applied for every element in sendbuf

separately

– result is only obtained on root (unless MPI_Allreduce is used)

– see example MPI_Reduce_Sum.cpp

5119.09.2017 Introduction HPC - Session 05

Scientific Computing
V. School of Mathematics and Science

MPI_Reduce Operators

• pre-defined operators for MPI_Reduce

5219.09.2017 Introduction HPC - Session 05

MPI_MAX maximum

MPI_MIN minimum

MPI_SUM sum

MPI_PROD product

MPI_LAND logical and

MPI_BAND bit-wise and

MPI_LOR logical or

MPI_BOR bit-wise or

MPI_LXOR logical xor

MPI_BXOR bit-wise xor

MPI_MAXLOC max value and location

MPI_MINLOC min value and location

Scientific Computing
V. School of Mathematics and Science

Synchronization of MPI Processes

• in MPI this can be achieved with a barrier

– syntax
int MPI_Barrier(MPI_Comm comm)

– every process must reach barrier call before proceeding

• barriers are normally not needed in MPI

– synchronization is done by data communication automatically

– maybe used for debugging purposes (make sure all processes

write debug message in order)

– for profiling to measure communication times and/or load

imbalances

5319.09.2017 Introduction HPC - Session 05

Scientific Computing
V. School of Mathematics and Science

MPI_Bcast

• one process sending data to all other processes is

achieved with a broadcast

– syntax
int MPI_Bcast(void *buffer, int count,

MPI_Datatype datatype, int root,

MPI_Comm comm);

– typical example

if (rank==root) cin >> value;

MPI_Bcast(&value, 1, MPI_INT, root,

MPI_COMM_WORLD);

5419.09.2017 Introduction HPC - Session 05

Scientific Computing
V. School of Mathematics and Science

Distributing Arrays

• MPI provides a function to scatter arrays across

processes

– syntax:
int MPI_Scatter(void *sbuf, int scount, MPI_Datatype stype,

void *rbuf, int rcount, MPI_Datatype rtype,

int root, MPI_Comm comm)

– sends a continuous number of elements from an array on the root

process to every other process including the root process

5519.09.2017 Introduction HPC - Session 05

memory

p
ro

c
e
s
s 0

1

2

3

sbuf

MPI_Scatter

memory

p
ro

c
e
s
s 0

1

2

3

rbuf

scount

Scientific Computing
V. School of Mathematics and Science

MPI_Scatter

5619.09.2017 Introduction HPC - Session 05

• the value of scount is given by sizeof(sbuf)/size

• what happens if division is not even?
– if scount*size < sizeof(sbuf) only part of the array is

scattered incorrect result

– with (scount+1)*size > sizeof(sbuf) out-of-bounds
elements are scattered anything can happen

– possible solution is padding of global vector but then one process
has (much) less work to do load imbalancing

• better solution
– scatter global vector so that scount differs by 1 at most for all

processes

– can be achieved with MPI_Send/Recv or MPI_Scatterv

Scientific Computing
V. School of Mathematics and Science

MPI_Scatterv

• MPI_Scatterv gives additional control for data distribution

– syntax:
int MPI_Scatterv(void *sbuf, int *scounts, int *displs

MPI_Datatype stype,

void *rbuf, int rcount, MPI_Datatype rtype,

int root, MPI_Comm comm)

– arrays scounts and displs to define data distribution

5719.09.2017 Introduction HPC - Session 05

memory

p
ro

c
e
s
s 0

1

2

3

sbuf

MPI_Scatterv

memory

p
ro

c
e
s
s 0

1

2

3

rbuf

scounts
displs

Scientific Computing
V. School of Mathematics and Science

Gathering Data

• the opposite of MPI_Scatter is called MPI_Gather

– syntax:
int MPI_Gather(void *sbuf, int scount, MPI_Datatype stype,

void *rbuf, int rcount, MPI_Datatype rtype,

int root, MPI_Comm comm)

– each process (including root) sends a block of data to the root

process where all data blocks are collected in continuous array

5819.09.2017 Introduction HPC - Session 05

memory

p
ro

c
e
s
s 0

1

2

3

rbuf

MPI_Gather

memory

p
ro

c
e
s
s 0

1

2

3

sbuf

rcount

Scientific Computing
V. School of Mathematics and Science

Gathering Data

• variants of MPI_Gather

– MPI_Allgather

– MPI_Gatherv

– MPI_AllGatherv

5919.09.2017 Introduction HPC - Session 05

Scientific Computing
V. School of Mathematics and Science

Example Collective Communication

6019.09.2017 Introduction HPC - Session 05

• modification of the program Random.cpp to

MPI_Random.cpp

– prepare for MPI (MPI_Init, … - already provided)

– parallelize the computation of the mean value

– parallelize the computation of the standard deviation

