
Faculty V – Mathematics and Science

Scientific Computing

Dr. Stefan Harfst

Introduction to MPI

Introduction to the HPC System of the University Oldenburg

October 6 – 8, 2014

Stefan Albensoeder and Stefan Harfst

106.10.2014 HPC Introduction: Introduction to MPI

Faculty V – Mathematics and Science

Scientific Computing

Dr. Stefan Harfst

Contents

206.10.2014 HPC Introduction: Introduction to MPI

• Motivation for Parallel Computing

• Overview of Parallel Hardware Architectures and

Programming Models

• Introduction to MPI

• Examples and Exercises using MPI

Faculty V – Mathematics and Science

Scientific Computing

Dr. Stefan Harfst

Why Parallel Computing?

• Moore’s Law

– the number of transistors in a

dense integrated circuit doubles

every 12 to 24 months

– often interpreted as computing

speed doubles every ~18 months

– empirical law and self-fulfilling

prophecy

– Moore’s Law must eventually

break down

306.10.2014 HPC Introduction: Introduction to MPI

(taken from Wikipedia)

Faculty V – Mathematics and Science

Scientific Computing

Dr. Stefan Harfst

Why Parallel Computing?

406.10.2014 HPC Introduction: Introduction to MPI

• laws of physics set limit of how fast computers can become

– speed of light, quantum scale, … (see Lloyd, 2000, Nature, 406, 1047)

• of course before that there technical limitations

– e.g. heat from CPU power dissipation  limits the cycle frequency

• what is the solution to the problem?

1. develop more efficient algorithms

2. parallel computing

Faculty V – Mathematics and Science

Scientific Computing

Dr. Stefan Harfst

The Fastest Computers on Earth

506.10.2014 HPC Introduction: Introduction to MPI

(taken from top500.org)

Theoretical Peak Performance

FLOW/HERO/UV100 ≈ 45 Tflop/s

(plot shows measured performance)

Faculty V – Mathematics and Science

Scientific Computing

Dr. Stefan Harfst

Why Parallel Computing?

606.10.2014 HPC Introduction: Introduction to MPI

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+7

Jan 93 Okt 95 Jul 98 Apr 01 Jan 04 Okt 06 Jul 09 Apr 12 Dez 14

Number of Cores in the fastest Computers

Faculty V – Mathematics and Science

Scientific Computing

Dr. Stefan Harfst

Parallel Hardware Architectures

706.10.2014 HPC Introduction: Introduction to MPI

• multiprocessor

– shared memory

– cores are connected to memory with the

same speed

– Uniform Memory Access (UMA)

– Symmetric Multi-Processing (SMP)

• multicomputer

– distributed memory

– Non-Uniform Memory Access (NUMA)

– nodes are connected by node-

interconnect

– different network topologies

memory interconnect

cpu cpu cpu cpu

memory

bank

memory

bank

memory

bank

memory

bank

CPU

memory

Node interconnect

CPU

memory

CPU

memory

CPU

memory

node

Faculty V – Mathematics and Science

Scientific Computing

Dr. Stefan Harfst

Parallel Hardware Architectures

806.10.2014 HPC Introduction: Introduction to MPI

• most modern HPC systems (e.g. FLOW and HERO) are

clusters of SMP/ccNUMA nodes

node interconnect

Faculty V – Mathematics and Science

Scientific Computing

Dr. Stefan Harfst

Parallelization Strategies

906.10.2014 HPC Introduction: Introduction to MPI

• two major resources for computations

– processor

– memory

• parallelization means

– distributing the work

– distributing the data (on distributed memory machines)

– synchronization of work

– communication of data (on distributed memory machines)

• parallel programming models provide the methods to achieve the

above goals

Faculty V – Mathematics and Science

Scientific Computing

Dr. Stefan Harfst

Distributing Work and Data

1006.10.2014 HPC Introduction: Introduction to MPI

• Work decomposition

– based on loop decomposition

• Data decomposition

– all the work for a local chunk of

the data is done by the local

processor

• Domain decomposition

– work and data are distributed

according to a higher model,

e.g. reality

w
o
rk

lo
o
p parallelization

processors

1 2 3 4

d
a

ta
a
rr

a
y 1 2 3 4

f(A)

f(A) f(A) f(A) f(A)

Faculty V – Mathematics and Science

Scientific Computing

Dr. Stefan Harfst

Parallel Programming Models

1106.10.2014 HPC Introduction: Introduction to MPI

• two dominating programming models:

– OpenMP: uses directives to define work decomposition

– MPI: standardized message-passing interface

• other programming models

– HPF (high-performance Fortran)

– PGAS (Partitioned Global Address Space), e.g. Co-Array Fortran

UPC (Unified Parallel C)

• programming models for compute devices

– CUDA

– OpenCL

– OpenACC

Faculty V – Mathematics and Science

Scientific Computing

Dr. Stefan Harfst

Overview MPI

1206.10.2014 HPC Introduction: Introduction to MPI

• Introduction to the Message Passing Interface

• Point-to-Point Communication

• Collective Communication

• Other and New Features of MPI

– Derived Datatypes

– Virtual Topologies

– Process Creation and Management

– One-sided Communication and Shared Memory

– MPI and Threads

– Parallel File I/O

Faculty V – Mathematics and Science

Scientific Computing

Dr. Stefan Harfst

History of MPI

1306.10.2014 HPC Introduction: Introduction to MPI

• MPI is a standard with the prime goals

– to provide a message-passing interface

– to provide source-code portability

– to allow efficient implementations

• MPI exists for more than 20 years

– MPI-1.0 was released in June, 1994

– MPI-2.0 was released in July, 1997 and provided additional

functionality

– MPI-3.0, the current standard, was released in October, 2012

and was developed for better platform and application support

(in particular clusters of SMP nodes)

Faculty V – Mathematics and Science

Scientific Computing

Dr. Stefan Harfst

A Message-Passing Interface

1406.10.2014 HPC Introduction: Introduction to MPI

• sequential program vs. message-passing program

• message-passing programming paradigm:

– each processor runs a (sub)program, typically the same (SPMD)

– variables of subprograms have the same name but different (distributed) data

– communication by special library routines  message passing

program

data memory

processor program

data

program

data

program

data

program

data
distributed

memory

parallel

processors

communication network

Faculty V – Mathematics and Science

Scientific Computing

Dr. Stefan Harfst

Message Passing

1506.10.2014 HPC Introduction: Introduction to MPI

• messages are passed through the communication network

• messages require the

following information:

– sending and receiving

process

– data location

– data type

– data size

• in order to use the message-passing interface the program must be

– connected to the MPI library (at compile time)

– started with the MPI startup tool (mpirun or mpiexec)

– at runtime MPI is initialized with special library calls (MPI_Init())

program

data
distributed

memory

parallel

processors

communication network

Faculty V – Mathematics and Science

Scientific Computing

Dr. Stefan Harfst

Process Identification

1606.10.2014 HPC Introduction: Introduction to MPI

• processes in MPI are identified by their rank

– determined by calling a library function

– rank is used for addressing when sending messages

– rank is used for making decisions, e.g. when distributing the data and work

program

data

program

data

program

data

program

data
distributed

memory

parallel

processors

communication network

myrank = 0 = 1 = 2 = p

Faculty V – Mathematics and Science

Scientific Computing

Dr. Stefan Harfst

Example: MPI_HelloWorld

1706.10.2014 HPC Introduction: Introduction to MPI

#include <stdio.h>

#include <mpi.h>

int main(int argc, char *argv[])

{

int my_rank, size;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

MPI_Comm_size(MPI_COMM_WORLD, &size);

if (my_rank == 0)

{

printf ("Hello world!\n");

}

printf("I am process %i out of %i.\n", my_rank, size);

MPI_Finalize();

}

Faculty V – Mathematics and Science

Scientific Computing

Dr. Stefan Harfst

MPI Header and Module Files

1806.10.2014 HPC Introduction: Introduction to MPI

• C/C++: #include <mpi.h>

• Fortran: include "mpif.h"

or use mpi

or use mpi_f08

– the use of the old style include-statement is strongly discouraged

as no compile-time argument checking can be done

– recommended is the use of mpi_f08

Faculty V – Mathematics and Science

Scientific Computing

Dr. Stefan Harfst

MPI Library Calls

1906.10.2014 HPC Introduction: Introduction to MPI

• in general an MPI library call has the form

C/C++: error = MPI_Xxxxx(parameter, …);

MPI_Xxxxx(parameter, …);

Fortran: CALL MPI_Xxxxx(parameter, …, ierror)

– in Fortran the use of ierror has change with MPI-3.0:

if (and only if!) you are using the module file mpi_f08, ierror is an

optional argument. In any other case ierror cannot be omitted otherwise

terrible unforeseen things may happen.

– refer to the MPI-3.0 standard document to look up the definitions and

argument list of available MPI functions

http://www.mpi-forum.org/docs/

http://www.mpi-forum.org/docs/

Faculty V – Mathematics and Science

Scientific Computing

Dr. Stefan Harfst

MPI_Init() and MPI_Finalize()

2006.10.2014 HPC Introduction: Introduction to MPI

• MPI is initialized with

– C/C++: MPI_Init(&argc, &argv);

– Fortran: CALL MPI_Init(ierror)

– must be the first MPI-routine that is called (few exceptions)

– call as early as possible in your program

– in C/C++ argv and argc are passed by reference (possibly cleans argv from

unwanted MPI arguments)

• MPI is finalized with

– C/C++: MPI_Finalize();

– Fortran: CALL MPI_Finalize(ierror)

– must be the last MPI-routine that is called (few exceptions)

Faculty V – Mathematics and Science

Scientific Computing

Dr. Stefan Harfst

MPI Communicators

2106.10.2014 HPC Introduction: Introduction to MPI

• all MPI processes (subprograms) are combined in the

communicator MPI_COMM_WORLD

– MPI_COMM_WORLD is a handle predefined in the header files

– each process in a communicator has its own rank starting

from 0 until (size-1)

– the size of a communicator and the rank of a process within the

communicator can be determined with special library calls

– it is possible to define your own communicators (e.g. for a subset

of processes) and handles

Faculty V – Mathematics and Science

Scientific Computing

Dr. Stefan Harfst

MPI_Comm_size() and MPI_Comm_rank()

2206.10.2014 HPC Introduction: Introduction to MPI

• to determine the size of a communicator use

MPI_Comm_size(MPI_COMM_WORLD, &size);

• to determine the rank of a process within a

communicator use

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

– note that size is the same on every process whereas myrank is

different

Faculty V – Mathematics and Science

Scientific Computing

Dr. Stefan Harfst

Example: MPI_HelloWorld

2306.10.2014 HPC Introduction: Introduction to MPI

#include <stdio.h>

#include <mpi.h>

int main(int argc, char *argv[])

{

int my_rank, size;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

MPI_Comm_size(MPI_COMM_WORLD, &size);

if (my_rank == 0)

{

printf ("Hello world!\n");

}

printf("I am process %i out of %i.\n", my_rank, size);

MPI_Finalize();

}

Faculty V – Mathematics and Science

Scientific Computing

Dr. Stefan Harfst

Example: MPI_HelloWorld

2406.10.2014 HPC Introduction: Introduction to MPI

PROGRAM MPI_HelloWorld

USE mpi_f08

IMPLICIT NONE

INTEGER rank, size

CALL MPI_Init()

CALL MPI_Comm_rank(MPI_COMM_WORLD, rank)

CALL MPI_Comm_size(MPI_COMM_WORLD, size)

IF (rank .EQ. 0) THEN

WRITE(*,*) 'Hello world!'

END IF

WRITE(*,*) 'I am process', rank, ' out of', size

CALL MPI_Finalize()

END PROGRAM MPI_HelloWorld

Faculty V – Mathematics and Science

Scientific Computing

Dr. Stefan Harfst

Compiling an MPI Program

2506.10.2014 HPC Introduction: Introduction to MPI

• programs are compiled using a wrapper command:

C: $ mpicc [options] <source.c> -o <executable>

C++: $ mpic++ [options] <source.c> -o <executable>

Fortran: $ mpifort [options] <source.c> -o <executable>

– uses the standard compiler (GCC, ICS) with some extra options

• example on HERO:

[abcd1234@hero02 ~]$ module load intel intel/ics/2013_sp1.3.174/64

[abcd1234@hero02 ~]$ module load openmpi/1.8.1/ics

[abcd1234@hero02 ~]$ mpicc MPI_HelloWorld.c -o MPI_HelloWorld

Faculty V – Mathematics and Science

Scientific Computing

Dr. Stefan Harfst

Running an MPI Program

2606.10.2014 HPC Introduction: Introduction to MPI

• programs are executed using the MPI startup tool

$ mpirun –np <N> [options] <executable>

or $ mpiexec –np <N> [options] <executable>

• example on HERO:

– note: do not normally run programs on the head nodes

[abcd1234@hero02 ~]$ mpirun -np 4 --mca btl ^openib MPI_HelloWorld

I am process 2 out of 4.

I am process 3 out of 4.

I am process 1 out of 4.

Hello world!

I am process 0 out of 4.

Faculty V – Mathematics and Science

Scientific Computing

Dr. Stefan Harfst

Running an OpenMPI Program with SGE

2706.10.2014 HPC Introduction: Introduction to MPI

#!/bin/bash

####### SGE settings

#$ -cwd

#$ -N MPI_HelloWorld

####### parallel environment

#$ -l cluster=hero

#$ -pe openmpi 4

#$ -R y

####### requesting resources

#$ -l h_rt=0:10:0

#$ -l h_vmem=1000M

#$ -l h_fsize=100M

loading modules

module load intel intel/ics/2013_sp1.3.174/64

module load openmpi/1.8.1/ics

the --mca options tells MPI not to use Infiniband (prevents warning)

mpirun -np $NSLOTS -machinefile $TMPDIR/machines --mca btl ^openib MPI_HelloWorld

Faculty V – Mathematics and Science

Scientific Computing

Dr. Stefan Harfst

Sending and Receiving Messages

2806.10.2014 HPC Introduction: Introduction to MPI

• the MPI library provides functions to send and receive

messages:

– sending: MPI_Send(…)

– receiving: MPI_Recv(…)

– any message sent must be received, otherwise  deadlock

– function prototypes (here C/C++, Fortran is analogous)

MPI_Send(void* data, int count, MPI_Datatype datatype, int destination,

int tag, MPI_Comm communicator)

MPI_Recv(void* data, int count, MPI_Datatype datatype, int source,

int tag, MPI_Comm communicator, MPI_Status* status)

Faculty V – Mathematics and Science

Scientific Computing

Dr. Stefan Harfst

MPI Data Types

2906.10.2014 HPC Introduction: Introduction to MPI

• MPI needs to know the type of data that is send

• predefined handles are provided for standard data types,

e.g.:
– MPI_INT, MPI_FLOAT, MPI_DOUBLE, MPI_CHAR, …

• you can also define handles for your own data types

Faculty V – Mathematics and Science

Scientific Computing

Dr. Stefan Harfst

MPI Send and Receive Example

3006.10.2014 HPC Introduction: Introduction to MPI

...

int number;

if (my_rank == 0) {

number = 42;

MPI_Send(&number, 1, MPI_INT, 1, 0, MPI_COMM_WORLD);

} else if (my_rank == 1) {

MPI_Recv(&number, 1, MPI_INT, 0, 0, MPI_COMM_WORLD,

MPI_STATUS_IGNORE);

printf("Process 1 received number %d from process 0\n",

number);

}

...

Faculty V – Mathematics and Science

Scientific Computing

Dr. Stefan Harfst

Sending and Receiving Messages

3106.10.2014 HPC Introduction: Introduction to MPI

• message can be sent in different ways

– synchronous vs. asynchronous:

sender receives a confirmation receiving of the message is

initiated

– unbuffered vs. buffered:

the message can be buffered so the sender can continue using

the sent variable, requires additional memory

– blocking vs. non-blocking:

send or receive functions return immediately allowing to overlap

communication and computation

for details refer to the MPI-3.0 standard

Faculty V – Mathematics and Science

Scientific Computing

Dr. Stefan Harfst

Collective Communication

3206.10.2014 HPC Introduction: Introduction to MPI

• so far we have looked at point-to-point communication

• MPI allows knows

– one-to-all

– all-to-one communication

– all-to-all

• example: calculate the sum of the elements of an array

Faculty V – Mathematics and Science

Scientific Computing

Dr. Stefan Harfst

Collective Communication

3306.10.2014 HPC Introduction: Introduction to MPI

0 1 2 3 4 5 6 7 8 9 10 11

5 3 7 9 1 4 3 6 8 6 4 0

process rank

data

8 16 5 9 14 4

communication

24 14 18

56result

reduction

Faculty V – Mathematics and Science

Scientific Computing

Dr. Stefan Harfst

Collective Communication

3406.10.2014 HPC Introduction: Introduction to MPI

• so far we have looked at point-to-point communication

• MPI allows knows

– one-to-all

– all-to-one communication

– all-to-all

• example: calculate the sum of the elements of an array

• MPI collective communication is very efficient due to

tree-based communication

• collective communication can still be very expensive, in

particular all-to-all

Faculty V – Mathematics and Science

Scientific Computing

Dr. Stefan Harfst

Collective Communication

3506.10.2014 HPC Introduction: Introduction to MPI

• a selection of collective MPI communications:

– MPI_Bcast(…) sending data from one process to all others

– MPI_Scatter(…) distributing an array of data from one to all

– MPI_Gather(…) collecting an array of data from all to one

– MPI_Reduce(…) reduction operation defined by a handle,

e.g. MPI_SUM

– MPI_Barrier(…) used to synchronize all processes

– …

• some also have all-to-all variant, e.g. MPI_Allreduce

• since MPI-3.0 also non-blocking calls

Faculty V – Mathematics and Science

Scientific Computing

Dr. Stefan Harfst

Example: MPI_Scatter and MPI_Gather

3606.10.2014 HPC Introduction: Introduction to MPI

1 2 3 4 5 6 7 8

p
ro

c
e

s
s
e

s

memory

MPI_Scatter

1 2

5 6

7 8

p
ro

c
e
s
s
e
s

memory

3 4

MPI_Gather

Faculty V – Mathematics and Science

Scientific Computing

Dr. Stefan Harfst

Summary

3706.10.2014 HPC Introduction: Introduction to MPI

• MPI allows the parallelization of programs by distribution data and

work through the passing of messages

– MPI is a platform-independent standard

– very flexible but also more time-consuming to program

– read the standard document for more details

 http://www.mpi-forum.org/docs/

• MPI library calls can be used to send and receive messages

– whenever needed use higher-level functions for collective

communication for efficiency

• with MPI you can introduce new types of errors in your program, e.g.

deadlocks

– however, many errors in parallel programs stem from error in the serial

code

http://www.mpi-forum.org/docs/

Faculty V – Mathematics and Science

Scientific Computing

Dr. Stefan Harfst

MPI Exercises and Examples

3806.10.2014 HPC Introduction: Introduction to MPI

• Programming Exercises include

– MPI_HelloWorld

– MPI_PingPong

– MPI_RingSend

– Timing MPI_Send()

• Do as many exercises as you can or like

– Solutions are provided

but do not look at solutions until you completed the exercise!

Faculty V – Mathematics and Science

Scientific Computing

Dr. Stefan Harfst

Exercise 1: MPI_HelloWorld

3906.10.2014 HPC Introduction: Introduction to MPI

• Write an MPI_HelloWorld program following the example

given before

– compile and run the program on the cluster

– what do you notice when you run the program several times?

Can you explain the behavior?

Faculty V – Mathematics and Science

Scientific Computing

Dr. Stefan Harfst

Exercise 2: MPI_PingPong

4006.10.2014 HPC Introduction: Introduction to MPI

• Write an MPI_PingPong program to run with two

processes doing the following:

– initialize a counter

– one process increments the counter and sends it to the other

– the other process receives the message and then increments the

counter and sends it back

– repeat until n messages have been sent

Faculty V – Mathematics and Science

Scientific Computing

Dr. Stefan Harfst

Exercise 3: MPI_RingSend

4106.10.2014 HPC Introduction: Introduction to MPI

• Write an MPI_RingSend program to run with any number

of processes computing on all processes the sum of all

ranks:

– each process receives the current sum from its left neighbor

(rank-1)

– each process adds its own rank to the current sum

– each process sends the new current sum to its right neighbor

– the ring is terminated after one round

– note: the left/right neighbor for rank 0/(size-1) is (size-1)/0

– is MPI_RingSend a truly parallel program when using

MPI_Send() and MPI_Recv()?

Faculty V – Mathematics and Science

Scientific Computing

Dr. Stefan Harfst

Exercise 4: Timing MPI_Send()

4206.10.2014 HPC Introduction: Introduction to MPI

• Write an MPI program that sends an array of doubles

from one process to another

– using MPI_Wtime() measure the time it takes to complete the

MPI_Send() call

– determine this time as function of N where N is the size of the

array

– plot the result and explain

