
Faculty V – Mathematics and Science

Scientific Computing

Dr. Stefan Harfst

Introduction to MDCS

110.10.2014 Introduction to MDCS at HPC UniOL

• Matlab Distributed Compute Server

• Preparing Matlab for MDCS

• Example

Faculty V – Mathematics and Science

Scientific Computing

Dr. Stefan Harfst

What is MDCS

210.10.2014

Matlab on your desktop computer:

• you are limited by the compute

power of your local machine

• memory

• CPU speed

• you can only run one job at a time

• your machine may become

unusable while your Matlab job is

running

Faculty V – Mathematics and Science

Scientific Computing

Dr. Stefan Harfst

What is MDCS

310.10.2014

Faculty V – Mathematics and Science

Scientific Computing

Dr. Stefan Harfst

Parallel Computing with Matlab

410.10.2014

• easily experiment with

explicit parallelism on

multicore machines

• rapidly develop parallel

applications on local

computer

• take full advantage of

desktop power, incl.

GPUs

• separate compute

cluster not required

(taken from MathWorks marketing)

Faculty V – Mathematics and Science

Scientific Computing

Dr. Stefan Harfst

Parallel Computing with Matlab

510.10.2014

(taken from MathWorks marketing)

Faculty V – Mathematics and Science

Scientific Computing

Dr. Stefan Harfst

What is MDCS

610.10.2014

• MDCS allows you to off-load Matlab programs to a

compute server

• simplified workflow

– you can develop and test your application locally before

submitting jobs, also in parallel

– results are automatically returned to your local machine for post-

processing

• the Parallel Computing Toolbox provides utilities for

parallelization

– task-parallel

– data-parallel

Faculty V – Mathematics and Science

Scientific Computing

Dr. Stefan Harfst

Why to use MDCS on the Cluster?

710.10.2014

• with MDCS come 224 worker licenses

– these are in addition to the normal Matlab licenses (200)

– you can use also any of the toolboxes (50)

– allows the control over used licenses and prevents failed jobs

– for fair sharing not more than 36 MDCS licenses should be used

Faculty V – Mathematics and Science

Scientific Computing

Dr. Stefan Harfst

Parallel Computing with Matlab

810.10.2014

Faculty V – Mathematics and Science

Scientific Computing

Dr. Stefan Harfst

Parallel Computing with Matlab

910.10.2014

Three levels of Integration:

Faculty V – Mathematics and Science

Scientific Computing

Dr. Stefan Harfst

Parallel Computing Support in Toolboxes

1010.10.2014

• Optimization Toolbox

• Global Optimization Toolbox

• Statistics Toolbox

• Simulink Design Optimization

• Bioinformatics Toolbox

• Communications Toolbox

• Model-Based Calibration Toolbox

• ... and more

see
http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.html

http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.html

Faculty V – Mathematics and Science

Scientific Computing

Dr. Stefan Harfst

Using MDCS on FLOW/HERO

1110.10.2014

• before you can use MDCS a few preparations are needed (only

needed to be done once)

– Matlab needs to be installed (see local web page) on your local

machine, only versions R2010b, R2011a, R2011b are licensed for

MDCS

– your local machine must be able to login to FLOW/HERO via ssh

• Linux/Mac have ssh per default, for Windows you can use PuTTY

• if you are not in the university network you also need to connect to a VPN

(see HPC-Wiki for details)

– a number of files (from a zipped archive from the HPC-Wiki) have to

copied to your local Matlab directory (depending on the setup of your

local machine, your system admin has to help you)

– a parallel configuration has to be setup with Matlab

Faculty V – Mathematics and Science

Scientific Computing

Dr. Stefan Harfst

Using MDCS on FLOW/HERO

1210.10.2014

• once you have completed the setup you can submit jobs

to the cluster

– example parameter sweep for 2nd-order ODE

(taken from the HPC-Wiki)

– dampened oscillator

– simulate with different values for b and k

– record peak value for each run

Faculty V – Mathematics and Science

Scientific Computing

Dr. Stefan Harfst

2nd-order ODE for example

1310.10.2014

function dy = odesystem(t, y, m, b, k)

% 2nd-order ODE

%

% m*X'' + b*X' + k*X = 0

%

% --> system of 1st-order ODEs

%

% y = X'

% y' = -1/m * (k*y + b*y')

% Copyright 2009 The MathWorks, Inc.

dy(1) = y(2);

dy(2) = -1/m * (k * y(1) + b * y(2));

dy = dy(:); % convert to column vector

odesystem.m

Faculty V – Mathematics and Science

Scientific Computing

Dr. Stefan Harfst

Parameter Sweep: serial Matlab code

1410.10.2014

%% Initialize Problem
m = 5; % mass
bVals = 0.1:.1:15; % damping values (step .1)
kVals = 1.5:.1:15; % stiffness values (step .1) damping
[kGrid, bGrid] = meshgrid(bVals, kVals);
peakVals = nan(size(kGrid));

%% Parameter Sweep
tic;

for idx = 1:numel(kGrid)
% Solve ODE
[T,Y] = ode45(@(t,y) odesystem(t, y, m, bGrid(idx), kGrid(idx)), ...
[0, 25], ... % simulate for 25 seconds
[0, 1]); % initial conditions

% Determine peak value
peakVals(idx) = max(Y(:,1));

end

t1 = toc;

paramSweep_batch.m

Faculty V – Mathematics and Science

Scientific Computing

Dr. Stefan Harfst

Parameter Sweep: parallel Matlab code

1510.10.2014

%% Initialize Problem
m = 5; % mass
bVals = 0.1:.1:15; % damping values (step .1)
kVals = 1.5:.1:15; % stiffness values (step .1) damping
[kGrid, bGrid] = meshgrid(bVals, kVals);
peakVals = nan(size(kGrid));

%% Parameter Sweep
tic;

parfor idx = 1:numel(kGrid)
% Solve ODE
[T,Y] = ode45(@(t,y) odesystem(t, y, m, bGrid(idx), kGrid(idx)), ...
[0, 25], ... % simulate for 25 seconds
[0, 1]); % initial conditions

% Determine peak value
peakVals(idx) = max(Y(:,1));

end

t1 = toc;

paramSweep_batch.m

Faculty V – Mathematics and Science

Scientific Computing

Dr. Stefan Harfst

Mechanics of parfor Loops

1610.10.2014

Faculty V – Mathematics and Science

Scientific Computing

Dr. Stefan Harfst

Converting for to parfor

1710.10.2014

• requirements for parfor loops

– task independent

– order independent

• constraints on the loop body

– cannot introduce variables (e.g. eval, load, global)

– cannot contain break or return statements

– cannot contain another parfor loop

Faculty V – Mathematics and Science

Scientific Computing

Dr. Stefan Harfst

Variable Classification

1810.10.2014

• all variables referenced at the top level of the parfor must

be resolved and classified

Classification Description

Loop serves as a loop index for arrays

sliced an array whose segments are operated on by different

iterations

broadcast a variable defined before the loop whose value is used

inside the loop, but never assigned in the loop

reduction accumulates a value across iterations of the loop,

regardless of iteration order

temporary variable created inside the loop but unlike sliced or

reduction variables, not available outside the loop

Faculty V – Mathematics and Science

Scientific Computing

Dr. Stefan Harfst

parfor Considerations

1910.10.2014

• parfor often only involves minimal code changes

• if a for loop cannot be converted to parfor, consider

wrapping a subset of loop body in a function

– e.g. load works not in parfor, however it does work in function

that is called inside a parfor loop

• more information

http://blogs.mathworks.com/loren/2009/10/02/using-

parfor-loops-getting-up-and-running/

• there is a Code-Analyzer to diagnose parfor issues

http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/

