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Parallel Hardware Architectures
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• most modern HPC systems (e.g. CARL and EDDY) are

clusters of SMP/ccNUMA nodes
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Parallelization Strategies
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• major resources for computations

– processor

– memory

– I/O 

• parallelization means

– distributing the work

– distributing the data (on distributed memory machines)

– synchronization of work

– communication of data (on distributed memory machines)

• parallel programming models provide the methods to achieve the

above goals
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Distributing Work and Data
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• Work decomposition

– based on loop decomposition

• Data decomposition

– all the work for a local chunk of 

the data is done by the local

processor

• Domain decomposition

– work and data are distributed

according to a higher model, 

e.g. reality
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Parallel Programming Models
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• two dominating programming models:

– OpenMP: uses directives to define work decomposition

– MPI: standardized message-passing interface

• other programming models

– HPF (high-performance Fortran)

– PGAS (Partitioned Global Address Space), e.g. Co-Array Fortran

UPC (Unified Parallel C)

• programming models for compute devices

– CUDA

– OpenCL

– OpenACC
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History of MPI
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• MPI is a standard with the prime goals

– to provide a message-passing interface

– to provide source-code portability

– to allow efficient implementations

• MPI exists for more than 20 years

– MPI-1.0 was released in June, 1994

– MPI-2.0 was released in July, 1997 and provided additional 

functionality

– MPI-3.0 (current standard MPI-3.1) was released in October, 

2012 and was developed for better platform and application 

support (in particular clusters of SMP nodes)

http://mpi-forum.org/docs/

http://mpi-forum.org/docs/
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A Message-Passing Interface
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• sequential program vs. message-passing program

• message-passing programming paradigm:

– each processor runs a (sub)program, typically the same (SPMD)

– variables of subprograms have the same name but different (distributed) data

– communication by special library routines ➔ message passing
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Message Passing
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• messages are passed through the communication network

• messages require the 

following information:

– sending and receiving

process

– data location

– data type

– data size

• in order to use the message-passing interface the program must be

– connected to the MPI library (at compile time)

– started with the MPI startup tool (mpirun or mpiexec)

– at runtime MPI is initialized with special library calls (MPI_Init())
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Example MPI Program in C/C++
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#include <mpi.h>

using namespace std;

int main(int argc, char *argv[]) {

// initialization of MPI

MPI_Init(&argc, &argv);

// do some computation in parallel

int partial_result = some_computation();

int global_result = 0;

// collect the result by an all-to-one communication

MPI_Reduce(&partial_result, &global_result, 1,

MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);

// finalization of MPI

MPI_Finalize();

}
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Parallel Programming Models
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• two dominating programming models:
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GPUs in HPC

• GPUs appeared in the early 
2000s in HPC

– good cost/performance ratio due 
to mass production for gaming

• initially consumer-grade graphic 
cards were used

– limited general-purpose 
computing

– algorithms have to mimic graphics 
display

• today special GPUs are used in 
HPC

– no display port

– run real algorithms
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recent Tesla P100

old Geforce 8800 GTX 
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Design of GPUs

• Example NVIDIA P100
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• organized in 

Graphics (GPCs) 

and Texture (TPCs) 

Processing Clusters

• 60 streaming multi-

processor (SM)
➢ basic compute resource

➢ each SM has 64 CUDA 

cores

• 4 MB L2 Cache
➢ accessed by 8 memory 

controllers
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Design of GPUs

• the SM is divided 

into two blocks

– each has 32 SP 

core and 16 DP 

cores

– 8 Special Function 

Units (SFUs)

• 64kB of shared 

memory
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CUDA Core vs. CPU core

• CUDA cores have no control logic

– control logic is in SM only

– all cores must perform same 

instruction 

– SM is SIMD unit
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Hybrid Parallel Programming Models

• parallel programming models can be combined in a 
hybrid approach for better performance or special needs

• common approach is MPI + OpenMP to reduce the
number of MPI process (communication overhead)
– example: use MPI to start a parallel program on multiple dual-

socket nodes, one MPI process per socket and OpenMP to utilize
the available cores per socket

• MPI + CUDA/OpenACC to use GPUs across multiple 
nodes or OpenMP + CUDA for multiple GPUs in a single
node
– NVLink (or similar) may allow you to address multiple GPUs 

within a node as a single device
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SLURM OPTIONS FOR

PARALLEL COMPUTING
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Slurm Options for Parallel Computing

• a Slurm job can request to run multiple tasks

– the option --ntasks or a combination of --nodes and

--tasks-per-node can be used to set the number of tasks

– tasks can be executed using with srun (but this is not a typical

use case)

– a process in a parallel MPI programs corresponds to a task and
mpirun is aware of the requested number of tasks

• a Slurm job can also request multiple (logical) cores per 

task

– the option --cpus-per-task can be used for that

– a Slurm cpu can be a physical core or a logical (hyper)thread
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Variables in Job Scripts

• if you have a parallel application and you have requested

multiple tasks and/or CPUs you can use corresponding

variables in your job script

– SLURM_JOB_NODELIST: List of nodes allocated to 

the job 

– SLURM_JOB_NUM_NODES: Total number of nodes in the

job's resource allocation

– SLURM_NTASKS: Number of tasks requested 

– SLURM_NTASKS_PER_NODE: Number of tasks requested 

per node 

– SLURM_CPUS_PER_TASK: Number of cpus requested 

per task
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Slurm Options for GPU Computing

• to use the GPU nodes your job script should include

– selection of an appropriate partition

#SBATCH --partition mpcg.p # or mpcb.p or cfdg.p

– request for one or two gpus (Generic RESource in Slurm)

#SBATCH –gres=gpu:1           # 1 or 2 gpus

– you also need to load the CUDA Toolkit

module load CUDA              # add version if needed

– note that the driver is only available on the GPU nodes
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