
Scientific Computing
V. School of Mathematics and Science

Introduction to

High-Performance Computing

Session 04

Introduction to Parallel Computing

Scientific Computing
V. School of Mathematics and Science

Why Parallel Computing?

231.03.2020 Introduction HPC - Session 04

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+7

Jan 93 Okt 95 Jul 98 Apr 01 Jan 04 Okt 06 Jul 09 Apr 12 Dez 14

Number of Cores in the fastest Computers

Scientific Computing
V. School of Mathematics and Science

Parallel Hardware Architectures

331.03.2020 Introduction HPC - Session 04

• most modern HPC systems (e.g. CARL and EDDY) are

clusters of SMP/ccNUMA nodes

compute node

socket interconnect

CPU

memory

CPU

memory

compute node

socket interconnect

CPU

memory

CPU

memory

node interconnect

compute node

socket interconnect

CPU

memory

CPU

memory

Scientific Computing
V. School of Mathematics and Science

Parallelization Strategies

431.03.2020 Introduction HPC - Session 04

• major resources for computations

– processor

– memory

– I/O

• parallelization means

– distributing the work

– distributing the data (on distributed memory machines)

– synchronization of work

– communication of data (on distributed memory machines)

• parallel programming models provide the methods to achieve the

above goals

Scientific Computing
V. School of Mathematics and Science

Distributing Work and Data

531.03.2020 Introduction HPC - Session 04

• Work decomposition

– based on loop decomposition

• Data decomposition

– all the work for a local chunk of

the data is done by the local

processor

• Domain decomposition

– work and data are distributed

according to a higher model,

e.g. reality

w
o

rk
lo

o
p parallelization

processors

1 2 3 4

d
a

ta
a

rr
a

y 1 2 3 4

f(A)

f(A) f(A) f(A) f(A)

Scientific Computing
V. School of Mathematics and Science

Parallel Programming Models

631.03.2020 Introduction HPC - Session 04

• two dominating programming models:

– OpenMP: uses directives to define work decomposition

– MPI: standardized message-passing interface

• other programming models

– HPF (high-performance Fortran)

– PGAS (Partitioned Global Address Space), e.g. Co-Array Fortran

UPC (Unified Parallel C)

• programming models for compute devices

– CUDA

– OpenCL

– OpenACC

Scientific Computing
V. School of Mathematics and Science

Parallel Programming Models

731.03.2020 Introduction HPC - Session 04

• two dominating programming models:

– OpenMP: uses directives to define work decomposition

– MPI: standardized message-passing interface

• other programming models

– HPF (high-performance Fortran)

– PGAS (Partitioned Global Address Space), e.g. Co-Array Fortran

UPC (Unified Parallel C)

• programming models for compute devices

– CUDA

– OpenCL

– OpenACC

Scientific Computing
V. School of Mathematics and Science

History of MPI

831.03.2020 Introduction HPC - Session 04

• MPI is a standard with the prime goals

– to provide a message-passing interface

– to provide source-code portability

– to allow efficient implementations

• MPI exists for more than 20 years

– MPI-1.0 was released in June, 1994

– MPI-2.0 was released in July, 1997 and provided additional

functionality

– MPI-3.0 (current standard MPI-3.1) was released in October,

2012 and was developed for better platform and application

support (in particular clusters of SMP nodes)

http://mpi-forum.org/docs/

http://mpi-forum.org/docs/

Scientific Computing
V. School of Mathematics and Science

A Message-Passing Interface

931.03.2020 Introduction HPC - Session 04

• sequential program vs. message-passing program

• message-passing programming paradigm:

– each processor runs a (sub)program, typically the same (SPMD)

– variables of subprograms have the same name but different (distributed) data

– communication by special library routines ➔ message passing

program

data memory

processor program

data

program

data

program

data

program

data
distributed

memory

parallel

processors

communication network

Scientific Computing
V. School of Mathematics and Science

Message Passing

1031.03.2020 Introduction HPC - Session 04

• messages are passed through the communication network

• messages require the

following information:

– sending and receiving

process

– data location

– data type

– data size

• in order to use the message-passing interface the program must be

– connected to the MPI library (at compile time)

– started with the MPI startup tool (mpirun or mpiexec)

– at runtime MPI is initialized with special library calls (MPI_Init())

program

data
distributed

memory

parallel

processors

communication network

Scientific Computing
V. School of Mathematics and Science

Example MPI Program in C/C++

1131.03.2020 Introduction HPC - Session 04

#include <mpi.h>

using namespace std;

int main(int argc, char *argv[]) {

// initialization of MPI

MPI_Init(&argc, &argv);

// do some computation in parallel

int partial_result = some_computation();

int global_result = 0;

// collect the result by an all-to-one communication

MPI_Reduce(&partial_result, &global_result, 1,

MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);

// finalization of MPI

MPI_Finalize();

}

Scientific Computing
V. School of Mathematics and Science

Parallel Programming Models

1231.03.2020 Introduction HPC - Session 04

• two dominating programming models:

– OpenMP: uses directives to define work decomposition

– MPI: standardized message-passing interface

• other programming models

– HPF (high-performance Fortran)

– PGAS (Partitioned Global Address Space), e.g. Co-Array Fortran

UPC (Unified Parallel C)

• programming models for compute devices

– CUDA

– OpenCL

– OpenACC

Scientific Computing
V. School of Mathematics and Science

GPUs in HPC

• GPUs appeared in the early
2000s in HPC

– good cost/performance ratio due
to mass production for gaming

• initially consumer-grade graphic
cards were used

– limited general-purpose
computing

– algorithms have to mimic graphics
display

• today special GPUs are used in
HPC

– no display port

– run real algorithms

1331.03.2020 Introduction HPC - Session 04

recent Tesla P100

old Geforce 8800 GTX

Scientific Computing
V. School of Mathematics and Science

Design of GPUs

• Example NVIDIA P100

1431.03.2020 Introduction HPC - Session 04

• organized in

Graphics (GPCs)

and Texture (TPCs)

Processing Clusters

• 60 streaming multi-

processor (SM)
➢ basic compute resource

➢ each SM has 64 CUDA

cores

• 4 MB L2 Cache
➢ accessed by 8 memory

controllers

Scientific Computing
V. School of Mathematics and Science

Design of GPUs

• the SM is divided

into two blocks

– each has 32 SP

core and 16 DP

cores

– 8 Special Function

Units (SFUs)

• 64kB of shared

memory

1531.03.2020 Introduction HPC - Session 04

Scientific Computing
V. School of Mathematics and Science

CUDA Core vs. CPU core

• CUDA cores have no control logic

– control logic is in SM only

– all cores must perform same

instruction

– SM is SIMD unit

1631.03.2020 Introduction HPC - Session 04

Scientific Computing
V. School of Mathematics and Science

Hybrid Parallel Programming Models

• parallel programming models can be combined in a
hybrid approach for better performance or special needs

• common approach is MPI + OpenMP to reduce the
number of MPI process (communication overhead)
– example: use MPI to start a parallel program on multiple dual-

socket nodes, one MPI process per socket and OpenMP to utilize
the available cores per socket

• MPI + CUDA/OpenACC to use GPUs across multiple
nodes or OpenMP + CUDA for multiple GPUs in a single
node
– NVLink (or similar) may allow you to address multiple GPUs

within a node as a single device

1731.03.2020 Introduction HPC - Session 04

Scientific Computing
V. School of Mathematics and Science

SLURM OPTIONS FOR

PARALLEL COMPUTING

1831.03.2020 Introduction HPC - Session 04

Scientific Computing
V. School of Mathematics and Science

Slurm Options for Parallel Computing

• a Slurm job can request to run multiple tasks

– the option --ntasks or a combination of --nodes and

--tasks-per-node can be used to set the number of tasks

– tasks can be executed using with srun (but this is not a typical

use case)

– a process in a parallel MPI programs corresponds to a task and
mpirun is aware of the requested number of tasks

• a Slurm job can also request multiple (logical) cores per

task

– the option --cpus-per-task can be used for that

– a Slurm cpu can be a physical core or a logical (hyper)thread

1931.03.2020 Introduction HPC - Session 04

Scientific Computing
V. School of Mathematics and Science

Variables in Job Scripts

• if you have a parallel application and you have requested

multiple tasks and/or CPUs you can use corresponding

variables in your job script

– SLURM_JOB_NODELIST: List of nodes allocated to

the job

– SLURM_JOB_NUM_NODES: Total number of nodes in the

job's resource allocation

– SLURM_NTASKS: Number of tasks requested

– SLURM_NTASKS_PER_NODE: Number of tasks requested

per node

– SLURM_CPUS_PER_TASK: Number of cpus requested

per task

2031.03.2020 Introduction HPC - Session 04

Scientific Computing
V. School of Mathematics and Science

Slurm Options for GPU Computing

• to use the GPU nodes your job script should include

– selection of an appropriate partition

#SBATCH --partition mpcg.p # or mpcb.p or cfdg.p

– request for one or two gpus (Generic RESource in Slurm)

#SBATCH –gres=gpu:1 # 1 or 2 gpus

– you also need to load the CUDA Toolkit

module load CUDA # add version if needed

– note that the driver is only available on the GPU nodes

2131.03.2020 Introduction HPC - Session 04

