Scientific Computing

universitdt|OLDENBURG V. School of Mathematics and Science

Introduction to
High-Performance Computing

Session 04
Introduction to Parallel Computing

CARL - i . e .
ossierioN Scientific Computing
universitdt|OLDENBURG V. School of Mathematics and Science

Why Parallel Computing?

LE+7 Number of Cores in the fastest Computers

1E+6

1E+5 ®© 00 0.-g0 O

1E+4 e 00 00 0,4 %

1E+3 | o

.o
et
.o
.
.
o0

1E+2

1E+1
Jan 93 Okt95 Jul98 Apr0l1 Jan04 Okt06 Jul09 Aprl2 Dezl4

31.03.2020 Introduction HPC - Session 04 2

CARL . e fe .
ossieroN Scientific Computing
universitdt|OLDENBURG V. School of Mathematics and Science

Parallel Hardware Architectures

 most modern HPC systems (e.g. CARL and EDDY) are
clusters of SMP/ccNUMA nodes

compute node compute node compute node

node interconnect

31.03.2020 Introduction HPC - Session 04 3

CARL . e fe .
osspr,oN Scientific Computing
universitdt|OLDENBURG V. School of Mathematics and Science

Parallelization Strategies

* major resources for computations
— Processor

— memory
— /O

« parallelization means
— distributing the work
— distributing the data (on distributed memory machines)
— synchronization of work
— communication of data (on distributed memory machines)

« parallel programming models provide the methods to achieve the
above goals

31.03.2020 Introduction HPC - Session 04 4

CARL 1 : - d
ossieroN Scientific Computing
universitdt|OLDENBURG V. School of Mathematics and Science

Distributing Work and Data

processors
. parallelization 2 3 4

 Work decomposition i N
— based on loop decomposition

work loop

« Data decomposition

— all the work for a local chunk of
the data is done by the local
processor

a G
|
.oo

- £

—p
g
.
s
3
{

f(A)

f(A) (A f(A) (A

« Domain decomposition

— work and data are distributed
according to a higher model,
e.g. reality

31.03.2020 Introduction HPC - Session 04 5

CARL . oo o
G Scientific Computlng
universitdt|OLDENBURG V. School of Mathematics and Science

Parallel Programming Models

« two dominating programming models:
— OpenMP: uses directives to define work decomposition
— MPI: standardized message-passing interface

« other programming models
— HPF (high-performance Fortran)
— PGAS (Partitioned Global Address Space), e.g. Co-Array Fortran
UPC (Unified Parallel C)
« programming models for compute devices
— CUDA
— OpenCL
— OpenACC

31.03.2020 Introduction HPC - Session 04 6

CARL . e fe .
osspr,oN Scientific Computing
universitdt|OLDENBURG V. School of Mathematics and Science

Parallel Programming Models

« two dominating programming models:
— OpenMP: uses directives to define work decomposition
— MPI: standardized message-passing interface

« other programming models
— HPF (high-performance Fortran)
— PGAS (Partitioned Global Address Space), e.g. Co-Array Fortran
UPC (Unified Parallel C)
« programming models for compute devices
— CUDA
— OpenCL
— OpenACC

31.03.2020 Introduction HPC - Session 04 7

m Scientific Computing
universitdt|OLDENBURG V. School of Mathematics and Science
History of MPI

 MPI is a standard with the prime goals
— to provide a message-passing interface
— to provide source-code portability
— to allow efficient implementations

« MPI exists for more than 20 years
— MPI-1.0 was released in June, 1994

— MPI-2.0 was released in July, 1997 and provided additional
functionality
— MPI-3.0 (current standard MPI-3.1) was released in October,

2012 and was developed for better platform and application
support (in particular clusters of SMP nodes)

http://mpi-forum.org/docs/

31.03.2020 Introduction HPC - Session 04 8

http://mpi-forum.org/docs/

CARL . oo o
ST Scientific Computlng
universitdt|OLDENBURG V. School of Mathematics and Science

A Message-Passing Interface

* sequential program vs. message-passing program

@ @ @ ey
—— memory
memory

__ parallel
Oelel-lnl — Processor program program program program processors

* message-passing programming paradigm:;
— each processor runs a (sub)program, typically the same (SPMD)
— variables of subprograms have the same name but different (distributed) data
— communication by special library routines =» message passing

31.03.2020 Introduction HPC - Session 04 9

CARL . oo o
N 1| Scientific Computlng
universitdt|OLDENBURG V. School of Mathematics and Science

Message Passing

* messages are passed through the communication network

* messages require the
. distributed
memory

following information:
— sending and receiving

process
— data location parallel
data type ezl processors
. |
— data size

* In order to use the message-passing interface the program must be
— connected to the MPI library (at compile time)
— started with the MPI startup tool (mpirun or mpiexec)
— at runtime MPI is initialized with special library calls (MPI_Init())

31.03.2020 Introduction HPC - Session 04 10

CARL i . o .
ossieroN Scientific Computing
universitdt|OLDENBURG V. School of Mathematics and Science

Example MPI Program in C/C++

#include <mpi.h>
using namespace std;

int main(int argc, char *argv[]) {
// initialization of MPI
MPI Init(&argc, &argv);

// do some computation in parallel
int partial result = some_computation();
int global result = 0;

// collect the result by an all-to-one communication
MPI Reduce (&partial result, &global result, 1,
MPI_INT, MPI_SUM, O, MPI_COMM WORLD) ;

// finalization of MPI
MPI Finalize();

}

31.03.2020 Introduction HPC - Session 04 11

CARL . oo o
ST Scientific Computlng
universitdt|OLDENBURG V. School of Mathematics and Science

Parallel Programming Models

« two dominating programming models:
— OpenMP: uses directives to define work decomposition
— MPI: standardized message-passing interface

« other programming models
— HPF (high-performance Fortran)
— PGAS (Partitioned Global Address Space), e.g. Co-Array Fortran
UPC (Unified Parallel C)
« programming models for compute devices
— CUDA
— OpenCL
— OpenACC

31.03.2020 Introduction HPC - Session 04 12

CARL . oo o
I 1 Scientific Computlng
universitdt|OLDENBURG V. School of Mathematics and Science

GPUs in HPC

old Geforce 8800 GTX

 GPUs appeared in the early
2000s in HPC

— good cost/performance ratio due
to mass production for gaming
« initially consumer-grade graphic
cards were used
— limited general-purpose
computing
— algorithms have to mimic graphics
display
« today special GPUs are used in
HPC
— no display port
— run real algorithms

recent Tesla P100
31.03.2020 Introduction HPC - Session 04 13

m Scientific Computing
universitdt|OLDENBURG V. School of Mathematics and Science
Design of GPUs

« Example NVIDIA P100

 organized in
Graphics (GPCs)
and Texture (TPCs)
Processing Clusters

* 60 streaming multi-

processor (SM)

» basic compute resource

» each SM has 64 CUDA
cores

* 4 MB L2 Cache

» accessed by 8 memory
controllers

31.03.2020 Introduction HPC - Session 04 14

CARL
VON

OSSIETZKY
universitdt|OLDENBURG V. School of Mathematics and Science

Scientific Computing

Design of GPUs

S the SMis divided
S — | — into two blocks

Warp Scheduler Warp Scheduler

Dispatch Unit Dispatch Unit Dispatch Unit Dispatch Unit - e aC h h aS 3 2 S P

+ g 5 3

Register File (32,768 x 32-bit) Register File (32,768 x 32-bit) CO re an d 16 D P
Core Core - LD/ST CO res

gors) (o] [-~ — 8 Special Function
Core Coro Units (SFUSs)

Core Core

 64kB of shared
Core Core ! memOry

Core Core

Core

Core

Core

Core

Core

Core

Core

Core Core Core

64KB Shared Memory

31.03.2020 Introduction HPC - Session 04 15

m n | Scientific Computing
universitdt|OLDENBURG V. School of Mathematics and Science
CUDA Core vs. CPU core

CUDA Core » CUDA cores have no control logic
Dispatch Port — control |OgiC IS in SM onIy

Operand Collector — all cores must perform same
instruction

— SMis SIMD unit

Result Queue

31.03.2020 Introduction HPC - Session 04 16

CARL . oo o
OSSIETZRY cientific Computlng
universitdt|OLDENBURG School of Mathematics and Science

Hybrid Parallel Programming Models

« parallel programming models can be combined in a
hybrid approach for better performance or special needs

« common approach is MPI + OpenMP to reduce the
number of MPI process (communication overhead)

— example: use MPI to start a parallel program on multiple dual-
socket nodes, one MPI process per socket and OpenMP to utilize
the available cores per socket

 MPI + CUDA/OpenACC to use GPUs across multiple
nodes or OpenMP + CUDA for multiple GPUs in a single
node

— NVLink (or similar) may allow you to address multiple GPUs
within a node as a single device

31.03.2020 Introduction HPC - Session 04 17

CARL . ' . o~ .
ossierioN Scientific Computing
universitdt|OLDENBURG V. School of Mathematics and Science

SLURM OPTIONS FOR
PARALLEL COMPUTING

31.03.2020 Introduction HPC - Session 04 18

m ﬁ Scientific Computing
universitdt|OLDENBURG V. School of Mathematics and Science
Slurm Options for Parallel Computing

« a Slurm job can request to run multiple tasks

— the option --ntasks or a combination of --nodes and
--tasks-per-node can be used to set the number of tasks

— tasks can be executed using with srun (but this is not a typical
use case)

— aprocess in a parallel MPI programs corresponds to a task and
mpirun IS aware of the requested number of tasks

e a Slurm job can also request multiple (logical) cores per

task
— the option --cpus-per-task can be used for that

— a Slurm ecpu can be a physical core or a logical (hyper)thread

31.03.2020 Introduction HPC - Session 04 19

CARL . oo o
I 1 Scientific Computlng
universitdt|OLDENBURG V. School of Mathematics and Science

Variables in Job Scripts

 If you have a parallel application and you have requested
multiple tasks and/or CPUs you can use corresponding
variables in your job script

— SLURM JOB_ NODELIST: List of nodes allocated to
the job

— SLURM JOB_NUM NODES: Total number of nodes in the
job's resource allocation

— SLURM NTASKS: Number of tasks requested

— SLURM NTASKS PER NODE: Number of tasks requested
per node

— SLURM CPUS_PER TASK: Number of cpus requested
per task

31.03.2020 Introduction HPC - Session 04 20

CARL . . o
ossieT oy Scientific Computlng
universitdt|OLDENBURG V. School of Mathematics and Science

Slurm Options for GPU Computing

* to use the GPU nodes your job script should include
— selection of an appropriate partition

#SBATCH --partition mpcg.p # or mpcb.p or cfdg.p

— request for one or two gpus (Generic RESource in Slurm)

#SBATCH -gres=gpu:1 # 1 or 2 gpus

— Yyou also need to load the CUDA Toolkit

module load CUDA # add version if needed

— note that the driver is only available on the GPU nodes

31.03.2020 Introduction HPC - Session 04 21

