
Introduction to
High-Performance Computing

Session 07

Performance Optimization

Performance Modelling

• the following slides are based on

‒ 2-day course during MCS Summer School 2014 given by Georg Hager

(you may want to look at the more recent coures NLPE-GWDG, too)

‒ Book: G. Hager and G. Wellein:

Introduction to High Performance Computing for Scientists and

Engineers,

CRC Computational Science Series, 2010. ISBN 978-1439811924

http://www.hpc.rrze.uni-erlangen.de/HPC4SE/

https://moodle.rrze.uni-erlangen.de/course/view.php?id=311

Introduction to HPC - Session 072

http://www.hpc.rrze.uni-erlangen.de/HPC4SE/
https://moodle.rrze.uni-erlangen.de/course/view.php?id=311

Machine

Code

Computer Software and Hardware

Algorithm
Compiler

Libraries
Hardware

(Black Box)
ResultResult

User‘s view

Hardware‘s view

Introduction to HPC - Session 073

Modern Computer Architecture

• today: dual-socket node

− multiple cores per socket/CPU

− ccNUMA architecture

− socket interconnect

Introduction to HPC - Session 074

Detailed View Compute Core

Execution Units Broadwell

• two EUs for FP instructions

• each EU can execute one

FP instruction at a time

execution units

(shown only for FP)

FP FMA

FP MUL

FP DIV

FP FMA

FP MUL

FP ADD

EU 0 EU 1

Introduction to HPC - Session 075

Example: Divide Throughput

• in the Pi.cpp code the function f(x) has one division

‒ division is the dominant operation (other instructions can be hidden)

‒ for 𝑛 evaluations of 𝑓 we get t = 𝑛 ⋅
𝑐

𝜈

‒ Broadwell CPUs need 𝑐 = 5 cycles/division (throughput) and assuming turbo

mode (clock speed 𝜈 = 2.5GHz) we would expect 𝑡 = 0.2s for 𝑛 = 108

Introduction to HPC - Session 076

Execution of Instructions
• programmer‘s view:

for (int i=0; i<N; i++)
A[i] = A[i] + B[i];

‒ user work:

N Flops (ADDs)

• hardware‘s view:

load r1 = A(i)

load r2 = B(i)

add r1 = r1 + r2

store A(i) = r1

inc i

branch top if i<N

programm performs computation, FLOP is the basic work done

processor executes instructions, instructions is the basic work done

Introduction to HPC - Session 077

Basic Compute Resources

• instruction execution

‒ primary resource for computations, hardware is designed to increase

instruction throughput as much as possible

‒ difficult for general purpose computing, what is a typical workload?

• data movement

‒ consequence of instruction execution

‒ in the example two loads and one store (24 bytes for double precision)

What is the bottleneck of an application?

Introduction to HPC - Session 078

Flop/s vs. Memory Bandwidth

• a floating-point operation (Flop) is the basic unit of work

‒ theoretical peak performance Intel Xeon E5-2650 v4

𝑃peak = 422.5 GFlop/s

‒ equivalent to 16 Flop/(core ⋅ cy)

• memory bandwidth

‒ maximum for Intel Xeon E5-2650 v4 is 76.8 GB/s

(https://ark.intel.com/products/91767/Intel-Xeon-Processor-E5-2650-v4-30M-Cache-2_20-GHz)

‒ equivalent to 35 Byte/cy

(more info: http://sites.utexas.edu/jdm4372/tag/memory-bandwidth/)

Introduction to HPC - Session 079

https://ark.intel.com/products/91767/Intel-Xeon-Processor-E5-2650-v4-30M-Cache-2_20-GHz
http://sites.utexas.edu/jdm4372/tag/memory-bandwidth/

Example Bandwidth Limited Execution

• consider the vector-triad

for (j=0; j<STREAM_ARRAY_SIZE; j++)

a[j] = b[j]+scalar*c[j];

‒ included in the STREAM benchmark (see https://www.cs.virginia.edu/stream/)

‒ 2 Flop/iteration and 24 Byte/iteration

‒ at 16 Flop/cy on a single core 192 Byte/cy are needed

➔ memory bandwidth is the limiting factor here

Introduction to HPC - Session 0710

https://www.cs.virginia.edu/stream/

STREAM Benchmark

• simple tool to measure memory bandwidth

‒ timing of bandwidth-limited vector operations

‒ some gory details: https://blogs.fau.de/hager/archives/8263

https://www.cs.virginia.edu/stream/

Introduction to HPC - Session 0711

https://blogs.fau.de/hager/archives/8263
https://www.cs.virginia.edu/stream/

• measured memory

bandwidth for vector triad

‒ with core binding and

without core binding

‒ shaded areas show

maximum bandwith on

one or two sockets

‒ without binding threads

are placed on both

sockets

→ higher bandwidth

‒ less fluctuation with

binding

STREAM Benchmark

Introduction to HPC - Session 0712

STREAM Benchmark

• simple tool to measure memory bandwidth

‒ timing of bandwidth-limited vector operations

‒ some gory details: https://blogs.fau.de/hager/archives/8263

• some results on CARL

‒ single core bandwidth is about 20 GB/s

‒ maximum bandwidth measured is about 64 GB/s per socket and

128 GB/s per node (two sockets)

‒ about half of the cores are needed to get (close to) maximum

bandwidth

https://www.cs.virginia.edu/stream/

Introduction to HPC - Session 0713

https://blogs.fau.de/hager/archives/8263
https://www.cs.virginia.edu/stream/

Hardware Locality

• compute nodes are increasingly complex

‒ ccNUMA architectures

• the hwloc library provides some tools to

(https://www.open-mpi.org/projects/hwloc/)

‒ obtain information about the node topology (lstopo)

‒ bind processes to specific

cores/sockets/…

‒ binding/pinning of threads

may improve performance

(hwloc-bind … <command>)

‒ difficult to decide, e.g. is it

better to use neighboring cores

or different sockets?

Introduction to HPC - Session 0714

https://www.open-mpi.org/projects/hwloc/

NUMA Control

• data locality is important

‒ local data can be accessed faster

‒ „Golden Rule“ of ccNUMA: data is

mapped to local memory of

processor that writes first

• use numactl for info and control

CPU

Memory Interface

Memory

CPU

Memory Interface

Memory

NUMA node

$ numactl --hardware
available: 2 nodes (0-1)
. . .
$ numactl --cpunodebind=0 --membind=0 ./stream_c.exe
. . .

Introduction to HPC - Session 0715

Example

• 3d „Stencil“ update (Jacobi)

// serial
for (int i=1; i<Ni; i++)

for (int j=1; j<Nj; j++)
for (int k=1; k<Nk; k++)

y[i][j][k] = w * (x[i-1][j][k] + x[i+1][j][k]
+ x[i][j-1][k] + x[i][j+1][k]
+ x[i][j][k-1] + x[i][j][k+1]);

note that the order of the loops is important

(and depends on the ordering of multi-dimensional arrays in memory)

Introduction to HPC - Session 0716

Memory Access Patterns

Introduction to HPC - Session 0717

Write Allocation and Non-Temporal Stores

• when a cache is available it is not clear how to best write data into

main memory

‒ write-through: writing directly to memory is simple but slow

‒ write-back: only writes to cache, so it is faster but requires an extra read

(write allocation)

• example: STREAM copy

‒ require one load for C[i], and another load for A[i] (write allocate), and

finally a store for A[i] → in total 24 bytes have to be transferred

• modern CPUs allow non-temporal or streaming stores

‒ since C[i] is not used directly, a non-temporal store operation can be used

to write it directly into memory → data transfer is reduced to 16 byte

Introduction to HPC - Session 0718

for (int i=0; i<N; i++)
A[i] = C[i];

https://blogs.fau.de/hager/archives/2103

https://blogs.fau.de/hager/archives/2103

Example

• 3d „Stencil“ update (Jacobi)

element in cache from a previous iteration

➢ 5 LDs and 1 ST (48 byte for doubles)

Introduction to HPC - Session 0719

// serial
for (int i=1; i<Ni; i++)

for (int j=1; j<Nj; j++)
for (int k=1; k<Nk; k++)

y[i][j][k] = w * (x[i-1][j][k] + x[i+1][j][k]
+ x[i][j-1][k] + x[i][j+1][k]
+ x[i][j][k-1] + x[i][j][k+1]);

Parallel Speedup

version 1, very good scaling

version 2, almost no scaling

Introduction to HPC - Session 0720

Parallel Performance

performance of version 2 is

better by factor of few

bandwidth limit

48 Byte/iter
ෝ= 9.6 GFlop/s

Introduction to HPC - Session 0721

How is the Hardware optimized for performance?

• speedup memory access with cache (see before)

• pipelining of arithmethic units

• instruction pipeline

• instruction level parallelism

• simultaneous multi-threading (SMT)

• SIMD processing

Introduction to HPC - Session 0722

Pipelining

Introduction to HPC - Session 0723

Pipelinig – 5 stage Multiplication

Introduction to HPC - Session 0724

simultaneous multi-threading (SMT)

Introduction to HPC - Session 0725

SIMD processing

Introduction to HPC - Session 0726

Processor Peak Performance

Floating Point (FP) Performance:

𝑃 = 𝑛core ⋅ 𝐹 ⋅ 𝑆 ⋅ 𝜈

𝑛core number of cores 12

𝐹 FP instructions per cycle 4

(2 FMA)

𝑆 FP ops / instruction 4

(256 Bit SIMD registers in AVX2)

𝜈 clock speed 2.2 GHz

(affected by turbo/AVX modes)

𝑷 = 𝟒𝟐𝟐. 𝟒 GFlop/s (dp)

Intel Xeon „Broadwell“

E5-2650 v4

But: 𝑷 = 𝟖. 𝟖 GFlop/s for serial, non-SIMD code

Introduction to HPC - Session 0727

Performance Bottleneck

• many floating point computation on little data

→ bound by the processing speed of the CPU

‒ possibly increase number of cores

‒ make use of SIMD processing

‒ note: recent CPU may have lower clock speed for AVX

• few floating point operation per data

→ bound by memory bandwidth

‒ change algorithm/parallelization to make better use of cache

‒ increase compute intensity

Introduction to HPC - Session 0728

Architecture of AMD Genoa CPUs

• AMD EPYC CPUs have a hybrid multi-die architecture

‒ decoupling of CPU cores and I/O devices

Introduction to HPC - Session 0729

https://www.amd.com/system/files/documents/4th-gen-epyc-processor-architecture-white-paper.pdf

https://www.amd.com/system/files/documents/4th-gen-epyc-processor-architecture-white-paper.pdf

Architecture of AMD Genoa CPUs

• dual-socket configuration

Introduction to HPC - Session 0730

https://www.amd.com/system/files/documents/4th-gen-epyc-processor-architecture-white-paper.pdf

socket interconnectcores

RAM

https://www.amd.com/system/files/documents/4th-gen-epyc-processor-architecture-white-paper.pdf

Architecture of AMD Genoa CPUs

• NUMA domains and core complex (CCX)

Introduction to HPC - Session 0731

https://www.amd.com/system/files/documents/4th-gen-epyc-processor-architecture-white-paper.pdf

CPU is build from up to 12CCDs

(core complex on die), which can be

configured into four NUMA domains

CCX with eight cores, 1MB L2 cache

per core and 32MB shared L3 cache

https://www.amd.com/system/files/documents/4th-gen-epyc-processor-architecture-white-paper.pdf

HPC on AMD Genoa

• AMD EPYC 9554 (64C @ 3.1 GHz)

‒ floating-point performance (theoretical):

o 2 FMA instructions per cycle

o 8 FP operations per instruction (AVX-512)

‒ however, when using AVX-512, 2 cycles per FMA instruction are needed

o in total: ➔ 16 Flop/(core ⋅ cy)

or CPU total: ➔ 3,174.4 GFlop/s theoretical peak performance

‒ memory bandwidth

o per socket: 460.8 GB/s (12 memory channels)

or 148 byte/cycle

Introduction to HPC - Session 0732

Examples

• OMP_Pi

‒ how many CPU cycles are required for a DIV operation?

• STREAM

‒ determine memory bandwidth

• Stencil

‒ optimization vs. speedup

‒ memory access pattern

measuring/getting optimal performance may require process binding

Introduction to HPC - Session 0733

	Folie 1: Introduction to High-Performance Computing
	Folie 2: Performance Modelling
	Folie 3: Computer Software and Hardware
	Folie 4: Modern Computer Architecture
	Folie 5: Detailed View Compute Core
	Folie 6: Example: Divide Throughput
	Folie 7: Execution of Instructions
	Folie 8: Basic Compute Resources
	Folie 9: Flop/s vs. Memory Bandwidth
	Folie 10: Example Bandwidth Limited Execution
	Folie 11: STREAM Benchmark
	Folie 12: STREAM Benchmark
	Folie 13: STREAM Benchmark
	Folie 14: Hardware Locality
	Folie 15: NUMA Control
	Folie 16: Example
	Folie 17: Memory Access Patterns
	Folie 18: Write Allocation and Non-Temporal Stores
	Folie 19: Example
	Folie 20: Parallel Speedup
	Folie 21: Parallel Performance
	Folie 22: How is the Hardware optimized for performance?
	Folie 23: Pipelining
	Folie 24: Pipelinig – 5 stage Multiplication
	Folie 25: simultaneous multi-threading (SMT)
	Folie 26: SIMD processing
	Folie 27: Processor Peak Performance
	Folie 28: Performance Bottleneck
	Folie 29: Architecture of AMD Genoa CPUs
	Folie 30: Architecture of AMD Genoa CPUs
	Folie 31: Architecture of AMD Genoa CPUs
	Folie 32: HPC on AMD Genoa
	Folie 33: Examples

