Carl von Ossietzk]

Universitat
Oldenburg

Betriebseinheit fur
technisch-wissenschaftliche
Infrastruktur

Introduction to
High-Performance Computlng

Session 07
Performance Optimization

el Performance Modelling

Oldenburg

» the following slides are based on

https://moodle.rrze.uni-erlangen.de/course/view.php?id=311

— 2-day course during MCS Summer School 2014 given by Georg Hager
(you may want to look at the more recent coures NLPE-GWDG, too)

— Book: G. Hager and G. Wellein:
Introduction to High Performance Computing for Scientists and
Engineers,
CRC Computational Science Series, 2010. ISBN 978-1439811924
http://www.hpc.rrze.uni-erlangen.de/HPC4SE/

Introduction to HPC - Session 07

http://www.hpc.rrze.uni-erlangen.de/HPC4SE/
https://moodle.rrze.uni-erlangen.de/course/view.php?id=311

o] Computer Software and Hardware

Oldenburg

User's view

: Compiler Hardware
Algorithm Libraries 4 (BlackBox) yund Result

Hardware‘s view

Machine
Code

Introduction to HPC - Session 07

Carl von Ossietzky

Universitat
Oldenburg

Modern Computer Architecture

e s em e e e e e e s e e e e s e s s = =

« today: dual-socket node

e s s m e s e e s s e =

— multiple cores per socket/CPU

— ¢cNUMA architecture
— socket interconnect

Introduction to HPC - Session 07

el Detailed View Compute Core

Oldenburg
| § _ Execution Units Broadwell
L1 data 3 o shnt
b cache 3 - : :
S o o - + two EUs for FP instructions
o o] ': op
i > z
> 2 = = EU O EU 1
o) g LD —
; S |
£ L
£
1)
= : 2
>3 3 — | 5 each EU can execute one
o ® a g FP . . .
€T L1 inst e 2 instruction at a time
s 3 instr. = a
=c —| cache = L

Not shown: most of the control unit, e.g. instruction fetch/decode. branch prediction....

execution units
(shown only for FP)

Introduction to HPC - Session 07

Carl von Ossietzky

Universitat
Oldenburg

Example: Divide Throughput

* inthe Pi.cpp code the function £ (x) has one division

// define f so that integral of £ from 0 to 1 is Pi
double f (const double x) {
return (4.0/(1.04+x*x)) ;

}

— division is the dominant operation (other instructions can be hidden)

— for n evaluations of f we gett=n - 5

— Broadwell CPUs need ¢ = 5 cycles/division (throughput) and assuming turbo
mode (clock speed v = 2.5GHz) we would expect t = 0.2s forn = 10%

Introduction to HPC - Session 07

Carl von Ossietzky

Universitat
Oldenburg

Execution of Instructions

e programmer's view: * hardware's view:
for (int i=0; i<N; i++) load rl = A(1)
A[i] = A[i] + B[1i]; load r2 = B(i)
add rl = rl + r2
— user work: store A(i) = rl
N Flops (ADDs) inc 1

branch top if i<N

programm performs computation, FLOP is the basic work done
processor executes instructions, instructions is the basic work done

Introduction to HPC - Session 07

o] Basic Compute Resources

Oldenburg

* |nstruction execution

— primary resource for computations, hardware is designed to increase
instruction throughput as much as possible

— difficult for general purpose computing, what is a typical workload?

« data movement

— consequence of instruction execution
— in the example two loads and one store (24 bytes for double precision)

What is the bottleneck of an application?

Introduction to HPC - Session 07

G Flop/s vs. Memory Bandwidth

Oldenburg

 a floating-point operation (Flop) is the basic unit of work

— theoretical peak performance Intel Xeon E5-2650 v4
Ppeak = 422.5 GFlop/s

— equivalent to 16 Flop/(core - cy)

* memory bandwidth

— maximum for Intel Xeon E5-2650 v4 is 76.8 GB/s
(https://ark.intel.com/products/91767/Intel-Xeon-Processor-E5-2650-v4-30M-Cache-2_20-GHz)

— equivalent to 35 Byte/cy

(more info: http://sites.utexas.edu/jdm4372/tag/memory-bandwidth/)

Introduction to HPC - Session 07

https://ark.intel.com/products/91767/Intel-Xeon-Processor-E5-2650-v4-30M-Cache-2_20-GHz
http://sites.utexas.edu/jdm4372/tag/memory-bandwidth/

o] Example Bandwidth Limited Execution

Oldenburg

 consider the vector-triad

for (j=9; j<STREAM_ARRAY_SIZE; j++)
a[j] = b[j]+scalar*c[j];

— included in the STREAM benchmark (see https://www.cs.virginia.edu/stream/)

— 2 Flopl/iteration and 24 Byte/iteration
— at 16 Flop/cy on a single core 192 Byte/cy are needed

= memory bandwidth is the limiting factor here

Introduction to HPC - Session 07

https://www.cs.virginia.edu/stream/

S STREAM Benchmark

Oldenburg

https://www.cs.virginia.edu/stream/

« simple tool to measure memory bandwidth
— timing of bandwidth-limited vector operations
— some gory details: https://blogs.fau.de/hager/archives/8263

Introduction to HPC - Session 07

https://blogs.fau.de/hager/archives/8263
https://www.cs.virginia.edu/stream/

Carl von Ossietzky

Universitat
Oldenburg

memory bandwidih [GB/s]

STREAM Benchmark

140

120

100

80

60

40

20

with core binding' &

without core binding]

.
o 0q4_*

® *

see®

LK e® oo

o* o

L
L
L

*
etoessse

gi

&

e®y

®

. -

5 10 15

number of cores

Introduction to HPC

20

- Session 07

25

measured memory
bandwidth for vector triad

with core binding and
without core binding

shaded areas show
maximum bandwith on
one or two sockets

without binding threads
are placed on both
sockets

- higher bandwidth

less fluctuation with
binding

S STREAM Benchmark

Oldenburg

https://www.cs.virginia.edu/stream/

« simple tool to measure memory bandwidth
— timing of bandwidth-limited vector operations
— some gory details: https://blogs.fau.de/hager/archives/8263

« some results on CARL
— single core bandwidth is about 20 GB/s

— maximum bandwidth measured is about 64 GB/s per socket and
128 GB/s per node (two sockets)

— about half of the cores are needed to get (close to) maximum
bandwidth

Introduction to HPC - Session 07

https://blogs.fau.de/hager/archives/8263
https://www.cs.virginia.edu/stream/

el Hardware Locality

Oldenburg

« compute nodes are increasingly complex

— ccNUMA architectures

* the hwloc library provides some tools to

(https://www.open-mpi.org/projects/hwloc/)

— obtain information about the node topology (1stopo)

Machine (256GB total)

— bind processes to specific (e n

Package PE)

cores/sockets/ — |
e | 2 (256KB) | | KB) ‘ ‘ 2 (256KB) | | KB) ‘ ‘ ‘ ‘ KB) | ‘ | | KB) ‘ | L2 (256KB) ‘ ‘ 12 (256KB) | | L2 (256KB) ‘ ‘ L2 (256KB} ‘
. . . . | | I ‘ ‘ 1d (32KB) | | KB 1 ‘ ‘ ‘ | ‘ (32KB! | | 1K H L1d (32KB) ‘ ‘ L1d (32KB) | | L1d (37KB) 1 ‘ L1d (32KB} ‘
—_— b I n d I n g/p I n n I n g Of th re a d S | i (32KB) | | $(32KB) ‘ ‘ KB} | | J ‘ 1 (32KB) ‘ ‘ i (32KB) | ‘ 32KB) | | L1i (32KB H L1i (32KB) ‘ ‘ LLi(32KB) | | L1i (32KB) ‘ ‘ L1i (32KB) ‘
Core PRD Core P¥L Core P2 Core P#3 Care Pt Core PS5 Core P¥3 Core P2 Care PF10 Core PHLL CorePH12 Care PA13
may improve performanCe |P'UM I ‘P’L‘Nl | |PUW2 ‘ IPUP»E | ‘)’UN" 1 |PUN5 ‘ | PRt ‘ IPUW* I ‘}’UM 1 |PUM ‘ |PUR]Q | [U PELL ‘
. | NUMANode Pi1 (125GB)
(hwloc-bind .. <command>) —
| 13 (30MB) ‘
. | | | ‘ ‘ 12 256KE) | | L2 (256KB) ‘ ‘ (256KB) ‘ ‘ | ‘ 12 256KE) | | H (256KB) ‘ ‘ | | L2 (256KE) ‘ ‘ ¢KE) ‘
- dlfflcult to deCIde, e_g_ IS It [11)|| w | [uaowe |[veoms || o |[uioms][vaoms || uems || eemn [vaoms | [vaemm | oacws |
. . | | o o | | o o | e e i [
better to use nei g hborin g cores Ery E [[e]
| PUPIL | ‘ PUPH3 J |PUH14 ‘ | PUPILS | ‘ PUPIS ‘ |rum7 | |rums ‘ | PUPIY | ‘ PUPKD ‘ |PUM'_ | | PU P2 | ‘ U P ‘

or different sockets?

Introduction to HPC - Session 07

https://www.open-mpi.org/projects/hwloc/

NUMA Control

Oldenburg

« data locality is important

— local data can be accessed faster

— ,Golden Rule” of ccNUMA: data is
mapped to local memory of
processor that writes first

e use numactl for info and control

$ numactl --hardware
available: 2 nodes (0-1) NUMA node

$ numactl --cpunodebind=0 --membind=0 ./stream c.exe

Introduction to HPC - Session 07

el Example

Oldenburg

« 3d ,Stencil” update (Jacobi)

// serial
for (int i=1; i<Ni; i++)
for (int j=1; j<Nj; j++)
for (int k=1; k<Nk; k++)
y[il[j1[k] =w* (x[1i-1][F]1[k] + x[i+1][F][k]
+ x[1][J-1]1[k] + x[1][J+1][k]
+ x[1][J1[k-1T7 + x[1][F][k+1]);

note that the order of the loops is important
(and depends on the ordering of multi-dimensional arrays in memory)

Introduction to HPC - Session 07

o] Memory Access Patterns

Oldenburg

= Caches help with getting instructions and data to the CPU “fast”
= How does data travel from memory to the CPU and back?

= Remember: Caches are organized
in cache lines (e.g., 64 bytes)

= Only complete cache lines are
transferred between memory
hierarchy levels (except registers)

= MISS: Load or store instruction does
not find the data in a cache level
- CL transfer required

FHIT

write| |evict
allocate| |(delayed)

3CL

= Example: Array copy A(:)=C(:) transfers

Introduction to HPC - Session 07

G Write Allocation and Non-Temporal Stores

Oldenburg https://blogs.fau.de/hager/archives/2103

« when a cache is available it is not clear how to best write data into
main memory

— write-through: writing directly to memory is simple but slow

— write-back: only writes to cache, so it is faster but requires an extra read
(write allocation)

« example: STREAM copy for (int i=0; i<N; i++)
A[i] = C[1i];

— require one load for C[i], and another load for A[i] (write allocate), and
finally a store for A[1] - in total 24 bytes have to be transferred

« modern CPUs allow non-temporal or streaming stores

— since C[i] is not used directly, a non-temporal store operation can be used
to write it directly into memory - data transfer is reduced to 16 byte

Introduction to HPC - Session 07

https://blogs.fau.de/hager/archives/2103

el Example

Oldenburg

« 3d ,Stencil” update (Jacobi)

// serial
for (int i=1; i<Ni; i++)
for (int j=1; j<Nj; j++)
for (int k=1; k<Nk; k++)
y[i][31[k] =w > (x[1-1]J[J]1[k] + x[1+1][J][k]
+ x[1][J-11[k] + x[1][J+1][K]
+ x[1][JI[k-1] + x[1][F][k+1]);

element in cache from a previous iteration
» 5LDs and 1 ST (48 byte for doubles)

Introduction to HPC - Session 07

Carl von Ossietzky

Universitat
Oldenburg

Parallel Speedup

speedup

measured speédup version 1] | | |
12 measured speedup version 2 @
10 F version 1, very good scaling
version 2, almost no scaling ®
E B
&
L
6 t L
L
L
4 L L
L
e ©® e & & & & »
2 | o *
D 1 1 1 1 1 1
0 2 4 6 g8 10 12

cores

Introduction to HPC - Session 07

T Parallel Performance

Oldenburg
measured pelrfnrmance version 1] | |
12 | measured performance version 2) T
: — 10 | .
bandwidth limt - - —- ————4————————1———————————— — — —-
48 Byte/iter ry ° ®
[B -
= 9.6 GFlop/s L 8 *
E .
S 6| o -
£
2 L
© Y *
o 4 r ® .
L]
: : L L d
performance of version 2 is ° .
better by factor of few 2T . . |
&
L
D] 1 1] 1 1
0 2 4 5] 8 10 12
cores

Introduction to HPC - Session 07

How is the Hardware optimized for performance?

Oldenburg

« speedup memory access with cache (see before)
« pipelining of arithmethic units

 instruction pipeline

 instruction level parallelism

« simultaneous multi-threading (SMT)

« SIMD processing

Introduction to HPC - Session 07

Pipelining

Oldenburg

" |dea:
= Split complex instruction into several simple / fast steps (stages)
= Each step takes the same amount of time, e.g., a single cycle
= Execute different steps on different instructions at the same time (in parallel)

= Allows for shorter cycle times (simpler logic circuits), e.g.:
= floating point multiplication takes 5 cycles, but
= processor can work on 5 different multiplications simultaneously
= one result at each cycle after the pipeline is full

= Drawback:
= Pipeline must be filled - startup times (#Instructions >> pipeline steps)

= Efficient use of pipelines requires large number of independent instructions =
instruction level parallelism

= Requires complex instruction scheduling by compiler/hardware — software-
pipelining / out-of-order

= Pipelining is widely used in modern computer architectures

Introduction to HPC - Session 07

el Pipelinig — 5 stage Multiplication

Oldenburg

1 2 3 4 5 N N+1 N+2 N+3 N+4
... -
Cycle
Separate B{(1)| | B(2)| |B(3)| B(4)| | B(5) B(N) |.. >|
mant./exp. C(l)| | C(2)| |c(3)| | Cc(4)| |C(5) e C(N) Wind-down
Multiply B(1)| | B(2)| | B(3)| | B(4) Bi{N-1)| | B(N)
mantissas c(ly| |e(2)| | c(3)| | c(a) e cn-1)| | C(N)
Add B(1)| | B(2)| | B(3) B{N-2)| |B(N-1)| | B(N)
exponents C({1) c(2) C(3) T cim-2)| |ciw-1)| | C{N)
Normalize A A A
result AL | A 2) (N-3)| | (N-2)| | (N-1) A(N)
Insert Wind-up A A A A
sign [2] | | | -] |3 | -2)| | -1y | RO

First result is available after 5 cycles (=latency of pipeline)!
Wind-up/-down phases: Empty pipeline stages

Introduction to HPC - Session 07

el simultaneous multi-threading (SMT)

Oldenburg

SMT principle (2-way example):

Y
[T 1 — | —
" — —+—= Registers
: T —
e
s =] [P
-
3 -
w
e T —
Y
@/ :,V/V WZLZ; iz, | LAV
_ m, Az v e
S (] [] % % 12 cach __ cache .
7 H s 87/%
> D%__.. W~ 1T [1—
~ 7 @ 71 | V7 L7 Ll T
M 74 Vi ;cachez
emory %% 77/ o2 T

Introduction to HPC - Session 07

Execution units

Execution units

el SIMD processing
Oldenburg
= Single Instruction Multiple Data (SIMD) operations allow the

concurrent execution of the same operation on “wide” registers
x86 SIMD instruction sets:

= SSE: register width = 128 Bit = 2 double precision floating point operands
= AVX: register width = 256 Bit = 4 double precision floating point operands

Adding two registers holding double precision floating point
operands

RO R1 R2 RO R1
/-— pe— p—

R2

SIMD execution:
V64ADD [RO,R1] =R2

256 Bit< \
Scalar execution:
64 Bit - o - R2< ADD [RO,R1]

Introduction to HPC - Session 07

B[O]
C[0]

T Processor Peak Performance

Oldenburg

Floating Point (FP) Performance:

! I

! I

1 I

! I

| | i

: L:: Lo || Lo || Lo || 1o || Lib || LD L:zn : P — nCOre . F . S Y,
! I

! [

! |

3

| .,,,m,L'.m ' Ncore Nhumber of cores 12
F FP instructions per cycle 4

[Mamory] (2 FMA)
S FP ops / instruction 4

Intel Xeon ,Broadwell (256 Bit SIMD registers in AVX2)
E5-2650 v4
Vv clock speed 2.2 GHz
(affected by turbo/AVX modes)
TOP500 rank 1 (mid-90s) I\ P = 422.4 GFlop/s (dp)

But: P = 8.8 GFlop/s for serial, non-SIMD code

Introduction to HPC - Session 07

T Performance Bottleneck

Oldenburg

« many floating point computation on little data
-> bound by the processing speed of the CPU
— possibly increase number of cores
— make use of SIMD processing
— note: recent CPU may have lower clock speed for AVX

« few floating point operation per data
- bound by memory bandwidth

— change algorithm/parallelization to make better use of cache
— Increase compute intensity

Introduction to HPC - Session 07

S Architecture of AMD Genoa CPUs

Oldenburg

https://www.amd.com/system/files/documents/4th-gen-epyc-processor-architecture-white-paper.pdf

« AMD EPYC CPUs have a hybrid multi-die architecture

— decoupling of CPU cores and I/O devices

1/0 die _ CPU die detail

12 memory controllers . ®—— 8 'Zen &' cores

PCle® Gen 5 controllers | Yo i e ®—— 1 MBL2 cache per core
Infinity Fabric™-controllers : ; 1 __ Shared 32 MB L3 cache
SATA controllers — i e s

CXL™ contrellers

Security processor

o T) | P SR —
Up to 8 carés per die
Up to 12 dies per-pracessor

Figure 1: AMD EPYC 9004 Series processor overview

Introduction to HPC - Session 07

https://www.amd.com/system/files/documents/4th-gen-epyc-processor-architecture-white-paper.pdf

S Architecture of AMD Genoa CPUs

Oldenburg

https://www.amd.com/system/files/documents/4th-gen-epyc-processor-architecture-white-paper.pdf

« dual-socket configuration

“\ / socket interconnect

RAM =

Introduction to HPC - Session 07

https://www.amd.com/system/files/documents/4th-gen-epyc-processor-architecture-white-paper.pdf

S Architecture of AMD Genoa CPUs

Oldenburg

https://www.amd.com/system/files/documents/4th-gen-epyc-processor-architecture-white-paper.pdf

« NUMA domains and core complex (CCX)

e
Cache

CCX with eight cores, 1TMB L2 cache
per core and 32MB shared L3 cache

CPU is build from up to 12CCDs
(core complex on die), which can be
configured into four NUMA domains

Introduction to HPC - Session 07

https://www.amd.com/system/files/documents/4th-gen-epyc-processor-architecture-white-paper.pdf

T HPC on AMD Genoa

Oldenburg

. AMD EPYC 9554 (64C @ 3.1 GHz)

— floating-point performance (theoretical):

o 2 FMA instructions per cycle
o 8 FP operations per instruction (AVX-512)
— however, when using AVX-512, 2 cycles per FMA instruction are needed

o in total: =>» 16 Flop/(core - cy)
or CPU total: =» 3,174.4 GFlop/s theoretical peak performance

— memory bandwidth

o per socket: 460.8 GB/s (12 memory channels)
or 148 byte/cycle

Introduction to HPC - Session 07

e Examples

Oldenburg

- OMP_Pi

— how many CPU cycles are required for a DIV operation?

« STREAM

— determine memory bandwidth

« Stencil
— optimization vs. speedup
— memory access pattern

measuring/getting optimal performance may require process binding

Introduction to HPC - Session 07

	Folie 1: Introduction to High-Performance Computing
	Folie 2: Performance Modelling
	Folie 3: Computer Software and Hardware
	Folie 4: Modern Computer Architecture
	Folie 5: Detailed View Compute Core
	Folie 6: Example: Divide Throughput
	Folie 7: Execution of Instructions
	Folie 8: Basic Compute Resources
	Folie 9: Flop/s vs. Memory Bandwidth
	Folie 10: Example Bandwidth Limited Execution
	Folie 11: STREAM Benchmark
	Folie 12: STREAM Benchmark
	Folie 13: STREAM Benchmark
	Folie 14: Hardware Locality
	Folie 15: NUMA Control
	Folie 16: Example
	Folie 17: Memory Access Patterns
	Folie 18: Write Allocation and Non-Temporal Stores
	Folie 19: Example
	Folie 20: Parallel Speedup
	Folie 21: Parallel Performance
	Folie 22: How is the Hardware optimized for performance?
	Folie 23: Pipelining
	Folie 24: Pipelinig – 5 stage Multiplication
	Folie 25: simultaneous multi-threading (SMT)
	Folie 26: SIMD processing
	Folie 27: Processor Peak Performance
	Folie 28: Performance Bottleneck
	Folie 29: Architecture of AMD Genoa CPUs
	Folie 30: Architecture of AMD Genoa CPUs
	Folie 31: Architecture of AMD Genoa CPUs
	Folie 32: HPC on AMD Genoa
	Folie 33: Examples

