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el Performance Modelling

Oldenburg

» the following slides are based on

https://moodle.rrze.uni-erlangen.de/course/view.php?id=311

— 2-day course during MCS Summer School 2014 given by Georg Hager
(you may want to look at the more recent coures NLPE-GWDG, too)

— Book: G. Hager and G. Wellein:
Introduction to High Performance Computing for Scientists and
Engineers,
CRC Computational Science Series, 2010. ISBN 978-1439811924
http://www.hpc.rrze.uni-erlangen.de/HPC4SE/
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o] Computer Software and Hardware

Oldenburg

User's view

: Compiler Hardware
Algorithm Libraries 4 (BlackBox) yund Result

Hardware‘s view

Machine
Code
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Modern Computer Architecture

e s em e e e e e e s e e e e s e s s = =

« today: dual-socket node

e s s m e s e e s s e =

— multiple cores per socket/CPU

— ¢cNUMA architecture
— socket interconnect
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el Detailed View Compute Core

Oldenburg
| § _ Execution Units Broadwell
L1 data 3 o shnt
b cache 3 - : :
S o o - + two EUs for FP instructions
o o ] ': op
i > z
> 2 = = EU O EU 1
o) g LD —
; S |
£ L
£
1)
= : 2
>3 3 — | 5  each EU can execute one
o ® a g FP . . .
€T L1 inst e 2 instruction at a time
s 3 instr. = a
=c —| cache = L

Not shown: most of the control unit, e.g. instruction fetch/decode. branch prediction....

execution units
(shown only for FP)
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Example: Divide Throughput

* inthe Pi.cpp code the function £ (x) has one division

// define f so that integral of £ from 0 to 1 is Pi
double f (const double x) {
return (4.0/(1.04+x*x)) ;

}

— division is the dominant operation (other instructions can be hidden)

— for n evaluations of f we gett=n - 5

— Broadwell CPUs need ¢ = 5 cycles/division (throughput) and assuming turbo
mode (clock speed v = 2.5GHz) we would expect t = 0.2s forn = 10%
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Execution of Instructions

e programmer's view: * hardware's view:
for (int i=0; i<N; i++) load rl = A(1)
A[i] = A[i] + B[1i]; load r2 = B(i)
add rl = rl + r2
— user work: store A(i) = rl
N Flops (ADDs) inc 1

branch top if i<N

programm performs computation, FLOP is the basic work done
processor executes instructions, instructions is the basic work done
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o] Basic Compute Resources

Oldenburg

* |nstruction execution

— primary resource for computations, hardware is designed to increase
instruction throughput as much as possible

— difficult for general purpose computing, what is a typical workload?

« data movement

— consequence of instruction execution
— in the example two loads and one store (24 bytes for double precision)

What is the bottleneck of an application?
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G Flop/s vs. Memory Bandwidth

Oldenburg

 a floating-point operation (Flop) is the basic unit of work

— theoretical peak performance Intel Xeon E5-2650 v4
Ppeak = 422.5 GFlop/s

— equivalent to 16 Flop/(core - cy)

* memory bandwidth

— maximum for Intel Xeon E5-2650 v4 is 76.8 GB/s
(https://ark.intel.com/products/91767/Intel-Xeon-Processor-E5-2650-v4-30M-Cache-2_20-GHz)

— equivalent to 35 Byte/cy

(more info: http://sites.utexas.edu/jdm4372/tag/memory-bandwidth/)
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o] Example Bandwidth Limited Execution

Oldenburg

 consider the vector-triad

for (j=9; j<STREAM_ARRAY_SIZE; j++)
a[j] = b[j]+scalar*c[j];

— included in the STREAM benchmark (see https://www.cs.virginia.edu/stream/)

— 2 Flopl/iteration and 24 Byte/iteration
— at 16 Flop/cy on a single core 192 Byte/cy are needed

= memory bandwidth is the limiting factor here
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S STREAM Benchmark

Oldenburg

https://www.cs.virginia.edu/stream/

« simple tool to measure memory bandwidth
— timing of bandwidth-limited vector operations
— some gory details: https://blogs.fau.de/hager/archives/8263
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S STREAM Benchmark

Oldenburg

https://www.cs.virginia.edu/stream/

« simple tool to measure memory bandwidth
— timing of bandwidth-limited vector operations
— some gory details: https://blogs.fau.de/hager/archives/8263

« some results on CARL
— single core bandwidth is about 20 GB/s

— maximum bandwidth measured is about 64 GB/s per socket and
128 GB/s per node (two sockets)

— about half of the cores are needed to get (close to) maximum
bandwidth
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el Hardware Locality

Oldenburg

« compute nodes are increasingly complex

— ccNUMA architectures

* the hwloc library provides some tools to

(https://www.open-mpi.org/projects/hwloc/)

— obtain information about the node topology (1stopo)

Machine (256GB total)

— bind processes to specific (e n

Package PE)
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or different sockets?
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NUMA Control

Oldenburg

« data locality is important

— local data can be accessed faster

— ,Golden Rule” of ccNUMA: data is
mapped to local memory of
processor that writes first

e use numactl for info and control

$ numactl --hardware
available: 2 nodes (0-1) NUMA node

$ numactl --cpunodebind=0 --membind=0 ./stream c.exe
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el Example

Oldenburg

« 3d ,Stencil” update (Jacobi)

// serial
for (int i=1; i<Ni; i++)
for (int j=1; j<Nj; j++)
for (int k=1; k<Nk; k++)
y[il[j1[k] =w* ( x[1i-1][F]1[k] + x[i+1][F][k]
+ x[1][J-1]1[k] + x[1][J+1][k]
+ x[1][J1[k-1T7 + x[1][F][k+1] );

note that the order of the loops is important
(and depends on the ordering of multi-dimensional arrays in memory)
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o] Memory Access Patterns

Oldenburg

= Caches help with getting instructions and data to the CPU “fast”
= How does data travel from memory to the CPU and back?

= Remember: Caches are organized
in cache lines (e.g., 64 bytes)

= Only complete cache lines are
transferred between memory
hierarchy levels (except registers)

= MISS: Load or store instruction does
not find the data in a cache level
- CL transfer required

FHIT

write| |evict
allocate| |(delayed)

3CL

= Example: Array copy A(:)=C(:) transfers
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G Write Allocation and Non-Temporal Stores

Oldenburg https://blogs.fau.de/hager/archives/2103

« when a cache is available it is not clear how to best write data into
main memory

— write-through: writing directly to memory is simple but slow

— write-back: only writes to cache, so it is faster but requires an extra read
(write allocation)

« example: STREAM copy for (int i=0; i<N; i++)
A[i] = C[1i];

— require one load for C[i], and another load for A[i] (write allocate), and
finally a store for A[1] - in total 24 bytes have to be transferred

« modern CPUs allow non-temporal or streaming stores

— since C[i] is not used directly, a non-temporal store operation can be used
to write it directly into memory - data transfer is reduced to 16 byte
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el Example

Oldenburg

« 3d ,Stencil” update (Jacobi)

// serial
for (int i=1; i<Ni; i++)
for (int j=1; j<Nj; j++)
for (int k=1; k<Nk; k++)
y[i][31[k] =w > ( x[1-1]J[J]1[k] + x[1+1][J][k]
+ x[1][J-11[k] + x[1][J+1][K]
+ x[1][JI[k-1] + x[1][F][k+1] );

element in cache from a previous iteration
» 5LDs and 1 ST (48 byte for doubles)
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Parallel Speedup

speedup

measured speédup version 1 ] | | |
12 measured speedup version 2 @
10 F version 1, very good scaling
version 2, almost no scaling ®
E B
&
L
6 t L
L
L
4 L L
L
e ©® e & & & & »
2 | o *
D 1 1 1 1 1 1
0 2 4 6 g8 10 12

# cores

Introduction to HPC - Session 07




T Parallel Performance

Oldenburg
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How is the Hardware optimized for performance?

Oldenburg

« speedup memory access with cache (see before)
« pipelining of arithmethic units

 instruction pipeline

 instruction level parallelism

« simultaneous multi-threading (SMT)

« SIMD processing
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Pipelining

Oldenburg

" |dea:
= Split complex instruction into several simple / fast steps (stages)
= Each step takes the same amount of time, e.g., a single cycle
= Execute different steps on different instructions at the same time (in parallel)

= Allows for shorter cycle times (simpler logic circuits), e.g.:
= floating point multiplication takes 5 cycles, but
= processor can work on 5 different multiplications simultaneously
= one result at each cycle after the pipeline is full

= Drawback:
= Pipeline must be filled - startup times (#Instructions >> pipeline steps)

= Efficient use of pipelines requires large number of independent instructions =
instruction level parallelism

= Requires complex instruction scheduling by compiler/hardware — software-
pipelining / out-of-order

= Pipelining is widely used in modern computer architectures
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el Pipelinig — 5 stage Multiplication

Oldenburg

1 2 3 4 5 N N+1 N+2 N+3 N+4
............................................................................................................................................................... -
Cycle
Separate B{(1)| | B(2)| |B(3)| B(4)| | B(5) B(N) |.. >|
mant./exp. C(l)| | C(2)| |c(3)| | Cc(4)| |C(5) e C(N) Wind-down
Multiply B(1)| | B(2)| | B(3)| | B(4) Bi{N-1)| | B(N)
mantissas c(ly| |e(2)| | c(3)| | c(a) e cn-1)| | C(N)
Add B(1)| | B(2)| | B(3) B{N-2)| |B(N-1)| | B(N)
exponents C({1) c(2) C(3) T cim-2)| |ciw-1)| | C{N)
Normalize A A A
result AL | A 2) (N-3)| | (N-2)| | (N-1) A(N)
Insert Wind-up A A A A
sign [ 2] | | | -] |3 | -2)| | -1y | RO

First result is available after 5 cycles (=latency of pipeline)!
Wind-up/-down phases: Empty pipeline stages
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el simultaneous multi-threading (SMT)

Oldenburg

SMT principle (2-way example):
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el SIMD processing
Oldenburg
= Single Instruction Multiple Data (SIMD) operations allow the

concurrent execution of the same operation on “wide” registers
x86 SIMD instruction sets:

= SSE: register width = 128 Bit = 2 double precision floating point operands
= AVX: register width = 256 Bit = 4 double precision floating point operands

Adding two registers holding double precision floating point
operands

RO R1 R2 RO R1
/-— pe— p—

R2

SIMD execution:
V64ADD [RO,R1] =R2

256 Bit< \
Scalar execution:
64 Bit - o - R2< ADD [RO,R1]
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T Processor Peak Performance

Oldenburg

Floating Point (FP) Performance:

! I

! I

1 I
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| | i

: L:: Lo || Lo || Lo || 1o || Lib || LD L:zn : P — nCOre . F . S Y,
! I

! [

! |

3

| .,,,m,L'.m ' Ncore Nhumber of cores 12
F FP instructions per cycle 4

[ Mamory ] (2 FMA)
S FP ops / instruction 4

Intel Xeon ,Broadwell (256 Bit SIMD registers in AVX2)
E5-2650 v4
Vv clock speed 2.2 GHz
(affected by turbo/AVX modes)
TOP500 rank 1 (mid-90s) I\ P = 422.4 GFlop/s (dp)

But: P = 8.8 GFlop/s for serial, non-SIMD code
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T Performance Bottleneck

Oldenburg

« many floating point computation on little data
-> bound by the processing speed of the CPU
— possibly increase number of cores
— make use of SIMD processing
— note: recent CPU may have lower clock speed for AVX

« few floating point operation per data
- bound by memory bandwidth

— change algorithm/parallelization to make better use of cache
— Increase compute intensity
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S Architecture of AMD Genoa CPUs

Oldenburg

https://www.amd.com/system/files/documents/4th-gen-epyc-processor-architecture-white-paper.pdf

« AMD EPYC CPUs have a hybrid multi-die architecture

— decoupling of CPU cores and I/O devices

1/0 die _ CPU die detail

12 memory controllers . ®—— 8 'Zen &' cores

PCle® Gen 5 controllers | Yo i e ®—— 1 MBL2 cache per core
Infinity Fabric™-controllers : ; 1 __ Shared 32 MB L3 cache
SATA controllers — i e s

CXL™ contrellers

Security processor

o T) | P SR —
Up to 8 carés per die
Up to 12 dies per-pracessor

Figure 1: AMD EPYC 9004 Series processor overview
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S Architecture of AMD Genoa CPUs

Oldenburg

https://www.amd.com/system/files/documents/4th-gen-epyc-processor-architecture-white-paper.pdf

« dual-socket configuration

“\ / socket interconnect

RAM =
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S Architecture of AMD Genoa CPUs

Oldenburg

https://www.amd.com/system/files/documents/4th-gen-epyc-processor-architecture-white-paper.pdf

« NUMA domains and core complex (CCX)

e
Cache

CCX with eight cores, 1TMB L2 cache
per core and 32MB shared L3 cache

CPU is build from up to 12CCDs
(core complex on die), which can be
configured into four NUMA domains
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T HPC on AMD Genoa

Oldenburg

. AMD EPYC 9554 (64C @ 3.1 GHz)

— floating-point performance (theoretical):

o 2 FMA instructions per cycle
o 8 FP operations per instruction (AVX-512)
— however, when using AVX-512, 2 cycles per FMA instruction are needed

o in total: =>» 16 Flop/(core - cy)
or CPU total: =» 3,174.4 GFlop/s theoretical peak performance

— memory bandwidth

o per socket: 460.8 GB/s (12 memory channels)
or 148 byte/cycle

Introduction to HPC - Session 07




e Examples

Oldenburg

- OMP_Pi

— how many CPU cycles are required for a DIV operation?

« STREAM

— determine memory bandwidth

« Stencil
— optimization vs. speedup
— memory access pattern

measuring/getting optimal performance may require process binding
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