Carl von Ossietzk]

Universitat
Oldenburg

Betriebseinheit fur
technisch-wissenschaftliche
Infrastruktur

Introduction to
High-Performance Computlng

Session 09 < A4
Matlab Distributed Compute Server K AL
(MDCS)

T Previous Session

Oldenburg

Toolbox
Other toolboxes

introduction to MDCS

— MDCS can be used to off-load
Matlab computations to the HPC
cluster in a simple workflow

— allows parallelization across
multiple compute nodes

configuration of MDCS

— prepare your local computer for
MDCS

usage of MDCS

. L sched = parcluster('CARL");
— basic example for Smelttlng d job = batch(sched, 'paramSweep_batch', 'Pool', 7, .

. . . 'AttachedFiles', {'odesystem.m'});
job and retrieving results job. State

jobData = load(job);

Introduction to HPC - Session 09

Parallelization with parfor

Introduction to HPC - Session 09

el Mechanics of parfor Loops

Oldenburg

fm

a = zeros (20, 1)

parforji = 1:20

a(i) = 1i;

end

=

Pool of MATLAB Workers

Introduction to HPC - Session 09

S Converting for to parfor

Oldenburg

* requirements for parfor loops
— task independent
— order independent

— loop index must be consecutive increasing integers

« constraints on the loop body
— cannot introduce variables (e.g. eval, load, global)
— cannot contain break or return statements

— cannot contain another parfor loop

https://de.mathworks.com/help/parallel-computing/troubleshoot-variables-in-parfor-loops.html

Introduction to HPC - Session 09

https://de.mathworks.com/help/parallel-computing/troubleshoot-variables-in-parfor-loops.html

T Variable Classification

Oldenburg

 all variables referenced at the top level of the parfor must be
resolved and classified

loop serves as a loop index for arrays
: an array whose segments are operated on by different

sliced . :

iterations

a variable defined before the loop whose value is used
broadcast . : :

inside the loop, but never assigned in the loop

: accumulates a value across iterations of the loop,

reduction : :

regardless of iteration order

variable created inside the loop but unlike sliced or
temporary

reduction variables, not available outside the loop

Introduction to HPC - Session 09

el \/ariable Classification Example

Oldenburg

* matrix-vector multiplication

is broadcast
is broadcast
A is slices input

=

N=2048;
b=rand(N,1);
A=rand(N,N);

R of ¥
o

parfor i=1:N % 1 is loop index
c(i)=A(1i,:)*b(:); % ¢ is sliced output

end

C % using c outside the loop

Introduction to HPC - Session 09

S parfor Examples

Oldenburg

* this example cannot be parallized in parfor

j=zeros(100); %pre-allocate vector

J(1)=5;
for i=2:100;
J(1)=3(i-1)+5;

end;

— order of iterations is important

Introduction to HPC - Session 09

S parfor Examples

Oldenburg

« functions with multiple output may confuse Matlab

for i=1:10
[x{i}(:,1), x{i}(:,2)]=functionName(z,w);

end;

— use this instead

for i=1:10
[Xx1, x2]=functionName(z,w);
x{i}=[x1 x2];

end;

Introduction to HPC - Session 09

prr— parfor Examples

Universitat
Oldenburg

* be careful not to broadcast unnecessary data (false sharing)

data.raw =
data.processed =

% Inefficient wvariant:
parfor ida = 1 - N
% do something with data.processed

and

% This is better:
processedData = data.processed;
parfor ida = 1 - N

% do something with processedData

and

https://Jundocumentedmatlab.com/blog/a-few-parfor-tips

Introduction to HPC - Session 09

https://undocumentedmatlab.com/blog/a-few-parfor-tips

parfor Considerations

Universitat
Oldenburg

« parfor often only involves minimal code changes

 if a for loop cannot be converted to parfor, consider wrapping a
subset of loop body in a function

— e.g. load works not in parfor, however it does work in function that is called
inside a parfor loop

* more information
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-

getting-up-and-running/

* there is a Code-Analyzer to diagnose parfor issues

Introduction to HPC - Session 09

http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/

Parallelization with spmd

(single program multiple data)

Introduction to HPC - Session 09

el Parallelization with spmd

Oldenburg

Client Worker 1 Worker 2

a b e | ¢ d f | ¢ 4 f

a = 3; 3 - -1 -=- -1 - - -

b = 4; 3 4 - - - -1 - - -
spmd " | |

c = labindex(); 3 4 - | 1 - - | 2 - -

d =c + a; 3 4 - | 1 4 - | 2 5 -
end | |

e = a + d{1}; 3 4 7 | 1 4 - | 2 5 -

c{2} = 5; 3 4 7 | 1 4 - | 5 6 -
spmd | |

f = c * b; 3 4 7 | 1 4 4 | 5 620

end

Introduction to HPC - Session 09

Parallelization with spmd

Universitat
Oldenburg

« when a spmd block ends the workspace is saved, the worker is
paused

« data is preserved from one block to the next

« does not apply to spmd block in a function after the function is
completed (as regular variables local to a function)

Introduction to HPC - Session 09

G SPMD Example

Oldenburg
% read image file
X = imread('uol.jpeg’); ° FEBEi(j irT1Ei§JEB
% add noise and store noisy image
y = imnoise(x, 'salt & pepper', 0.30); ° Ei(j(j r1()i5569 t() ifT]EigJEB
% distribute image (last column is color chanel)
yd = distributed(y); distribute data
% remove noise with filter in parallel
spmd I I
S - getiocalpart(ydy: parallel working on image data
1 = medfil 1, [3,3]); :
. y medfilt2(yl, [3,3]) (flrtEBr)
% her fil d i d i
dim - sizenys o mees and store AF « on master process put together
z(1:xdim(1),1:xdim(2),1) = y1{1}; . .
z(1:xdim(1),1:xdim(2),2) = y1{2}; filtered Image
= y1{3};

z(1:xdim(1),1:xdim(2),3)

s AT
R

Introduction to HPC - Session 09

T Distributed Data

Oldenburg

« Matlab provides different functions to manage distributed data
— with distributed(X) you can distribute data among workers
— with distributed.METHOD you can create data distributed among workers

— workers can create codistributed data structures which become distributed
data outside of the spmd block

— a datastore can be distributed to read manage large data files with multiple
workers

— see ‘help distributed’ for more information

Introduction to HPC - Session 09

T Distributed Data

Oldenburg

P = parpool ("local', 4); % create a local pool of workers
A = zeroz(4); % create a 4x4 matrix with zZeros
A % print & on client

dlStrlbUtlng data E = distributed(i); % |:1:'Ls1_::r:i]::'.11:E B tTo the 'n'r:r]jzers

. spmd % begin parallel spmd region
from Cllent BE =B + labindex; % modify distributed data in B

end % end parallel spmd region
E % print B on client
delete (p)

VS.

p = parpool ('local', 4): % create a pool of workers
spmd % begin parallel spmd region
. . codist = codistributorld(2, [1,1,1,1]); % define distribution
COdIStrIbUted data B = zeros(4, codist): % created codistributed array
Created on WorkerS BE =B + labindex; 3 modify distributed data in B
end % end parallel spmd region
B % print B on client

delete (p):

Introduction to HPC - Session 09

el Example: Image Contrast

Oldenburg

« a Matlab script that uses a simple
function to change the contrast of
an gray-scale image

% read an image (gray-scale)
¥ = imread('low contrast.jpg'):

% setup function for contrast manipulation
c = 1.7;
adijuscContrast = B(x) oc"=x(Z2,2)+(l.0-c)* (meanix(:)-x(Z,2)/9.0)):

% apply filter
z = nlfilter(y, [3,3], adjustContrast):

% save image side-by side
imwrite (cat (l,¥,2), 'contrast serial.jpg'):

Introduction to HPC - Session 09

el Example: Image Contrast

Oldenburg

. parallelize with SPMD

% read an image (gray-scale)
¥ = imread('low_contrast.jpg'}:

% setup function for contrast manipulation
c=1.7;
adjustContrast = @(x) c*x(2,2)+(l.0-c)* (meanix(:)-=x(2,2),/9.0));

% distribute image by columns
yd = distributed(vy)

% now work in parallel

| spmd
vl = getLocalPart (yd)

% apply filter
vl = nlfilter(vl, [3,3], adjuscContrast):;

end

% combkine local images
z = [wl{:}]:

% =save image side-by =side
imwrite (cat(l,v,2), 'contrast_spmd.jpg');

. algorithm produces artifacts when parallelized on multiple workers

— problem is that increasing contrast requires information from
neighbouring pixel

— distributing the data adds additional boundaries

Introduction to HPC - Session 09

T Communication between Matlab Workers

Oldenburg

« solution is communication between workers
— each worker has to sent one boundary left and one right
— each worker has to receive one boundary from left and one from right
— extra columns are added before filter is applied, and need to be removed

again afterwards

Introduction to HPC - Session 09

N

J

T Communication between Matlab Workers

Oldenburg

« the function 1labSendReceive simultaneously sends and receives
data
received = labSendReceive(labTo, labFrom, data)
— sends data to 1labTo

— receives data from labFrom and stores it in received

%dmg recelved
data from receiving at 1abTo
Taen ﬂ

Introduction to HPC - Session 09

T Communication between Matlab Workers

Oldenburg

column = labSendReceive (previous, next, x1(:,1));

if (labindex() < numlabs())
x1 = [x1, column];
end

N
column = labSendReceive (next, previous, x1(:,end -1));

if (1 < labindex())

x1 = [column, x1];
end

Introduction to HPC - Session 09

Carl von Ossietzky

Universitat
Oldenburg

Exercise

Introduction to HPC - Session 09

Exercises

Oldenburg

 try out the following examples from the lecture

MDCS configuration

basic example with parfor
SPMD example noise reduction
SPMD example contrast

SPMD example heat

S

Introduction to HPC - Session 09

e Tl Heat Example in Matlab

Oldenburg

% 2d-heat example in Matlab
% initial setup

NXPROB = 20; % number of grid rows

NYPROB = 20; % number of grid columns

STEPS = 100; % number of iterations

TIME = 0O; % initial and current time

uvals = zeros(2, NXPROB, NYPROB); % allocate grid

uvals = inidat(uvals); % initialize grid

plotdat(uvals, 1, TIME); % make plot

it = 1;

for TIME=1:STEPS % time iteration
uvals = updateu(uvals, it); % update thermal energy
it = 3 - it;

end

plotdat(uvals, 1, TIME); % make plot

Introduction to HPC - Session 09

The End

Universitat
Oldenburg

@ contact me directly of you have questions about the
o~ course

@) contact hpcsupport@uol.de if you have requests or
o~ encounter problems regarding the HPC cluster

Introduction to HPC - Session 09

mailto:hpcsupport@uol.de

	Folie 1: Introduction to High-Performance Computing
	Folie 2: Previous Session
	Folie 3: Parallelization with parfor
	Folie 4: Mechanics of parfor Loops
	Folie 5: Converting for to parfor
	Folie 6: Variable Classification
	Folie 7: Variable Classification Example
	Folie 8: parfor Examples
	Folie 9: parfor Examples
	Folie 10: parfor Examples
	Folie 11: parfor Considerations
	Folie 12: Parallelization with spmd
	Folie 13: Parallelization with spmd
	Folie 14: Parallelization with spmd
	Folie 15: SPMD Example
	Folie 16: Distributed Data
	Folie 17: Distributed Data
	Folie 18: Example: Image Contrast
	Folie 19: Example: Image Contrast
	Folie 20: Communication between Matlab Workers
	Folie 21: Communication between Matlab Workers
	Folie 22: Communication between Matlab Workers
	Folie 23: Exercise
	Folie 24: Exercises
	Folie 25: Heat Example in Matlab
	Folie 26: The End

