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Parallel Programming Models

213.10.2020 Introduction to HPC - Session 05

• two dominating programming models:

– OpenMP: uses directives to define work decomposition

– MPI: standardized message-passing interface

• other programming models

– HPF (high-performance Fortran)

– PGAS (Partitioned Global Address Space), e.g. Co-Array Fortran

UPC (Unified Parallel C)

• programming models for compute devices

– CUDA

– OpenCL

– OpenACC
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What is OpenMP and why use it?
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• OpenMP is a standard programming model for shared 

memory parallelization

– portable across different shared memory architectures

– allows incremental parallelization

– based on compiler directives and a few library routines

– supports Fortran and C/C++

• easy approach to multi-threaded programming

– allows to exploit modern multi-core CPUs

– good performance gain for invested effort

– hybrid-parallelization with MPI-OpenMP
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OpenMP Programming Model
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• OpenMP is a shared memory model

• workload is distributed among threads

• variables can be

– shared among all threads

– duplicated for each thread (private)

• threads communicate by sharing variables

– unintended sharing can lead to race condition

• synchronization for execution control and to avoid data 

conflicts
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OpenMP Standard

• standard since 1997 (Fortran version 1.0)

• current standard is 4.5 (Nov 2015)

– supported in GCC 6.1, Intel 2017 and others

– older versions of OpenMP have more compilers to choose from

• active development to improve performance and to adapt 

to new hardware technologies

– support for SIMD parallelism was added

– OpenMP on devices/accelerators (e.g. GPUs)

513.10.2020 Introduction to HPC - Session 05

http://www.openmp.org/

http://www.openmp.org/
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OpenMP Execution Model
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OpenMP Parallel Region Construct
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Example: OMP_HelloWorld
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• code available on HPC-Wiki

#include <iostream>

#include <omp.h>

using namespace std;

int main () {

#pragma omp parallel

{

cout << "Hello World from thread " 

<< omp_get_thread_num() << endl;

} /* end omp parallel */

}
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Compiling and Running OpenMP Programs
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• compilation with an extra option, e.g.

– different compilers use different options

• before running may set environment for control

– default is to use all available cores

• running the program as usual

$ g++ -fopenmp OMP_HelloWorld.cpp -o OMP_HelloWorld

$ icpc -qopenmp OMP_HelloWorld.cpp -o OMP_HelloWorld

$ export OMP_NUM_THREADS=4

$ ./OMP_HelloWorld
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Running OpenMP Programs with SLURM

• basic job script

– OpenMP programs as single task (and single node)

– number of cores set by --cpus-per-task=<n> or -c <n>

– environment variable SLURM_CPUS_PER_TASK available cpus-per-

task has been set

– srun may used to create a separate job step (better accounting)
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#!/bin/bash

#SBATCH -p carl.p

#SBATCH -n 1                 # single task with

#SBATCH -c 8                 # cpus-per-task

# execute code 

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

srun ./OMP_HelloWorld
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OpenMP Compiler Directives

• OpenMP uses compiler directives of the form

#pragma omp <directive> [clause [clause] … ]

– in C/C++ this applies to the following structured block, in Fortran
an END-directive can be used

– different <directive> are available to control parallel program

flow

– optional one or more clause for additional settings
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OpenMP Programming
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• include library

• available library routines

– setting number of threads

– getting number of threads

– getting thread ID

– wall clock time 

#include <omp.h>

omp_set_num_threads() 

omp_get_num_threads() 

omp_get_thread_num()

omp_get_wtime() 
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OMP_HelloWorld2

1313.10.2020 Introduction to HPC - Session 05

• what will happen here?

int main () {

int threadID, nthreads;

#pragma omp parallel

{

threadID = omp_get_thread_num();

cout << "Hello World from thread " << threadID << endl;

// wait for all threads

#pragma omp barrier

if (threadID==0) {

nthreads = omp_get_num_threads();

cout << "Using " << nthreads << " threads!" << endl;

}

} /* end omp parallel */

}
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Shared and Private Variables
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• in OMP_HelloWorld2 threadID is shared among all 

threads

• race condition

– every thread is writing to the same memory address

– final value unpredictable

• solution is to make threadID private 

#pragma omp parallel private(threadID)
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OPENMP

WORK SHARING DIRECTIVES
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Work Sharing Directives
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• parallel region to create a team of threads

– every thread executes the same code

– example

– every thread does the same work (and there is a race condition)

const int N=1000000;

double x[N];

#pragma omp parallel

{

int threadID = omp_get_thread_num();

for(int i=0; i<N; i++)

x[i] = 1./double(threadID+1);

}
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Work Sharing Directives
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• parallel region to create a team of threads

– every thread executes the same code

– example

– now every thread does a chunk of the work 

(and there is no race condition)

const int N=1000000;

double x[N];

#pragma omp parallel

{

int threadID = omp_get_thread_num();

#pragma omp for

for(int i=0; i<N; i++)

x[i] = 1./double(threadID+1);

}
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Work Sharing Directives
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• parallel region to create a team of threads

– every thread executes the same code

– example

– directive can be separated or combined as needed

const int N=1000000;

double x[N];

#pragma omp parallel for

{

for(int i=0; i<N; i++)

x[i] = 1./(i+1.);

}



Scientific Computing
V. School of Mathematics and Science

Work Sharing Directives
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• usable in parallel regions

• directives to specify how the work is distributed

• no synchronization at entry, only at exit (disable with nowait)

• directives

– for split a loop into parallel tasks

– sections/section defines a task for one thread

– single/master one/master thread only, no synchronization

– critical executed by one thread at a time

– …

• additional clauses e.g. to further specify distribution of work
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Example: Mean of Random Numbers

• how to parallelize the program Random.cpp with 

OpenMP?

– e.g. the calculation of the mean value
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// calculate mean value

double mean=0;

for (int i=0; i<NSIZE; i++)

mean += vec[i];

mean /= NSIZE;
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Example: Mean of Random Numbers

• how to parallelize the program Random.cpp with 

OpenMP?

– e.g. the calculation of the mean value
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// calculate mean value

double mean=0;

#pragma omp parallel shared(mean)

{

double mean_loc=0;

#pragma omp for

for (int i=0; i<NSIZE; i++)

mean_loc += vec[i];

#pragma omp critical

mean += mean_loc;

} 

mean /= NSIZE;
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OpenMP Directive critical

• only one thread at a time can execute critical code block

– in the example 

this ensures mean is calculated without race condition

– overhead for synchronization and serialization of code block

– a faster alternative is provided by the atomic directive

– has limitation on the expressions (critical is more general) 
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#pragma omp critical

mean += mean_loc;

#pragma omp atomic

mean += mean_loc;
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OpenMP reduction Clause

• an alternative (optimal?) solution can be obtained with 

the reduction clause

– no need of critical section and private variable mean_loc
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// calculate mean value

double mean=0;

#pragma omp parallel reduction(+:mean)

{

#pragma omp for

for (int i=0; i<NSIZE; i++)

mean += vec[i];

} 

mean /= NSIZE;
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OpenMP Clauses

• the behavior of OpenMP directives can be adjusted using 

clauses

– e.g. the following clauses can be used with the for directive: 
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private(list)

firstprivate(list)

lastprivate(list)

reduction(reduction-identifier:list)

schedule([modifier [,modifier]:]kind[, chunk_size])

collapse(n)

ordered[(n)]

nowait

no implicit barrier at the end of loop construct

how work of loop

is distributed among

threads

compiler creates reduction operation

how data is treated
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Code Portability
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• it is often desirable to have the same code file being used 

for serial and OpenMP parallel code

– use conditional compilation, e.g.

– pragmas only have effect when OpenMP option is used at 

compile time

– code becomes more difficult to read

#ifdef _OPENMP

double wt1 = omp_get_wtime();

#endif
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OpenMP Summary
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• standard for easy shared memory parallelization

• uses compiler directives and some library functions

• based on threads and a fork-join model

• incremental parallelization

• serial and parallel code in one source file

• difference between shared and private data is important

• be careful about race conditions
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Exercises
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Calculate Pi in Parallel
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• modify the program Pi.cpp so that it parallelizes the 

computation of Pi with OpenMP

– add a parallel region to the code

– parallelize the loop so that each thread computes a part of sum 

(integral)

– combine the partial sums for the final answer

– also add a wall clock timer (omp_get_wtime()) and compare the 

change in CPU and wall clock time for different number of 

threads


