
Scientific Computing
V. School of Mathematics and Science

Introduction to

High-Performance Computing

Session 05

Introduction to OpenMP

Scientific Computing
V. School of Mathematics and Science

Parallel Programming Models

213.10.2020 Introduction to HPC - Session 05

• two dominating programming models:

– OpenMP: uses directives to define work decomposition

– MPI: standardized message-passing interface

• other programming models

– HPF (high-performance Fortran)

– PGAS (Partitioned Global Address Space), e.g. Co-Array Fortran

UPC (Unified Parallel C)

• programming models for compute devices

– CUDA

– OpenCL

– OpenACC

Scientific Computing
V. School of Mathematics and Science

What is OpenMP and why use it?

313.10.2020 Introduction to HPC - Session 05

• OpenMP is a standard programming model for shared

memory parallelization

– portable across different shared memory architectures

– allows incremental parallelization

– based on compiler directives and a few library routines

– supports Fortran and C/C++

• easy approach to multi-threaded programming

– allows to exploit modern multi-core CPUs

– good performance gain for invested effort

– hybrid-parallelization with MPI-OpenMP

Scientific Computing
V. School of Mathematics and Science

OpenMP Programming Model

413.10.2020 Introduction to HPC - Session 05

• OpenMP is a shared memory model

• workload is distributed among threads

• variables can be

– shared among all threads

– duplicated for each thread (private)

• threads communicate by sharing variables

– unintended sharing can lead to race condition

• synchronization for execution control and to avoid data

conflicts

Scientific Computing
V. School of Mathematics and Science

OpenMP Standard

• standard since 1997 (Fortran version 1.0)

• current standard is 4.5 (Nov 2015)

– supported in GCC 6.1, Intel 2017 and others

– older versions of OpenMP have more compilers to choose from

• active development to improve performance and to adapt

to new hardware technologies

– support for SIMD parallelism was added

– OpenMP on devices/accelerators (e.g. GPUs)

513.10.2020 Introduction to HPC - Session 05

http://www.openmp.org/

http://www.openmp.org/

Scientific Computing
V. School of Mathematics and Science

OpenMP Execution Model

613.10.2020 Introduction to HPC - Session 05

Scientific Computing
V. School of Mathematics and Science

OpenMP Parallel Region Construct

713.10.2020 Introduction to HPC - Session 05

Scientific Computing
V. School of Mathematics and Science

Example: OMP_HelloWorld

813.10.2020 Introduction to HPC - Session 05

• code available on HPC-Wiki

#include <iostream>

#include <omp.h>

using namespace std;

int main () {

#pragma omp parallel

{

cout << "Hello World from thread "

<< omp_get_thread_num() << endl;

} /* end omp parallel */

}

Scientific Computing
V. School of Mathematics and Science

Compiling and Running OpenMP Programs

913.10.2020 Introduction to HPC - Session 05

• compilation with an extra option, e.g.

– different compilers use different options

• before running may set environment for control

– default is to use all available cores

• running the program as usual

$ g++ -fopenmp OMP_HelloWorld.cpp -o OMP_HelloWorld

$ icpc -qopenmp OMP_HelloWorld.cpp -o OMP_HelloWorld

$ export OMP_NUM_THREADS=4

$./OMP_HelloWorld

Scientific Computing
V. School of Mathematics and Science

Running OpenMP Programs with SLURM

• basic job script

– OpenMP programs as single task (and single node)

– number of cores set by --cpus-per-task=<n> or -c <n>

– environment variable SLURM_CPUS_PER_TASK available cpus-per-

task has been set

– srun may used to create a separate job step (better accounting)

1013.10.2020 Introduction to HPC - Session 05

#!/bin/bash

#SBATCH -p carl.p

#SBATCH -n 1 # single task with

#SBATCH -c 8 # cpus-per-task

execute code

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

srun ./OMP_HelloWorld

Scientific Computing
V. School of Mathematics and Science

OpenMP Compiler Directives

• OpenMP uses compiler directives of the form

#pragma omp <directive> [clause [clause] …]

– in C/C++ this applies to the following structured block, in Fortran
an END-directive can be used

– different <directive> are available to control parallel program

flow

– optional one or more clause for additional settings

1113.10.2020 Introduction to HPC - Session 05

Scientific Computing
V. School of Mathematics and Science

OpenMP Programming

1213.10.2020 Introduction to HPC - Session 05

• include library

• available library routines

– setting number of threads

– getting number of threads

– getting thread ID

– wall clock time

#include <omp.h>

omp_set_num_threads()

omp_get_num_threads()

omp_get_thread_num()

omp_get_wtime()

Scientific Computing
V. School of Mathematics and Science

OMP_HelloWorld2

1313.10.2020 Introduction to HPC - Session 05

• what will happen here?

int main () {

int threadID, nthreads;

#pragma omp parallel

{

threadID = omp_get_thread_num();

cout << "Hello World from thread " << threadID << endl;

// wait for all threads

#pragma omp barrier

if (threadID==0) {

nthreads = omp_get_num_threads();

cout << "Using " << nthreads << " threads!" << endl;

}

} /* end omp parallel */

}

Scientific Computing
V. School of Mathematics and Science

Shared and Private Variables

1413.10.2020 Introduction to HPC - Session 05

• in OMP_HelloWorld2 threadID is shared among all

threads

• race condition

– every thread is writing to the same memory address

– final value unpredictable

• solution is to make threadID private

#pragma omp parallel private(threadID)

Scientific Computing
V. School of Mathematics and Science

OPENMP

WORK SHARING DIRECTIVES

1513.10.2020 Introduction to HPC - Session 05

Scientific Computing
V. School of Mathematics and Science

Work Sharing Directives

1613.10.2020 Introduction to HPC - Session 05

• parallel region to create a team of threads

– every thread executes the same code

– example

– every thread does the same work (and there is a race condition)

const int N=1000000;

double x[N];

#pragma omp parallel

{

int threadID = omp_get_thread_num();

for(int i=0; i<N; i++)

x[i] = 1./double(threadID+1);

}

Scientific Computing
V. School of Mathematics and Science

Work Sharing Directives

1713.10.2020 Introduction to HPC - Session 05

• parallel region to create a team of threads

– every thread executes the same code

– example

– now every thread does a chunk of the work

(and there is no race condition)

const int N=1000000;

double x[N];

#pragma omp parallel

{

int threadID = omp_get_thread_num();

#pragma omp for

for(int i=0; i<N; i++)

x[i] = 1./double(threadID+1);

}

Scientific Computing
V. School of Mathematics and Science

Work Sharing Directives

1813.10.2020 Introduction to HPC - Session 05

• parallel region to create a team of threads

– every thread executes the same code

– example

– directive can be separated or combined as needed

const int N=1000000;

double x[N];

#pragma omp parallel for

{

for(int i=0; i<N; i++)

x[i] = 1./(i+1.);

}

Scientific Computing
V. School of Mathematics and Science

Work Sharing Directives

1913.10.2020 Introduction to HPC - Session 05

• usable in parallel regions

• directives to specify how the work is distributed

• no synchronization at entry, only at exit (disable with nowait)

• directives

– for split a loop into parallel tasks

– sections/section defines a task for one thread

– single/master one/master thread only, no synchronization

– critical executed by one thread at a time

– …

• additional clauses e.g. to further specify distribution of work

Scientific Computing
V. School of Mathematics and Science

Example: Mean of Random Numbers

• how to parallelize the program Random.cpp with

OpenMP?

– e.g. the calculation of the mean value

2013.10.2020 Introduction to HPC - Session 05

// calculate mean value

double mean=0;

for (int i=0; i<NSIZE; i++)

mean += vec[i];

mean /= NSIZE;

Scientific Computing
V. School of Mathematics and Science

Example: Mean of Random Numbers

• how to parallelize the program Random.cpp with

OpenMP?

– e.g. the calculation of the mean value

2113.10.2020 Introduction to HPC - Session 05

// calculate mean value

double mean=0;

#pragma omp parallel shared(mean)

{

double mean_loc=0;

#pragma omp for

for (int i=0; i<NSIZE; i++)

mean_loc += vec[i];

#pragma omp critical

mean += mean_loc;

}

mean /= NSIZE;

Scientific Computing
V. School of Mathematics and Science

OpenMP Directive critical

• only one thread at a time can execute critical code block

– in the example

this ensures mean is calculated without race condition

– overhead for synchronization and serialization of code block

– a faster alternative is provided by the atomic directive

– has limitation on the expressions (critical is more general)

2213.10.2020 Introduction to HPC - Session 05

#pragma omp critical

mean += mean_loc;

#pragma omp atomic

mean += mean_loc;

Scientific Computing
V. School of Mathematics and Science

OpenMP reduction Clause

• an alternative (optimal?) solution can be obtained with

the reduction clause

– no need of critical section and private variable mean_loc

2313.10.2020 Introduction to HPC - Session 05

// calculate mean value

double mean=0;

#pragma omp parallel reduction(+:mean)

{

#pragma omp for

for (int i=0; i<NSIZE; i++)

mean += vec[i];

}

mean /= NSIZE;

Scientific Computing
V. School of Mathematics and Science

OpenMP Clauses

• the behavior of OpenMP directives can be adjusted using

clauses

– e.g. the following clauses can be used with the for directive:

2413.10.2020 Introduction to HPC - Session 05

private(list)

firstprivate(list)

lastprivate(list)

reduction(reduction-identifier:list)

schedule([modifier [,modifier]:]kind[, chunk_size])

collapse(n)

ordered[(n)]

nowait

no implicit barrier at the end of loop construct

how work of loop

is distributed among

threads

compiler creates reduction operation

how data is treated

Scientific Computing
V. School of Mathematics and Science

Code Portability

2513.10.2020 Introduction to HPC - Session 05

• it is often desirable to have the same code file being used

for serial and OpenMP parallel code

– use conditional compilation, e.g.

– pragmas only have effect when OpenMP option is used at

compile time

– code becomes more difficult to read

#ifdef _OPENMP

double wt1 = omp_get_wtime();

#endif

Scientific Computing
V. School of Mathematics and Science

OpenMP Summary

2613.10.2020 Introduction to HPC - Session 05

• standard for easy shared memory parallelization

• uses compiler directives and some library functions

• based on threads and a fork-join model

• incremental parallelization

• serial and parallel code in one source file

• difference between shared and private data is important

• be careful about race conditions

Scientific Computing
V. School of Mathematics and Science

Exercises

2713.10.2020 Introduction to HPC - Session 05

Scientific Computing
V. School of Mathematics and Science

Calculate Pi in Parallel

2813.10.2020 Introduction to HPC - Session 05

• modify the program Pi.cpp so that it parallelizes the

computation of Pi with OpenMP

– add a parallel region to the code

– parallelize the loop so that each thread computes a part of sum

(integral)

– combine the partial sums for the final answer

– also add a wall clock timer (omp_get_wtime()) and compare the

change in CPU and wall clock time for different number of

threads

