
Introduction to
High-Performance Computing
Session 05
Introduction to OpenMP

Introduction to HPC - Session 052

Parallel Programming Models

• two dominating programming models:
‒ OpenMP: uses directives to define work decomposition
‒ MPI: standardized message-passing interface

• other programming models
‒ HPF (high-performance Fortran)
‒ PGAS (Partitioned Global Address Space), e.g. Co-Array Fortran UPC

(Unified Parallel C)

• programming models for compute devices
‒ CUDA
‒ OpenCL
‒ OpenACC
‒ …

Introduction to HPC - Session 053

What is OpenMP and why use it?

• OpenMP is a standard programming model for shared memory
parallelization
‒ portable across different shared memory architectures
‒ allows incremental parallelization
‒ based on compiler directives and a few library routines
‒ supports Fortran and C/C++

• easy approach to multi-threaded programming
‒ allows to exploit modern multi-core CPUs
‒ good performance gain for invested effort
‒ hybrid-parallelization with MPI-OpenMP

Introduction to HPC - Session 054

OpenMP Programming Model

• OpenMP is a shared memory model

• workload is distributed among threads

• variables can be
‒ shared among all threads
‒ duplicated for each thread (private)

• threads communicate by sharing variables
‒ unintended sharing can lead to race condition

• synchronization for execution control and to avoid data conflicts

Introduction to HPC - Session 055

OpenMP Standard

• standard since 1997 (Fortran version 1.0)

• current standard is 5.2 (Nov 2021)
‒ partially supported since GCC 9 and Intel 2019
‒ version 4.5 supported in GCC 6.1, Intel 2017 and others
‒ older versions of OpenMP have more compilers to choose from

• active development to improve performance and to adapt to new
hardware technologies
‒ support for SIMD parallelism was added
‒ OpenMP on devices/accelerators (e.g. GPUs)

http://www.openmp.org/

https://www.openmp.org/resources/openmp-compilers-tools/
http://www.openmp.org/

Introduction to HPC - Session 056

OpenMP Execution Model

Introduction to HPC - Session 057

OpenMP Parallel Region Construct

Introduction to HPC - Session 058

Example: OMP_HelloWorld
• code available on Stud.IP

#include <iostream>
#include <omp.h>

using namespace std;

int main () {

 #pragma omp parallel
 {
 cout << "Hello World from thread "
 << omp_get_thread_num() << endl;
 } /* end omp parallel */
}

Introduction to HPC - Session 059

Compiling and Running OpenMP Programs

• compilation with an extra option, e.g.

‒ different compilers use different options

• before running may set environment for control

‒ default is to use all available cores

• running the program as usual

$ g++ -fopenmp OMP_HelloWorld.cpp -o OMP_HelloWorld
$ icpc -qopenmp OMP_HelloWorld.cpp -o OMP_HelloWorld

$ export OMP_NUM_THREADS=4

$./OMP_HelloWorld

or

Introduction to HPC - Session 0510

Running OpenMP Programs with SLURM
• basic job script

‒ OpenMP programs run as single task (and single node)
‒ number of cores set by --cpus-per-task=<n> or -c <n> (default is 1)
‒ environment variable $SLURM_CPUS_PER_TASK is available,

but only if --cpus-per-task has been set
‒ srun may used to create a separate job step (better accounting)

#!/bin/bash

#SBATCH --partition carl.p
#SBATCH --ntasks 1 # single task with
#SBATCH --cpus-per-task 8 # cores to use

execute code
export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK
srun ./OMP_HelloWorld

Introduction to HPC - Session 0511

OpenMP Compiler Directives

• OpenMP uses compiler directives of the form

#pragma omp <directive> [clause [clause] …]

‒ in C/C++ this applies to the following structured block,
in Fortran an END-directive must be used

‒ different <directive> are available to control parallel program flow
‒ optional one or more clauses for additional settings

Introduction to HPC - Session 0512

OpenMP Programming

• include library

• available library routines
‒ setting number of threads omp_set_num_threads()
‒ getting number of threads omp_get_num_threads()
‒ getting thread ID omp_get_thread_num()
‒ wall clock time omp_get_wtime()
‒ …

#include <omp.h>

Introduction to HPC - Session 0513

OMP_HelloWorld2
• what will happen here?

int main () {

 int threadID, nthreads;
 #pragma omp parallel
 {
 threadID = omp_get_thread_num();
 cout << "Hello World from thread " << threadID << endl;

 #pragma omp barrier // wait for all threads

 if (threadID==0) { // have one thread print extra info
 nthreads = omp_get_num_threads();
 cout << "Using " << nthreads << " threads!" << endl;
 }
 } /* end omp parallel */
}

Introduction to HPC - Session 0514

You guessed it

Introduction to HPC - Session 0515

Shared and Private Variables

• in OMP_HelloWorld2 the variable threadID is shared among all
threads

• this results in a so-called race condition
‒ every thread is writing to the same memory address
‒ final value unpredictable

• one solution is to make threadID private

#pragma omp parallel private(threadID)

Introduction to HPC - Session 0516

Clauses for Parallel Regions

• private(variable list)
‒ each thread has its own copy of the variables in the list
‒ variables are not initialized (firstprivate does that)
‒ no change to variable outside of parallel region (lastprivate does that)

• shared(variable list)
‒ all threads shared the same variable
‒ typically initialized outside of the parallel region
‒ changes persist outside the parallel region
‒ be careful to avoid race conditions

	Introduction to High-Performance Computing
	Parallel Programming Models
	What is OpenMP and why use it?
	OpenMP Programming Model
	OpenMP Standard
	OpenMP Execution Model
	OpenMP Parallel Region Construct
	Example: OMP_HelloWorld
	Compiling and Running OpenMP Programs
	Running OpenMP Programs with SLURM
	OpenMP Compiler Directives
	OpenMP Programming
	OMP_HelloWorld2
	Folie 14
	Shared and Private Variables
	Clauses for Parallel Regions

