
Introduction to
High-Performance Computing

Session 04

Introduction to Parallel Computing

Why Parallel Computing?

1,00E+02

1,00E+03

1,00E+04

1,00E+05

1,00E+06

1,00E+07

1,00E+08

Jan 1993 Jul 1998 Jan 2004 Jul 2009 Dec 2014 Jun 2020

Number of Cores in the fastest Supercomputers

number of cores is doubling every 21 month

Rank 1 in Top500 June 2021:

Fugaku with 7,630,848 Cores

Rank 1 in Top500 June 2021:

Fugaku with 7,630,848 Cores

Introduction to HPC - Session 042

compute node

node interconnectnode interconnect

compute node

Parallel Hardware Architectures

• most modern HPC systems (e.g. CARL and EDDY) are clusters of

SMP/ccNUMA nodes

socket interconnectsocket interconnect

CPU

memorymemory

CPU

memorymemory

socket interconnectsocket interconnect

CPU

memorymemory

CPU

memorymemory

compute node

socket interconnectsocket interconnect

CPU

memorymemory

CPU

memorymemory

Introduction to HPC - Session 043

Parallelization Strategies

• two major resources for computations

‒ processor

‒ memory

• parallelization means

‒ distributing the work

‒ distributing the data (on distributed memory machines)

‒ synchronization of work

‒ communication of data (on distributed memory machines)

• parallel programming models provide the methods to achieve the

above goals

Introduction to HPC - Session 044

Distributing Work and Data

• Work decomposition

‒ based on loop decomposition

• Data decomposition

‒ all the work for a local chunk of

the data is done by the local

processor

• Domain decomposition

‒ work and data are distributed

according to a higher model, e.g.

reality

w
o

rk
lo

o
p parallelization

processors

1 2 3 4

d
a

ta
a

rr
a

y 1 2 3 4

f(A)

f(A) f(A) f(A) f(A)

Introduction to HPC - Session 045

Parallel Programming Models

• two dominating programming models:

‒ OpenMP: uses directives to define work decomposition

‒ MPI: standardized message-passing interface

• other programming models

‒ HPF (high-performance Fortran)

‒ PGAS (Partitioned Global Address Space), e.g. Co-Array Fortran UPC

(Unified Parallel C)

• programming models for compute devices

‒ CUDA

‒ OpenCL

‒ OpenACC

‒ …

Introduction to HPC - Session 046

Parallel Programming Models

• two dominating programming models:

‒ OpenMP: uses directives to define work decomposition

‒ MPI: standardized message-passing interface

• other programming models

‒ HPF (high-performance Fortran)

‒ PGAS (Partitioned Global Address Space), e.g. Co-Array Fortran UPC

(Unified Parallel C)

• programming models for compute devices

‒ CUDA

‒ OpenCL

‒ OpenACC

‒ …

Introduction to HPC - Session 047

History of MPI

• MPI is a standard with the prime goals

‒ to provide a message-passing interface

‒ to provide source-code portability

‒ to allow efficient implementations

• MPI exists for more than 25 years

‒ MPI-1.0 was released in June, 1994

‒ MPI-2.0 was released in July, 1997 and provided additional functionality

‒ MPI-3.0 (current standard MPI-3.1) was released in October, 2012 and was

developed for better platform and application support (in particular clusters

of SMP nodes)

http://mpi-forum.org/docs/

Introduction to HPC - Session 048

http://mpi-forum.org/docs/

A Message-Passing Interface

• sequential program vs. message-passing program

• message-passing programming paradigm:

‒ each processor runs a (sub)program, typically the same (SPMD)

‒ variables of subprograms have the same name but different (distributed) data

‒ communication by special library routines ➔ message passing

program

data memory

processor program

data

program

data

program

data

program

data
distributed

memory

parallel

processors

communication networkcommunication network

Introduction to HPC - Session 049

Message Passing

• messages are passed through the communication network

• messages require the

following information:

‒ sending and receiving

process

‒ data location

‒ data type

‒ data size

• in order to use the message-passing interface the program must be

‒ connected to the MPI library (at compile time)

‒ started with the MPI startup tool (mpirun or mpiexec)

‒ at runtime MPI is initialized with special library calls (MPI_Init())

program

data
distributed

memory

parallel

processors

communication networkcommunication network

Introduction to HPC - Session 0410

Example MPI Program in C/C++

#include <mpi.h>

using namespace std;

int main(int argc, char *argv[]) {

// initialization of MPI

MPI_Init(&argc, &argv);

// do some computation in parallel

int partial_result = some_computation();

int global_result = 0;

// collect the result by an all-to-one communication

MPI_Reduce(&partial_result, &global_result, 1,

MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);

// finalization of MPI

MPI_Finalize();

}

other examples for MPI programs

are shown in the videos

other examples for MPI programs

are shown in the videos

Introduction to HPC - Session 0411

Parallel Programming Models

• two dominating programming models:

‒ OpenMP: uses directives to define work decomposition

‒ MPI: standardized message-passing interface

• other programming models

‒ HPF (high-performance Fortran)

‒ PGAS (Partitioned Global Address Space), e.g. Co-Array Fortran UPC

(Unified Parallel C)

• programming models for compute devices

‒ CUDA

‒ OpenCL

‒ OpenACC

‒ …

Introduction to HPC - Session 0412

GPUs in HPC

• GPUs appeared in the early 2000s
in HPC

‒ good cost/performance ratio due to
mass production for gaming

• initially consumer-grade graphic
cards were used

‒ limited general-purpose computing

‒ algorithms had to mimic graphics
display

• today special GPUs are used in
HPC

‒ no display port

‒ run real algorithms
Tesla P100 (2016)

Geforce 8800 GTX (2006)

Introduction to HPC - Session 0413

Design of GPUs

• Example NVIDIA P100

• organized in

Graphics (GPCs)

and Texture (TPCs)

Processing Clusters

• 60 streaming multi-

processor (SM)
➢ basic compute resource

➢ each SM has 64 CUDA

cores

• 4 MB L2 Cache
➢ accessed by 8 memory

controllers

Introduction to HPC - Session 0414

Design of GPUs (GP100)

• the SM is divided into

two blocks

‒ each has 32 SP core

and 16 DP cores

‒ 8 Special Function

Units (SFUs)

• 64kB of shared

memory

Introduction to HPC - Session 0415

Design of GPUs (GA100)

• the SM is divided into 4 blocks,

each block has

‒ 16 FP32 and 8 FP64 units

‒ 16 INT32 units

‒ 1 Tensor core

‒ 4 SFUs

• 192kB of shared L1-cache

https://developer.nvidia.com/blog/nvidia-

ampere-architecture-in-depth/

Introduction to HPC - Session 0416

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

CPU Core vs. CUDA Core vs. Tensor Core

• CUDA cores have no control logic

‒ control logic is in SM only

‒ all cores must perform same instruction

‒ SM is a SIMD unit

• CPU cores perform tasks independently

‒ control logic is included in the core

‒ designed for serial computation

‒ modern CPU cores include small SIMD units (e.g. AVX)

• Tensor cores operate on 4x4 matrices

‒ perform the operation 𝐷 = 𝐴 × 𝐵 + 𝐶

Introduction to HPC - Session 0417

Hybrid Parallel Programming Models

• parallel programming models can be combined in a hybrid

approach for better performance or special needs

• common approach is MPI + OpenMP to reduce the number of MPI

process (communication overhead)

‒ example: use MPI to start a parallel program on multiple dual-socket nodes,

one MPI process per socket and OpenMP to utilize the available cores per

socket

• MPI + CUDA/OpenACC to use GPUs across multiple nodes or

OpenMP + CUDA for multiple GPUs in a single node

‒ NVLink (or similar) may allow you to address multiple GPUs within a node as

a single device

Introduction to HPC - Session 0418

1916.03.2021 Introduction HPC - Session 04

Slurm Options
for Parallel Computing

Introduction to HPC - Session 0419

• a Slurm job can request to run multiple tasks

– the option --ntasks or a combination of --nodes and

--tasks-per-node can be used to set the number of tasks

– tasks can be executed using with srun (but this is not a typical use case)

– a process in a parallel MPI programs corresponds to a task and mpirun is

aware of the requested number of tasks

• a Slurm job can also request multiple (logical) cores per task

– the option --cpus-per-task can be used for that

– a Slurm cpu can be a physical core or a logical (hyper)thread

2016.03.2021 Introduction HPC - Session 04

Slurm Options for Parallel Computing

Introduction to HPC - Session 0420

• if you have a parallel application and you have requested multiple

tasks and/or CPUs you can use corresponding variables in your job

script

– SLURM_JOB_NODELIST: List of nodes allocated to

the job

– SLURM_JOB_NUM_NODES: Total number of nodes in the

job's resource allocation

– SLURM_NTASKS: Number of tasks requested

– SLURM_NTASKS_PER_NODE: Number of tasks requested

per node

– SLURM_CPUS_PER_TASK: Number of CPUs requested

per task

2116.03.2021 Introduction HPC - Session 04

Variables in Job Scripts

Introduction to HPC - Session 0421

Slurm Options for GPU Computing

• to use the GPU nodes your job script should include

– selection of an appropriate partition

#SBATCH --partition mpcg.p # or mpcb.p or cfdg.p

– request for one or two GPUs (Generic RESource in Slurm)

#SBATCH –gres=gpu:1 # 1 or 2 gpus

– you also need to load the CUDA Toolkit

module load CUDA # add version if needed

– note that the driver (and as a result libcuda.so) is only available on the GPU

nodes

Introduction to HPC - Session 0422

