
Scientific Computing
V. School of Mathematics and Science

Introduction to 

High-Performance Computing

Session 08

Matlab Distributed Compute Server

(MDCS)



Scientific Computing
V. School of Mathematics and Science

Questions

• Are you already using Matlab?

a) Yes, on my own/work computer

b) Yes, and I am already using the HPC cluster

c) No, not yet
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Questions

• Did you install Matlab on the computer you are using

now?

a) Yes, Matlab R2019b

b) Yes, Matlab R2018b

c) Yes, another version

d) No
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Introduction to MDCS
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What is MDCS

501.04.2020 Introduction to HPC - Session 08

Matlab on your desktop computer:

• you are limited by the compute 

power of your local machine

• memory

• CPU speed

• you can only run one job at a time

• your machine may become 

unusable while your Matlab job is 

running
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What is MDCS
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Parallel Computing with Matlab

701.04.2020 Introduction to HPC - Session 08

• easily experiment with 

explicit parallelism on 

multicore machines

• rapidly develop parallel 

applications on local 

computer

• take full advantage of 

desktop power, incl. 

GPUs

• separate compute 

cluster not required

(taken from MathWorks marketing)
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Parallel Computing with Matlab
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(taken from MathWorks marketing)
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What is MDCS
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• MDCS allows you to off-load Matlab programs to a 

compute server

• simplified workflow

– you can develop and test your application locally before 

submitting jobs, also in parallel

– results are automatically returned to your local machine for post-

processing

• the Parallel Computing Toolbox provides utilities for 

parallelization

– task-parallel

– data-parallel
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Why to use MDCS on the Cluster?
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• easy to use
– work on your local computer within known Matlab environment

– files (scripts, data, results) are automatically transfered

– no need to learn about job scripts (but it helps to know a little)

• parallelization across multiple nodes
– make use of distributed memory

– use parallel threads (CPU cores) for each worker
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MDCS Licenses

• MDCS on the HPC cluster includes 272 worker licenses

– Matlab used to be limited to 200 licenses, now Campus license

– for fair sharing not more than 36 MDCS licenses should be used 

per job and at most two jobs per user (hard limit)

– check license use on the cluster:
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Parallel Computing with Matlab
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Parallel Computing with Matlab
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Three levels of Integration:
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Parallel Computing Support in Toolboxes
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• Optimization Toolbox

• Global Optimization Toolbox

• Statistics Toolbox

• Simulink Design Optimization

• Bioinformatics Toolbox

• Communications Toolbox

• Model-Based Calibration Toolbox

• ... and more

see 
http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.html

http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.html
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Configuration of MDCS
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Using MDCS on CARL/EDDY
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• before you can use MDCS a few preparations are needed (only 

needed to be done once)

– Matlab needs to be installed (see local web page) on your local 

machine, version must match to version on cluster (e.g. R2016b)

– your local machine must be able to login to CARL/EDDY via ssh

• Linux/Mac have ssh per default, for Windows you can use PuTTY

• if you are not in the university network you also need to connect to a VPN 

(see HPC-Wiki for details)

– a number of files (from a zipped archive from the HPC-Wiki) have to be 

copied to your local Matlab directory (depending on the setup of your 

local machine, your system admin has to help you)

– a parallel configuration has to be setup with Matlab

see https://wiki.hpcuser.uni-oldenburg.de/index.php?title=Configuration_MDCS_2016

https://wiki.hpcuser.uni-oldenburg.de/index.php?title=Configuration_MDCS_2016


Scientific Computing
V. School of Mathematics and Science

Configuration of MDCS Cluster Profile

• the remote system is described in the cluster profile

JobStorageLocation: local directory for job data, e.g.

C:\Users\name\Documents\MATLAB\2019b\JobData

RemoteJobStorageLocation: local directory for job data, e.g. on $WORK
/gss/work/abcd1234/MATLAB/2019b/JobData

– directories are sync‘d at job submission and after the job has completed

– existing workspace is copied at job submission (can affect submission time)

– workspace of main process is copied back (can affect job load time), use e.g. 

clear bigvar1 bigvar2; (and save in separate files if needed) 
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Configuration of MDCS Cluster Profile

• the remote system is described in the cluster profile

JobStorageLocation: local directory for job data, e.g.

C:\Users\name\Documents\MATLAB\2019b\JobData

RemoteJobStorageLocation: local directory for job data, e.g. on $WORK
/gss/work/abcd1234/MATLAB/2019b/JobData

NumWorkers: set to 36 for fair sharing

NumThreads: set to 1 (default), can be changed when useful

– change with e.g.: sched.NumThreads=4;

– maximum number of threads is the number of CPU cores in a node

– total number of cores allocated is (worker+1)*NumThreads

– benchmark your code to determine a good number of threads per worker.
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Configuration of MDCS Cluster Profile

• the remote system is described in the cluster profile

JobStorageLocation: local directory for job data, e.g.

C:\Users\name\Documents\MATLAB\2019b\JobData

RemoteJobStorageLocation: remote directory for job data, e.g. on $WORK
/gss/work/abcd1234/MATLAB/2019b/JobData

NumWorkers: set to 36 for fair sharing

NumThreads: set to 1 (default), can be changed when useful

AdditionalProperties: set at least ClusterHost and

RemoteJobStorageLocation (see above),

addtional options for password-free login are

described in HPC wiki
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Validation of MDCS Cluster Profile
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recommended number of workers 4

last test fails but that is not a 

problem (can be skipped)
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Using MDCS on CARL/EDDY
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• once you have completed the setup you can submit jobs 

to the cluster

– example parameter sweep for 2nd-order ODE

(taken from the HPC-Wiki)

– dampened oscillator

– simulate with different values for b and k

– record peak value for each run

https://wiki.hpcuser.uni-oldenburg.de/index.php?title=Basic_Examples_MDCS_2016
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2nd-order ODE for example
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function dy = odesystem(t, y, m, b, k)

% 2nd-order ODE

%

%   m*X'' + b*X' + k*X = 0

%

% --> system of 1st-order ODEs

%

%   y  = X'

%   y' = -1/m * (k*y + b*y')

% Copyright 2009 The MathWorks, Inc.

dy(1) = y(2);

dy(2) = -1/m * (k * y(1) + b * y(2));

dy = dy(:); % convert to column vector

odesystem.m
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Parameter Sweep: serial Matlab code
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%% Initialize Problem
m     =         5;  % mass
bVals = 0.1:.1:15;  % damping values (step .1)
kVals = 1.5:.1:15;  % stiffness values (step .1) damping
[kGrid, bGrid] = meshgrid(bVals, kVals);
peakVals = nan(size(kGrid));

%% Parameter Sweep
tic;

for idx = 1:numel(kGrid)
% Solve ODE
[T,Y] = ode45(@(t,y) odesystem(t, y, m, bGrid(idx), kGrid(idx)), ...
[0, 25], ...  % simulate for 25 seconds
[0, 1]);      % initial conditions

% Determine peak value
peakVals(idx) = max(Y(:,1));

end

t1 = toc;

paramSweep_batch.m



Scientific Computing
V. School of Mathematics and Science

2401.04.2020 Introduction to HPC - Session 08

%% Initialize Problem
m     =         5;  % mass
bVals = 0.1:.1:15;  % damping values (step .1)
kVals = 1.5:.1:15;  % stiffness values (step .1) damping
[kGrid, bGrid] = meshgrid(bVals, kVals);
peakVals = nan(size(kGrid));

%% Parameter Sweep
tic;

parfor idx = 1:numel(kGrid)
% Solve ODE
[T,Y] = ode45(@(t,y) odesystem(t, y, m, bGrid(idx), kGrid(idx)), ...
[0, 25], ...  % simulate for 25 seconds
[0, 1]);      % initial conditions

% Determine peak value
peakVals(idx) = max(Y(:,1));

end

t1 = toc;

paramSweep_batch.m

Parameter Sweep: parallel Matlab code
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Using MDCS on CARL/EDDY

• submitting jobs to the cluster

– first command creates a handle for the cluster using the available 

configuration

– second command creates a job and sends it to the cluster

• Matlab script is executed on the cluster

• requests a pool of workers (number of processes is +1 for master)

• uses default resources unless modified

• files can be attached but Matlab also automatically attaches needed 

files (if it can find them and if not disabled) 
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sched = parcluster('CARL'); 

job = batch(sched, 'paramSweep_batch', 'Pool', 7, ...

'AttachedFiles', {'odesystem.m'});
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Using MDCS on CARL/EDDY
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• changing resource allocation

– changes maximum runtime and memory per worker

– remove previous setting to get default

– older Matlab versions use a different format (see HPC wiki)

• path-dependency as alternative to attaching files

– use addpath within script (.m-files)

– use AdditionalPath property of scheduler object

– use absolute path names

– copy files to the cluster before submitting job

sched.AdditionalProperties.runtime=‘0:30:00’;

sched.AdditionalProperties.memory=‘4G’;

remove(sched.AdditionalProperties, 'memory’);
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Using MDCS on CARL/EDDY
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• recovering jobs

– it is possible to terminate the local Matlab session while jobs are

running (or waiting on the cluster)

– to reconnect

sched = parcluster(‚CARL');

sched.Jobs % to list available jobs

job = sched.Jobs(1)   % to get job information

jobData = load(job);



Scientific Computing
V. School of Mathematics and Science

Monitoring Jobs and Error Tracking
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• Matlab Job Monitor for basic information

• use squeue and sacct for additional information from

SLURM

• job handle can be used to get information about errors

• Matlab diary for additional log output

• files in the job directory
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MDCS with parfor
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Mechanics of parfor Loops
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Converting for to parfor
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• requirements for parfor loops

– task independent

– order independent

• constraints on the loop body

– cannot introduce variables (e.g. eval, load, global)

– cannot contain break or return statements

– cannot contain another parfor loop

https://de.mathworks.com/help/parallel-computing/troubleshoot-variables-in-parfor-loops.html

https://de.mathworks.com/help/parallel-computing/troubleshoot-variables-in-parfor-loops.html
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Variable Classification

3201.04.2020 Introduction to HPC - Session 08

• all variables referenced at the top level of the parfor

must be resolved and classified

Classification Description

loop serves as a loop index for arrays

sliced an array whose segments are operated on by different 

iterations

broadcast a variable defined before the loop whose value is used 

inside the loop, but never assigned in the loop

reduction accumulates a value across iterations of the loop, 

regardless of iteration order

temporary variable created inside the loop but unlike sliced or 

reduction variables, not available outside the loop
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Variable Classification Example
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• matrix-vector multiplication

N=2048; % N is broadcast

b=rand(N,1); % b is broadcast

A=rand(N,N); % A is slices input

parfor i=1:N % i is loop index

c(i)=A(i,:)*b(:); % c is sliced output

end
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parfor Examples
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• this example cannot be parallized in parfor

j=zeros(100);    %pre-allocate vector

j(1)=5;

for i=2:100;

j(i)=j(i-1)+5; 

end;

– order of iterations is important
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parfor Examples
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• functions with multiple output may confuse Matlab

for i=1:10

[x{i}(:,1), x{i}(:,2)]=functionName(z,w);

end;

– use this instead

for i=1:10

[x1, x2]=functionName(z,w);

x{i}=[x1 x2];

end;
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parfor Examples

3601.04.2020 Introduction to HPC - Session 08

• be careful not to broadcast unnecessary data

https://undocumentedmatlab.com/blog/a-few-parfor-tips

https://undocumentedmatlab.com/blog/a-few-parfor-tips
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parfor Considerations
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• parfor often only involves minimal code changes

• if a for loop cannot be converted to parfor, consider 

wrapping a subset of loop body in a function

– e.g. load works not in parfor, however it does work in function 

that is called inside a parfor loop

• more information

http://blogs.mathworks.com/loren/2009/10/02/using-

parfor-loops-getting-up-and-running/

• there is a Code-Analyzer to diagnose parfor issues

http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
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MDCS with spmd

(single program multiple data)
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SPMD
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SPMD
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• when a SPMD block ends the workspace is saved, the

worker is paused

• data is preserved from one block to the next

• does not apply to SPMD block in a function after the

function is completed (as regular variables local to a 

function)



Scientific Computing
V. School of Mathematics and Science

SPMD Example
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• read image

• add noise to image

• distribute data

• parallel working on 

image data (filter)

• on master process put

together filtered image
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Distributed Data

• Matlab provides different functions to manage distributed 

data

– with distributed(X) you can distribute data among workers

– with distributed.METHOD you can create data distributed among 

workers

– workers can create codistributed data structures which become 

distributed data outside of the SPMD block

– a datastore can be distributed to read manage large data files 

with multiple workers

– see ‘help distributed’ for more information
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Distributed Data
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distributing data

from client

vs.

codistributed data

created on workers
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Example: Image Contrast
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• a Matlab script that uses a simple 

function to change the contrast of

an gray-scale image
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Example: Image Contrast

• parallelize with SPMD

• algorithm produces artifacts when
parallelized on multiple workers

– problem is that increasing contrast requires
information from neighbouring pixel

– distributing the data adds additional boundaries
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labSendReceive
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• solution is communication between workers

– each worker has to sent one boundary left and one right

– each worker has to receive one boundary from left and one from

right

– extra columns are added before filter is applied, and need to be

removed again afterwards

1 2 n
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labSendReceive

• the function labSendReceive simultaneously sends and 

receives data
received = labSendReceive(labTo, labFrom, data)

– sends data to labTo

– receives data from labFrom and stores it in received

4701.04.2020 Introduction to HPC - Session 08

Lab: from

data

received
data from

labFrom

receiving

sending received

at labTo



Scientific Computing
V. School of Mathematics and Science

labSendReceive
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Exercise: Heat Example in Matlab

% 2d-heat example in Matlab

% initial setup

NXPROB = 20;       % number of grid rows

NYPROB = 20;       % number of grid columns

STEPS  = 100;      % number of iterations

TIME   = 0;        % initial and current time

uvals = zeros(2, NXPROB, NYPROB);  % allocate grid

uvals = inidat(uvals);             % initialize grid

plotdat(uvals, 1, TIME);            % make plot

it = 1;

for TIME=1:STEPS                    % time iteration

uvals = updateu(uvals, it);     % update thermal energy

it = 3 - it;

end

plotdat(uvals, 1, TIME);            % make plot
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