
Scientific Computing
V. School of Mathematics and Science

Introduction to

High-Performance Computing

Session 08

Matlab Distributed Compute Server

(MDCS)

Scientific Computing
V. School of Mathematics and Science

Questions

• Are you already using Matlab?

a) Yes, on my own/work computer

b) Yes, and I am already using the HPC cluster

c) No, not yet

201.04.2020 Introduction to HPC - Session 08

Scientific Computing
V. School of Mathematics and Science

Questions

• Did you install Matlab on the computer you are using

now?

a) Yes, Matlab R2019b

b) Yes, Matlab R2018b

c) Yes, another version

d) No

301.04.2020 Introduction to HPC - Session 08

Scientific Computing
V. School of Mathematics and Science

Introduction to MDCS

401.04.2020 Introduction to HPC - Session 08

Scientific Computing
V. School of Mathematics and Science

What is MDCS

501.04.2020 Introduction to HPC - Session 08

Matlab on your desktop computer:

• you are limited by the compute

power of your local machine

• memory

• CPU speed

• you can only run one job at a time

• your machine may become

unusable while your Matlab job is

running

Scientific Computing
V. School of Mathematics and Science

What is MDCS

601.04.2020 Introduction to HPC - Session 08

Scientific Computing
V. School of Mathematics and Science

Parallel Computing with Matlab

701.04.2020 Introduction to HPC - Session 08

• easily experiment with

explicit parallelism on

multicore machines

• rapidly develop parallel

applications on local

computer

• take full advantage of

desktop power, incl.

GPUs

• separate compute

cluster not required

(taken from MathWorks marketing)

Scientific Computing
V. School of Mathematics and Science

Parallel Computing with Matlab

801.04.2020 Introduction to HPC - Session 08

(taken from MathWorks marketing)

Scientific Computing
V. School of Mathematics and Science

What is MDCS

901.04.2020 Introduction to HPC - Session 08

• MDCS allows you to off-load Matlab programs to a

compute server

• simplified workflow

– you can develop and test your application locally before

submitting jobs, also in parallel

– results are automatically returned to your local machine for post-

processing

• the Parallel Computing Toolbox provides utilities for

parallelization

– task-parallel

– data-parallel

Scientific Computing
V. School of Mathematics and Science

Why to use MDCS on the Cluster?

1015.07.2020 Introduction HPC - Lecture 12

• easy to use
– work on your local computer within known Matlab environment

– files (scripts, data, results) are automatically transfered

– no need to learn about job scripts (but it helps to know a little)

• parallelization across multiple nodes
– make use of distributed memory

– use parallel threads (CPU cores) for each worker

Scientific Computing
V. School of Mathematics and Science

MDCS Licenses

• MDCS on the HPC cluster includes 272 worker licenses

– Matlab used to be limited to 200 licenses, now Campus license

– for fair sharing not more than 36 MDCS licenses should be used

per job and at most two jobs per user (hard limit)

– check license use on the cluster:

1115.07.2020 Introduction HPC - Lecture 12

Scientific Computing
V. School of Mathematics and Science

Parallel Computing with Matlab

1201.04.2020 Introduction to HPC - Session 08

Scientific Computing
V. School of Mathematics and Science

Parallel Computing with Matlab

1301.04.2020 Introduction to HPC - Session 08

Three levels of Integration:

Scientific Computing
V. School of Mathematics and Science

Parallel Computing Support in Toolboxes

1401.04.2020 Introduction to HPC - Session 08

• Optimization Toolbox

• Global Optimization Toolbox

• Statistics Toolbox

• Simulink Design Optimization

• Bioinformatics Toolbox

• Communications Toolbox

• Model-Based Calibration Toolbox

• ... and more

see
http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.html

http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.html

Scientific Computing
V. School of Mathematics and Science

Configuration of MDCS

1501.04.2020 Introduction to HPC - Session 08

Scientific Computing
V. School of Mathematics and Science

Using MDCS on CARL/EDDY

1601.04.2020 Introduction to HPC - Session 08

• before you can use MDCS a few preparations are needed (only

needed to be done once)

– Matlab needs to be installed (see local web page) on your local

machine, version must match to version on cluster (e.g. R2016b)

– your local machine must be able to login to CARL/EDDY via ssh

• Linux/Mac have ssh per default, for Windows you can use PuTTY

• if you are not in the university network you also need to connect to a VPN

(see HPC-Wiki for details)

– a number of files (from a zipped archive from the HPC-Wiki) have to be

copied to your local Matlab directory (depending on the setup of your

local machine, your system admin has to help you)

– a parallel configuration has to be setup with Matlab

see https://wiki.hpcuser.uni-oldenburg.de/index.php?title=Configuration_MDCS_2016

https://wiki.hpcuser.uni-oldenburg.de/index.php?title=Configuration_MDCS_2016

Scientific Computing
V. School of Mathematics and Science

Configuration of MDCS Cluster Profile

• the remote system is described in the cluster profile

JobStorageLocation: local directory for job data, e.g.

C:\Users\name\Documents\MATLAB\2019b\JobData

RemoteJobStorageLocation: local directory for job data, e.g. on $WORK
/gss/work/abcd1234/MATLAB/2019b/JobData

– directories are sync‘d at job submission and after the job has completed

– existing workspace is copied at job submission (can affect submission time)

– workspace of main process is copied back (can affect job load time), use e.g.

clear bigvar1 bigvar2; (and save in separate files if needed)

1715.07.2020 Introduction HPC - Lecture 12

Scientific Computing
V. School of Mathematics and Science

Configuration of MDCS Cluster Profile

• the remote system is described in the cluster profile

JobStorageLocation: local directory for job data, e.g.

C:\Users\name\Documents\MATLAB\2019b\JobData

RemoteJobStorageLocation: local directory for job data, e.g. on $WORK
/gss/work/abcd1234/MATLAB/2019b/JobData

NumWorkers: set to 36 for fair sharing

NumThreads: set to 1 (default), can be changed when useful

– change with e.g.: sched.NumThreads=4;

– maximum number of threads is the number of CPU cores in a node

– total number of cores allocated is (worker+1)*NumThreads

– benchmark your code to determine a good number of threads per worker.

1815.07.2020 Introduction HPC - Lecture 12

Scientific Computing
V. School of Mathematics and Science

Configuration of MDCS Cluster Profile

• the remote system is described in the cluster profile

JobStorageLocation: local directory for job data, e.g.

C:\Users\name\Documents\MATLAB\2019b\JobData

RemoteJobStorageLocation: remote directory for job data, e.g. on $WORK
/gss/work/abcd1234/MATLAB/2019b/JobData

NumWorkers: set to 36 for fair sharing

NumThreads: set to 1 (default), can be changed when useful

AdditionalProperties: set at least ClusterHost and

RemoteJobStorageLocation (see above),

addtional options for password-free login are

described in HPC wiki

1915.07.2020 Introduction HPC - Lecture 12

Scientific Computing
V. School of Mathematics and Science

Validation of MDCS Cluster Profile

2015.07.2020 Introduction HPC - Lecture 12

recommended number of workers 4

last test fails but that is not a

problem (can be skipped)

Scientific Computing
V. School of Mathematics and Science

Using MDCS on CARL/EDDY

2101.04.2020 Introduction to HPC - Session 08

• once you have completed the setup you can submit jobs

to the cluster

– example parameter sweep for 2nd-order ODE

(taken from the HPC-Wiki)

– dampened oscillator

– simulate with different values for b and k

– record peak value for each run

https://wiki.hpcuser.uni-oldenburg.de/index.php?title=Basic_Examples_MDCS_2016

Scientific Computing
V. School of Mathematics and Science

2nd-order ODE for example

2201.04.2020 Introduction to HPC - Session 08

function dy = odesystem(t, y, m, b, k)

% 2nd-order ODE

%

% m*X'' + b*X' + k*X = 0

%

% --> system of 1st-order ODEs

%

% y = X'

% y' = -1/m * (k*y + b*y')

% Copyright 2009 The MathWorks, Inc.

dy(1) = y(2);

dy(2) = -1/m * (k * y(1) + b * y(2));

dy = dy(:); % convert to column vector

odesystem.m

Scientific Computing
V. School of Mathematics and Science

Parameter Sweep: serial Matlab code

2301.04.2020 Introduction to HPC - Session 08

%% Initialize Problem
m = 5; % mass
bVals = 0.1:.1:15; % damping values (step .1)
kVals = 1.5:.1:15; % stiffness values (step .1) damping
[kGrid, bGrid] = meshgrid(bVals, kVals);
peakVals = nan(size(kGrid));

%% Parameter Sweep
tic;

for idx = 1:numel(kGrid)
% Solve ODE
[T,Y] = ode45(@(t,y) odesystem(t, y, m, bGrid(idx), kGrid(idx)), ...
[0, 25], ... % simulate for 25 seconds
[0, 1]); % initial conditions

% Determine peak value
peakVals(idx) = max(Y(:,1));

end

t1 = toc;

paramSweep_batch.m

Scientific Computing
V. School of Mathematics and Science

2401.04.2020 Introduction to HPC - Session 08

%% Initialize Problem
m = 5; % mass
bVals = 0.1:.1:15; % damping values (step .1)
kVals = 1.5:.1:15; % stiffness values (step .1) damping
[kGrid, bGrid] = meshgrid(bVals, kVals);
peakVals = nan(size(kGrid));

%% Parameter Sweep
tic;

parfor idx = 1:numel(kGrid)
% Solve ODE
[T,Y] = ode45(@(t,y) odesystem(t, y, m, bGrid(idx), kGrid(idx)), ...
[0, 25], ... % simulate for 25 seconds
[0, 1]); % initial conditions

% Determine peak value
peakVals(idx) = max(Y(:,1));

end

t1 = toc;

paramSweep_batch.m

Parameter Sweep: parallel Matlab code

Scientific Computing
V. School of Mathematics and Science

Using MDCS on CARL/EDDY

• submitting jobs to the cluster

– first command creates a handle for the cluster using the available

configuration

– second command creates a job and sends it to the cluster

• Matlab script is executed on the cluster

• requests a pool of workers (number of processes is +1 for master)

• uses default resources unless modified

• files can be attached but Matlab also automatically attaches needed

files (if it can find them and if not disabled)

2501.04.2020 Introduction to HPC - Session 08

sched = parcluster('CARL');

job = batch(sched, 'paramSweep_batch', 'Pool', 7, ...

'AttachedFiles', {'odesystem.m'});

Scientific Computing
V. School of Mathematics and Science

Using MDCS on CARL/EDDY

2615.07.2020 Introduction HPC - Lecture 12

• changing resource allocation

– changes maximum runtime and memory per worker

– remove previous setting to get default

– older Matlab versions use a different format (see HPC wiki)

• path-dependency as alternative to attaching files

– use addpath within script (.m-files)

– use AdditionalPath property of scheduler object

– use absolute path names

– copy files to the cluster before submitting job

sched.AdditionalProperties.runtime=‘0:30:00’;

sched.AdditionalProperties.memory=‘4G’;

remove(sched.AdditionalProperties, 'memory’);

Scientific Computing
V. School of Mathematics and Science

Using MDCS on CARL/EDDY

2701.04.2020 Introduction to HPC - Session 08

• recovering jobs

– it is possible to terminate the local Matlab session while jobs are

running (or waiting on the cluster)

– to reconnect

sched = parcluster(‚CARL');

sched.Jobs % to list available jobs

job = sched.Jobs(1) % to get job information

jobData = load(job);

Scientific Computing
V. School of Mathematics and Science

Monitoring Jobs and Error Tracking

2801.04.2020 Introduction to HPC - Session 08

• Matlab Job Monitor for basic information

• use squeue and sacct for additional information from

SLURM

• job handle can be used to get information about errors

• Matlab diary for additional log output

• files in the job directory

Scientific Computing
V. School of Mathematics and Science

MDCS with parfor

2901.04.2020 Introduction to HPC - Session 08

Scientific Computing
V. School of Mathematics and Science

Mechanics of parfor Loops

3001.04.2020 Introduction to HPC - Session 08

Scientific Computing
V. School of Mathematics and Science

Converting for to parfor

3101.04.2020 Introduction to HPC - Session 08

• requirements for parfor loops

– task independent

– order independent

• constraints on the loop body

– cannot introduce variables (e.g. eval, load, global)

– cannot contain break or return statements

– cannot contain another parfor loop

https://de.mathworks.com/help/parallel-computing/troubleshoot-variables-in-parfor-loops.html

https://de.mathworks.com/help/parallel-computing/troubleshoot-variables-in-parfor-loops.html

Scientific Computing
V. School of Mathematics and Science

Variable Classification

3201.04.2020 Introduction to HPC - Session 08

• all variables referenced at the top level of the parfor

must be resolved and classified

Classification Description

loop serves as a loop index for arrays

sliced an array whose segments are operated on by different

iterations

broadcast a variable defined before the loop whose value is used

inside the loop, but never assigned in the loop

reduction accumulates a value across iterations of the loop,

regardless of iteration order

temporary variable created inside the loop but unlike sliced or

reduction variables, not available outside the loop

Scientific Computing
V. School of Mathematics and Science

Variable Classification Example

3301.04.2020 Introduction to HPC - Session 08

• matrix-vector multiplication

N=2048; % N is broadcast

b=rand(N,1); % b is broadcast

A=rand(N,N); % A is slices input

parfor i=1:N % i is loop index

c(i)=A(i,:)*b(:); % c is sliced output

end

Scientific Computing
V. School of Mathematics and Science

parfor Examples

3401.04.2020 Introduction to HPC - Session 08

• this example cannot be parallized in parfor

j=zeros(100); %pre-allocate vector

j(1)=5;

for i=2:100;

j(i)=j(i-1)+5;

end;

– order of iterations is important

Scientific Computing
V. School of Mathematics and Science

parfor Examples

3501.04.2020 Introduction to HPC - Session 08

• functions with multiple output may confuse Matlab

for i=1:10

[x{i}(:,1), x{i}(:,2)]=functionName(z,w);

end;

– use this instead

for i=1:10

[x1, x2]=functionName(z,w);

x{i}=[x1 x2];

end;

Scientific Computing
V. School of Mathematics and Science

parfor Examples

3601.04.2020 Introduction to HPC - Session 08

• be careful not to broadcast unnecessary data

https://undocumentedmatlab.com/blog/a-few-parfor-tips

https://undocumentedmatlab.com/blog/a-few-parfor-tips

Scientific Computing
V. School of Mathematics and Science

parfor Considerations

3701.04.2020 Introduction to HPC - Session 08

• parfor often only involves minimal code changes

• if a for loop cannot be converted to parfor, consider

wrapping a subset of loop body in a function

– e.g. load works not in parfor, however it does work in function

that is called inside a parfor loop

• more information

http://blogs.mathworks.com/loren/2009/10/02/using-

parfor-loops-getting-up-and-running/

• there is a Code-Analyzer to diagnose parfor issues

http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/

Scientific Computing
V. School of Mathematics and Science

MDCS with spmd

(single program multiple data)

3801.04.2020 Introduction to HPC - Session 08

Scientific Computing
V. School of Mathematics and Science

SPMD

3901.04.2020 Introduction to HPC - Session 08

Scientific Computing
V. School of Mathematics and Science

SPMD

4001.04.2020 Introduction to HPC - Session 08

• when a SPMD block ends the workspace is saved, the

worker is paused

• data is preserved from one block to the next

• does not apply to SPMD block in a function after the

function is completed (as regular variables local to a

function)

Scientific Computing
V. School of Mathematics and Science

SPMD Example

4101.04.2020 Introduction to HPC - Session 08

• read image

• add noise to image

• distribute data

• parallel working on

image data (filter)

• on master process put

together filtered image

Scientific Computing
V. School of Mathematics and Science

Distributed Data

• Matlab provides different functions to manage distributed

data

– with distributed(X) you can distribute data among workers

– with distributed.METHOD you can create data distributed among

workers

– workers can create codistributed data structures which become

distributed data outside of the SPMD block

– a datastore can be distributed to read manage large data files

with multiple workers

– see ‘help distributed’ for more information

4201.04.2020 Introduction to HPC - Session 08

Scientific Computing
V. School of Mathematics and Science

Distributed Data

4301.04.2020 Introduction to HPC - Session 08

distributing data

from client

vs.

codistributed data

created on workers

Scientific Computing
V. School of Mathematics and Science

Example: Image Contrast

4401.04.2020 Introduction to HPC - Session 08

• a Matlab script that uses a simple

function to change the contrast of

an gray-scale image

Scientific Computing
V. School of Mathematics and Science

Example: Image Contrast

• parallelize with SPMD

• algorithm produces artifacts when
parallelized on multiple workers

– problem is that increasing contrast requires
information from neighbouring pixel

– distributing the data adds additional boundaries

4501.04.2020 Introduction to HPC - Session 08

Scientific Computing
V. School of Mathematics and Science

labSendReceive

4601.04.2020 Introduction to HPC - Session 08

• solution is communication between workers

– each worker has to sent one boundary left and one right

– each worker has to receive one boundary from left and one from

right

– extra columns are added before filter is applied, and need to be

removed again afterwards

1 2 n

Scientific Computing
V. School of Mathematics and Science

labSendReceive

• the function labSendReceive simultaneously sends and

receives data
received = labSendReceive(labTo, labFrom, data)

– sends data to labTo

– receives data from labFrom and stores it in received

4701.04.2020 Introduction to HPC - Session 08

Lab: from

data

received
data from

labFrom

receiving

sending received

at labTo

Scientific Computing
V. School of Mathematics and Science

labSendReceive

4801.04.2020

-1));

Introduction to HPC - Session 08

Scientific Computing
V. School of Mathematics and Science

Exercise: Heat Example in Matlab

% 2d-heat example in Matlab

% initial setup

NXPROB = 20; % number of grid rows

NYPROB = 20; % number of grid columns

STEPS = 100; % number of iterations

TIME = 0; % initial and current time

uvals = zeros(2, NXPROB, NYPROB); % allocate grid

uvals = inidat(uvals); % initialize grid

plotdat(uvals, 1, TIME); % make plot

it = 1;

for TIME=1:STEPS % time iteration

uvals = updateu(uvals, it); % update thermal energy

it = 3 - it;

end

plotdat(uvals, 1, TIME); % make plot

01.04.2020 Introduction to HPC - Session 08 49

