
Scientific Computing
V. School of Mathematics and Science

Introduction to

High-Performance Computing

Session 07

Matlab Distributed Compute Server

(MDCS)

Scientific Computing
V. School of Mathematics and Science

Introduction to MDCS

228.03.2019 Introduction HPC - Session 07

Scientific Computing
V. School of Mathematics and Science

What is MDCS

328.03.2019 Introduction HPC - Session 07

Matlab on your desktop computer:

• you are limited by the compute

power of your local machine

• memory

• CPU speed

• you can only run one job at a time

• your machine may become

unusable while your Matlab job is

running

Scientific Computing
V. School of Mathematics and Science

What is MDCS

428.03.2019 Introduction HPC - Session 07

Scientific Computing
V. School of Mathematics and Science

Parallel Computing with Matlab

528.03.2019 Introduction HPC - Session 07

• easily experiment with

explicit parallelism on

multicore machines

• rapidly develop parallel

applications on local

computer

• take full advantage of

desktop power, incl.

GPUs

• separate compute

cluster not required

(taken from MathWorks marketing)

Scientific Computing
V. School of Mathematics and Science

Parallel Computing with Matlab

628.03.2019 Introduction HPC - Session 07

(taken from MathWorks marketing)

Scientific Computing
V. School of Mathematics and Science

What is MDCS

728.03.2019 Introduction HPC - Session 07

• MDCS allows you to off-load Matlab programs to a

compute server

• simplified workflow

– you can develop and test your application locally before

submitting jobs, also in parallel

– results are automatically returned to your local machine for post-

processing

• the Parallel Computing Toolbox provides utilities for

parallelization

– task-parallel

– data-parallel

Scientific Computing
V. School of Mathematics and Science

Why to use MDCS on the Cluster?

828.03.2019 Introduction HPC - Session 07

• MDCS on the HPC cluster includes 272 worker licenses

– these are in addition to the normal Matlab licenses (which used to

be limited to 200 for the whole university)

– you can use also any of the toolboxes (were limited to 50)

– allows the control over used licenses and prevents failed jobs

– for fair sharing not more than 36 MDCS licenses should be used

per job and at most two jobs per user (hard limit)

• ease of use

– no need to learn about job scripts

– work within known Matlab environment

Scientific Computing
V. School of Mathematics and Science

Parallel Computing with Matlab

928.03.2019 Introduction HPC - Session 07

Scientific Computing
V. School of Mathematics and Science

Parallel Computing with Matlab

1028.03.2019 Introduction HPC - Session 07

Three levels of Integration:

Scientific Computing
V. School of Mathematics and Science

Parallel Computing Support in Toolboxes

1128.03.2019 Introduction HPC - Session 07

• Optimization Toolbox

• Global Optimization Toolbox

• Statistics Toolbox

• Simulink Design Optimization

• Bioinformatics Toolbox

• Communications Toolbox

• Model-Based Calibration Toolbox

• ... and more

see
http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.html

http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.html

Scientific Computing
V. School of Mathematics and Science

Configuration of MDCS

1228.03.2019 Introduction HPC - Session 07

Scientific Computing
V. School of Mathematics and Science

Using MDCS on CARL/EDDY

1328.03.2019 Introduction HPC - Session 07

• before you can use MDCS a few preparations are needed (only

needed to be done once)

– Matlab needs to be installed (see local web page) on your local

machine, version must match to version on cluster (e.g. R2016b)

– your local machine must be able to login to CARL/EDDY via ssh

• Linux/Mac have ssh per default, for Windows you can use PuTTY

• if you are not in the university network you also need to connect to a VPN

(see HPC-Wiki for details)

– a number of files (from a zipped archive from the HPC-Wiki) have to be

copied to your local Matlab directory (depending on the setup of your

local machine, your system admin has to help you)

– a parallel configuration has to be setup with Matlab

see https://wiki.hpcuser.uni-oldenburg.de/index.php?title=Configuration_MDCS_2016

https://wiki.hpcuser.uni-oldenburg.de/index.php?title=Configuration_MDCS_2016

Scientific Computing
V. School of Mathematics and Science

Using MDCS on CARL/EDDY

1428.03.2019 Introduction HPC - Session 07

• once you have completed the setup you can submit jobs

to the cluster

– example parameter sweep for 2nd-order ODE

(taken from the HPC-Wiki)

– dampened oscillator

– simulate with different values for b and k

– record peak value for each run

https://wiki.hpcuser.uni-oldenburg.de/index.php?title=Basic_Examples_MDCS_2016

Scientific Computing
V. School of Mathematics and Science

2nd-order ODE for example

1528.03.2019 Introduction HPC - Session 07

function dy = odesystem(t, y, m, b, k)

% 2nd-order ODE

%

% m*X'' + b*X' + k*X = 0

%

% --> system of 1st-order ODEs

%

% y = X'

% y' = -1/m * (k*y + b*y')

% Copyright 2009 The MathWorks, Inc.

dy(1) = y(2);

dy(2) = -1/m * (k * y(1) + b * y(2));

dy = dy(:); % convert to column vector

odesystem.m

Scientific Computing
V. School of Mathematics and Science

Parameter Sweep: serial Matlab code

1628.03.2019 Introduction HPC - Session 07

%% Initialize Problem
m = 5; % mass
bVals = 0.1:.1:15; % damping values (step .1)
kVals = 1.5:.1:15; % stiffness values (step .1) damping
[kGrid, bGrid] = meshgrid(bVals, kVals);
peakVals = nan(size(kGrid));

%% Parameter Sweep
tic;

for idx = 1:numel(kGrid)
% Solve ODE
[T,Y] = ode45(@(t,y) odesystem(t, y, m, bGrid(idx), kGrid(idx)), ...
[0, 25], ... % simulate for 25 seconds
[0, 1]); % initial conditions

% Determine peak value
peakVals(idx) = max(Y(:,1));

end

t1 = toc;

paramSweep_batch.m

Scientific Computing
V. School of Mathematics and Science

1728.03.2019 Introduction HPC - Session 07

%% Initialize Problem
m = 5; % mass
bVals = 0.1:.1:15; % damping values (step .1)
kVals = 1.5:.1:15; % stiffness values (step .1) damping
[kGrid, bGrid] = meshgrid(bVals, kVals);
peakVals = nan(size(kGrid));

%% Parameter Sweep
tic;

parfor idx = 1:numel(kGrid)
% Solve ODE
[T,Y] = ode45(@(t,y) odesystem(t, y, m, bGrid(idx), kGrid(idx)), ...
[0, 25], ... % simulate for 25 seconds
[0, 1]); % initial conditions

% Determine peak value
peakVals(idx) = max(Y(:,1));

end

t1 = toc;

paramSweep_batch.m

Parameter Sweep: parallel Matlab code

Scientific Computing
V. School of Mathematics and Science

Using MDCS on CARL/EDDY

• submitting jobs to the cluster

– first command creates a handle for the cluster using the available

configuration

– second command creates a job and sends it to the cluster

• Matlab script is executed on the cluster

• requests a pool of workers (number of processes is +1 for master)

• uses default resources unless modified

• files can be attached but Matlab also automatically attaches needed

files (if it can find them and if not disabled)

1828.03.2019 Introduction HPC - Session 07

sched = parcluster('CARL');

job = batch(sched, 'paramSweep_batch', 'Pool', 7, ...

'AttachedFiles', {'odesystem.m'});

Scientific Computing
V. School of Mathematics and Science

Using MDCS on CARL/EDDY

1928.03.2019 Introduction HPC - Session 07

• changing resource allocation

– changes maximum runtime and memory per worker

• path-dependency as alternative to attaching files

– use addpath within script (.m-files)

– use AdditionalPath property of scheduler object

– use absolute path names

– copy files to the cluster before submitting job

set(sched, 'CommunicatingSubmitFcn',

cat(2, sched.CommunicatingSubmitFcn,

{'runtime','72:0:0','memory','4G'}));

Scientific Computing
V. School of Mathematics and Science

Using MDCS on CARL/EDDY

2028.03.2019 Introduction HPC - Session 07

• recovering jobs

– it is possible to terminate the local Matlab session while jobs are

running (or waiting on the cluster)

– to reconnect

sched = parcluster(‚CARL');

sched.Jobs % to list available jobs

job = sched.Jobs(1) % to get job information

jobData = load(job);

Scientific Computing
V. School of Mathematics and Science

Monitoring Jobs and Error Tracking

2128.03.2019 Introduction HPC - Session 07

• Matlab Job Monitor for basic information

• use squeue and sacct for additional information from

SLURM

• job handle can be used to get information about errors

• Matlab diary for additional log output

• files in the job directory

Scientific Computing
V. School of Mathematics and Science

MDCS with parfor

2228.03.2019 Introduction HPC - Session 07

Scientific Computing
V. School of Mathematics and Science

Mechanics of parfor Loops

2328.03.2019 Introduction HPC - Session 07

Scientific Computing
V. School of Mathematics and Science

Converting for to parfor

2428.03.2019 Introduction HPC - Session 07

• requirements for parfor loops

– task independent

– order independent

• constraints on the loop body

– cannot introduce variables (e.g. eval, load, global)

– cannot contain break or return statements

– cannot contain another parfor loop

Scientific Computing
V. School of Mathematics and Science

Variable Classification

2528.03.2019 Introduction HPC - Session 07

• all variables referenced at the top level of the parfor

must be resolved and classified

Classification Description

loop serves as a loop index for arrays

sliced an array whose segments are operated on by different

iterations

broadcast a variable defined before the loop whose value is used

inside the loop, but never assigned in the loop

reduction accumulates a value across iterations of the loop,

regardless of iteration order

temporary variable created inside the loop but unlike sliced or

reduction variables, not available outside the loop

Scientific Computing
V. School of Mathematics and Science

Variable Classification Example

2628.03.2019 Introduction HPC - Session 07

• matrix-vector multiplication

N=2048; % N is broadcast

b=rand(N,1); % b is broadcast

A=rand(N,N); % A is slices input

parfor i=1:N % i is loop index

c(i)=A(i,:)*b(:); % c is sliced output

end

Scientific Computing
V. School of Mathematics and Science

parfor Examples

2728.03.2019 Introduction HPC - Session 07

• this example cannot be parallized in parfor

j=zeros(100); %pre-allocate vector

j(1)=5;

for i=2:100;

j(i)=j(i-1)+5;

end;

– order of iterations is important

Scientific Computing
V. School of Mathematics and Science

parfor Examples

2828.03.2019 Introduction HPC - Session 07

• functions with multiple output may confuse Matlab

for i=1:10

[x{i}(:,1), x{i}(:,2)]=functionName(z,w);

end;

– use this instead

for i=1:10

[x1, x2]=functionName(z,w);

x{i}=[x1 x2];

end;

Scientific Computing
V. School of Mathematics and Science

parfor Considerations

2928.03.2019 Introduction HPC - Session 07

• parfor often only involves minimal code changes

• if a for loop cannot be converted to parfor, consider

wrapping a subset of loop body in a function

– e.g. load works not in parfor, however it does work in function

that is called inside a parfor loop

• more information

http://blogs.mathworks.com/loren/2009/10/02/using-

parfor-loops-getting-up-and-running/

• there is a Code-Analyzer to diagnose parfor issues

http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/

Scientific Computing
V. School of Mathematics and Science

MDCS with spmd

(single program multiple data)

3028.03.2019 Introduction HPC - Session 07

Scientific Computing
V. School of Mathematics and Science

SPMD

3128.03.2019 Introduction HPC - Session 07

Scientific Computing
V. School of Mathematics and Science

SPMD

3228.03.2019 Introduction HPC - Session 07

• when a SPMD block ends the workspace is saved, the

worker is paused

• data is preserved from one block to the next

• does not apply to SPMD block in a function after the

function is completed (as regular variables local to a

function)

Scientific Computing
V. School of Mathematics and Science

SPMD Example

3328.03.2019 Introduction HPC - Session 07

• read image

• add noise to image

• distribute data

• parallel working on

image data (filter)

• on master process put

together filtered image

Scientific Computing
V. School of Mathematics and Science

Distributed Data

• Matlab provides different functions to manage distributed

data

– with distributed(X) you can distribute data among workers

– with distributed.METHOD you can create data distributed among

workers

– workers can create codistributed data structures which become

distributed data outside of the SPMD block

– a datastore can be distributed to read manage large data files

with multiple workers

– see ‘help distributed’ for more information

3428.03.2019 Introduction HPC - Session 07

Scientific Computing
V. School of Mathematics and Science

labSendReceives

3728.03.2019 Introduction HPC - Session 07

• solution is communication between workers

– each worker has to sent one boundary left and one right

– each worker has to receive one boundary from left and one from

right

– extra columns are added before filter is applied, and need to be

removed again afterwards

1 2 n

Scientific Computing
V. School of Mathematics and Science

labSendReceives

• the function labSendReceive simultaneously sends and

receives data
received = labSendReceive(labTo, labFrom, data)

– sends data to labTo

– receives data from labFrom and stores it in received

3828.03.2019 Introduction HPC - Session 07

Lab: from

data

received
data from

labFrom

receiving

sending received

at labTo

Scientific Computing
V. School of Mathematics and Science

labSendReceive

3928.03.2019

-1));

Introduction HPC - Session 07

Scientific Computing
V. School of Mathematics and Science

Exercise: Heat Example in Matlab

% 2d-heat example in Matlab

% initial setup

NXPROB = 20; % number of grid rows

NYPROB = 20; % number of grid columns

STEPS = 100; % number of iterations

TIME = 0; % initial and current time

uvals = zeros(2, NXPROB, NYPROB); % allocate grid

uvals = inidat(uvals); % initialize grid

plotdat(uvals, 1, TIME); % make plot

it = 1;

for TIME=1:STEPS % time iteration

uvals = updateu(uvals, it); % update thermal energy

it = 3 - it;

end

plotdat(uvals, 1, TIME); % make plot

28.03.2019 Introduction HPC - Session 07 40

