
Scientific Computing
V. School of Mathematics and Science

Introduction to 

High-Performance Computing

Session 06

Introduction to OpenMP (II)



Scientific Computing
V. School of Mathematics and Science

OpenMP

231.03.2020 Introduction to HPC - Session 06

• OpenMP is a parallel programming model

– based on shared memory with workload distribution among

threads

– uses mainly compiler directives and a few additional library

routines

so far we have seen:

– how to compile OpenMP programs

– how to run OpenMP programs in a job script

– how to create parallel regions

next topic is how to distribute the workload among the threads



Scientific Computing
V. School of Mathematics and Science

Work Sharing Directives

331.03.2020 Introduction to HPC - Session 06

• parallel region to create a team of threads

– every thread executes the same code

– example

– every thread does the same work (and there is a race condition)

const int N=1000000;

double x[N];

#pragma omp parallel

{

int threadID = omp_get_thread_num();

for(int i=0; i<N; i++)

x[i] = 1./double(threadID+1);

}



Scientific Computing
V. School of Mathematics and Science

Work Sharing Directives

431.03.2020 Introduction to HPC - Session 06

• parallel region to create a team of threads

– every thread executes the same code

– example

– now every thread does a chunk of the work 

(and there is no race condition)

const int N=1000000;

double x[N];

#pragma omp parallel

{

int threadID = omp_get_thread_num();

#pragma omp for

for(int i=0; i<N; i++)

x[i] = 1./double(threadID+1);

}



Scientific Computing
V. School of Mathematics and Science

Work Sharing Directives

531.03.2020 Introduction to HPC - Session 06

• parallel region to create a team of threads

– every thread executes the same code

– example

– directive can be separated or combined as needed

const int N=1000000;

double x[N];

#pragma omp parallel for

{

for(int i=0; i<N; i++)

x[i] = 1./(i+1.);

}



Scientific Computing
V. School of Mathematics and Science

Work Sharing Directives

631.03.2020 Introduction to HPC - Session 06

• usable in parallel regions

• directives to specify how the work is distributed

• no synchronization at entry, only at exit (disable with nowait)

• directives

– for split a loop into parallel tasks

– sections/section defines a task for one thread

– single/master one/master thread only, no synchronization

– critical executed by one thread at a time

– …

• additional clauses e.g. to further specify distribution of work



Scientific Computing
V. School of Mathematics and Science

Example: Mean of Random Numbers

• how to parallelize the program Random.cpp with 

OpenMP?

– e.g. the calculation of the mean value

731.03.2020 Introduction to HPC - Session 06

// calculate mean value

double mean=0;

for (int i=0; i<NSIZE; i++)

mean += vec[i];

mean /= NSIZE;



Scientific Computing
V. School of Mathematics and Science

Example: Mean of Random Numbers

• how to parallelize the program Random.cpp with 

OpenMP?

– e.g. the calculation of the mean value

831.03.2020 Introduction to HPC - Session 06

// calculate mean value

double mean=0;

#pragma omp parallel shared(mean)

{

double mean_loc=0;

#pragma omp for

for (int i=0; i<NSIZE; i++)

mean_loc += vec[i];

#pragma omp critical

mean += mean_loc;

} 

mean /= NSIZE;



Scientific Computing
V. School of Mathematics and Science

OpenMP Directive critical

• only one thread at a time can execute critical code block

– in the example 

this ensures mean is calculated without race condition

– overhead for synchronization and serialization of code block

– a faster alternative is provided by the atomic directive

– has limitation on the expressions (critical is more general) 

931.03.2020 Introduction to HPC - Session 06

#pragma omp critical

mean += mean_loc;

#pragma omp atomic

mean += mean_loc;



Scientific Computing
V. School of Mathematics and Science

OpenMP reduction Clause

• an alternative (optimal?) solution can be obtained with 

the reduction clause

– no need of critical section and private variable mean_loc

1031.03.2020 Introduction to HPC - Session 06

// calculate mean value

double mean=0;

#pragma omp parallel reduction(+:mean)

{

#pragma omp for

for (int i=0; i<NSIZE; i++)

mean += vec[i];

} 

mean /= NSIZE;



Scientific Computing
V. School of Mathematics and Science

OpenMP Clauses

• the behavior of OpenMP directives can be adjusted using 

clauses

– e.g. the following clauses can be used with the for directive: 

1131.03.2020 Introduction to HPC - Session 06

private(list)

firstprivate(list)

lastprivate(list)

reduction(reduction-identifier:list)

schedule([modifier [,modifier]:]kind[, chunk_size])

collapse(n)

ordered[(n)]

nowait

no implicit barrier at the end of loop construct

how work of loop

is distributed among

threads

compiler creates reduction operation

how data is treated



Scientific Computing
V. School of Mathematics and Science

Code Portability

1231.03.2020 Introduction to HPC - Session 06

• it is often desirable to have the same code file being used 

for serial and OpenMP parallel code

– use conditional compilation, e.g.

– pragmas only have effect when OpenMP option is used at 

compile time

– code becomes more difficult to read

#ifdef _OPENMP

double wt1 = omp_get_wtime();

#endif



Scientific Computing
V. School of Mathematics and Science

OpenMP Summary

1331.03.2020 Introduction to HPC - Session 06

• standard for easy shared memory parallelization

• uses compiler directives and some library functions

• based on threads and a fork-join model

• incremental parallelization

• serial and parallel code in one source file

• difference between shared and private data is important

• be careful about race conditions



Scientific Computing
V. School of Mathematics and Science

Exercises

1431.03.2020 Introduction to HPC - Session 06



Scientific Computing
V. School of Mathematics and Science

Calculate Pi in Parallel

1531.03.2020 Introduction to HPC - Session 06

• modify the program Pi.cpp so that it parallelizes the 

computation of Pi with OpenMP

– add a parallel region to the code

– parallelize the loop so that each thread computes a part of sum 

(integral)

– combine the partial sums for the final answer

– also add a wall clock timer (omp_get_wtime()) and compare the 

change in CPU and wall clock time for different number of 

threads


