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• OpenMP is a parallel programming model

– based on shared memory with workload distribution among

threads

– uses mainly compiler directives and a few additional library

routines

so far we have seen:

– how to compile OpenMP programs

– how to run OpenMP programs in a job script

– how to create parallel regions

next topic is how to distribute the workload among the threads
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• parallel region to create a team of threads

– every thread executes the same code

– example

– every thread does the same work (and there is a race condition)

const int N=1000000;

double x[N];

#pragma omp parallel

{

int threadID = omp_get_thread_num();

for(int i=0; i<N; i++)

x[i] = 1./double(threadID+1);

}
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• parallel region to create a team of threads

– every thread executes the same code

– example

– now every thread does a chunk of the work 

(and there is no race condition)

const int N=1000000;

double x[N];

#pragma omp parallel

{

int threadID = omp_get_thread_num();

#pragma omp for

for(int i=0; i<N; i++)

x[i] = 1./double(threadID+1);

}
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• parallel region to create a team of threads

– every thread executes the same code

– example

– directive can be separated or combined as needed

const int N=1000000;

double x[N];

#pragma omp parallel for

{

for(int i=0; i<N; i++)

x[i] = 1./(i+1.);

}
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• usable in parallel regions

• directives to specify how the work is distributed

• no synchronization at entry, only at exit (disable with nowait)

• directives

– for split a loop into parallel tasks

– sections/section defines a task for one thread

– single/master one/master thread only, no synchronization

– critical executed by one thread at a time

– …

• additional clauses e.g. to further specify distribution of work
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Example: Mean of Random Numbers

• how to parallelize the program Random.cpp with 

OpenMP?

– e.g. the calculation of the mean value
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// calculate mean value

double mean=0;

for (int i=0; i<NSIZE; i++)

mean += vec[i];

mean /= NSIZE;
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• how to parallelize the program Random.cpp with 

OpenMP?

– e.g. the calculation of the mean value
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// calculate mean value

double mean=0;

#pragma omp parallel shared(mean)

{

double mean_loc=0;

#pragma omp for

for (int i=0; i<NSIZE; i++)

mean_loc += vec[i];

#pragma omp critical

mean += mean_loc;

} 

mean /= NSIZE;
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OpenMP Directive critical

• only one thread at a time can execute critical code block

– in the example 

this ensures mean is calculated without race condition

– overhead for synchronization and serialization of code block

– a faster alternative is provided by the atomic directive

– has limitation on the expressions (critical is more general) 
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#pragma omp critical

mean += mean_loc;

#pragma omp atomic

mean += mean_loc;
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OpenMP reduction Clause

• an alternative (optimal?) solution can be obtained with 

the reduction clause

– no need of critical section and private variable mean_loc
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// calculate mean value

double mean=0;

#pragma omp parallel reduction(+:mean)

{

#pragma omp for

for (int i=0; i<NSIZE; i++)

mean += vec[i];

} 

mean /= NSIZE;
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OpenMP Clauses

• the behavior of OpenMP directives can be adjusted using 

clauses

– e.g. the following clauses can be used with the for directive: 
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private(list)

firstprivate(list)

lastprivate(list)

reduction(reduction-identifier:list)

schedule([modifier [,modifier]:]kind[, chunk_size])

collapse(n)

ordered[(n)]

nowait

no implicit barrier at the end of loop construct

how work of loop

is distributed among

threads

compiler creates reduction operation

how data is treated
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Code Portability
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• it is often desirable to have the same code file being used 

for serial and OpenMP parallel code

– use conditional compilation, e.g.

– pragmas only have effect when OpenMP option is used at 

compile time

– code becomes more difficult to read

#ifdef _OPENMP

double wt1 = omp_get_wtime();

#endif
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• standard for easy shared memory parallelization

• uses compiler directives and some library functions

• based on threads and a fork-join model

• incremental parallelization

• serial and parallel code in one source file

• difference between shared and private data is important

• be careful about race conditions
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Exercises
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Calculate Pi in Parallel
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• modify the program Pi.cpp so that it parallelizes the 

computation of Pi with OpenMP

– add a parallel region to the code

– parallelize the loop so that each thread computes a part of sum 

(integral)

– combine the partial sums for the final answer

– also add a wall clock timer (omp_get_wtime()) and compare the 

change in CPU and wall clock time for different number of 

threads


