Faculty V — Mathematics and Science

Scientific Computing

universitdt |OLDENBURG

Introduction to MDCS

« Matlab Distributed Compute Server
* Preparing Matlab for MDCS
« Example

08.10.2015 Dr. Stefan Harfst Introduction to MDCS at HPC UniOL 1

Faculty V — Mathematics and Science

OSSIETIRY Scientific Computing

universitdt |OLDENBURG

What is MDCS

Matlab on your desktop computer:

* you are limited by the compute
power of your local machine

* memory
« CPU speed
* you can only run one job at a time

« your machine may become
unusable while your Matlab job is
running

08.10.2015 Dr. Stefan Harfst 2

universitdt |OLDENBURG

Faculty V — Mathematics and Science

Scientific Computing

MATLAB®

Distributed Computing
Toolbox

Other toolboxes

What is MDCS

rasult

Josk

v

esult

08.10.2015 Dr. Stefan Harfst

Faculty V — Mathematics and Science

Scientific Computing

universitdt |OLDENBURG

(taken from MathWorks marketing)

Parallel Computing with Matlab

« easily experiment with
explicit parallelism on

‘\4—‘ multicore machines

 rapidly develop parallel
applications on local

+%24
&.ﬁ.‘\ computer
4 b 4 take full advantage of
. desktop power, incl.
MATLAB Workers (max 12) G P U S

* Sseparate compute
User’s Desktop cluster not required

Parallel Computing Toolbox

08.10.2015 Dr. Stefan Harfst 4

Faculty V — Mathematics and Science

OSSIETIRY Scientific Computing

universitdt |OLDENBURG

(taken from MathWorks marketing)

Parallel Computing with Matlab

— — MATLAB Distributed Computing Server

Parallel Computing Toolbox

R B
\. b/

4

-

Jobmanager or 3 party Scheduler

User’s Desktop Compute Cluster / Grid / Cloud

08.10.2015 Dr. Stefan Harfst 5

Faculty V — Mathematics and Science

Scientific Computing

universitdt |OLDENBURG

What is MDCS

« MDCS allows you to off-load Matlab programs to a
compute server

« simplified workflow

— you can develop and test your application locally before
submitting jobs, also in parallel

— results are automatically returned to your local machine for post-
processing

 the Parallel Computing Toolbox provides utilities for
parallelization
— task-parallel
— data-parallel

08.10.2015 Dr. Stefan Harfst 6

Faculty V — Mathematics and Science

Scientific Computing

universitdt |OLDENBURG

Why to use MDCS on the Cluster?

« with MDCS come 224 worker licenses
— these are in addition to the normal Matlab licenses (200)
— you can use also any of the toolboxes (50)
— allows the control over used licenses and prevents failed jobs
— for fair sharing not more than 36 MDCS licenses should be used

08.10.2015 Dr. Stefan Harfst 7

Faculty V — Mathematics and Science

Scientific Computing

universitéit | OLDENBURG

Parallel Computing with Matlab

Larger Compute Pool Larger Memory Pool

Speed up Computations Work with Large Data

4

4

PIENE
P\ L

4\ Juu

A
4 =
& HEE

08.10.2015 Dr. Stefan Harfst 8

Faculty V — Mathematics and Science

Scientific Computing

universitdt |OLDENBURG

Parallel Computing with Matlab

Three levels of Integration:

Support built into Toolboxes

High-level Programming Constructs
(e.g. parfor, batch, distributed)

o
2]
-
[T
o
b
)
©
Ll

Aujeuonoung isjealn

Low-level Programming Constructs
(e.g. Jobs/Tasks, MPI-based)

08.10.2015 Dr. Stefan Harfst 9

Faculty V — Mathematics and Science

Scientific Computing

universitdt |OLDENBURG

Parallel Computing Support in Toolboxes

» Optimization Toolbox

» Global Optimization Toolbox

» Statistics Toolbox

» Simulink Design Optimization

« Bioinformatics Toolbox

« Communications Toolbox
 Model-Based Calibration Toolbox
... and more

see
http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.html

08.10.2015 Dr. Stefan Harfst 10

http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.html

Faculty V — Mathematics and Science

Scientific Computing

universitdt |OLDENBURG

Using MDCS on FLOW/HERO

» Dbefore you can use MDCS a few preparations are needed (only
needed to be done once)
— Matlab needs to be installed (see local web page) on your local
machine, only versions R2010b, R2011a, R2011b are licensed for
MDCS
— your local machine must be able to login to FLOW/HERO via ssh
* Linux/Mac have ssh per default, for Windows you can use PuTTY

 if you are not in the university network you also need to connect to a VPN
(see HPC-Wiki for details)

— a number of files (from a zipped archive from the HPC-Wiki) have to
copied to your local Matlab directory (depending on the setup of your
local machine, your system admin has to help you)

— a parallel configuration has to be setup with Matlab

08.10.2015 Dr. Stefan Harfst 11

Faculty V — Mathematics and Science
universitdt |[OLDENBURG

Scientific Computing

Using MDCS on FLOW/HERO

« once you have completed the setup you can submit jobs
to the cluster

— example parameter sweep for 2"d-order ODE
(taken from the HPC-Wiki)

— dampened oscillator

i. []

mx+ b x+ kK x=0
-- -
1,2,... 1,2

12r

— simulate with different values for b and k
— record peak value for each run

Displacement {x)
=] =3 =3 =]
=] F) =]

=
b

08.10.2015 Dr. Stefan Harfst

=

Sy
et
wn

10 15] 25
Time (s) l 2

Faculty V — Mathematics and Science

Scientific Computing

universitdt |OLDENBURG

2"d-order ODE for example

function dy = odesystem(t, y, m, b, k)
2nd-order ODE

m*X'' + b*X' + k*X = 0
--> system of 1lst-order ODEs
y =X

y' = -1/m * (k*y + b*y')
Copyright 2009 The MathWorks, Inc.

0 ° 0 A o° 0 o o° o°

dy (1) = y(2);
dy(2) = -1/m * (k * y(1) + b * y(2));

dy = dy(:); % convert to column vector

08.10.2015 Dr. Stefan Harfst 13

CARL Faculty V — Mathematics and Science
VoM

OSSIETZKY Scientific Computing

universitdt |OLDENBURG

Parameter Sweep: serial Matlab code

paramSweep batch.m

%% Initialize Problem

m = 5; % mass
bvals = 0.1:.1:15; % damping values (step .1)
kVvals = 1.5:.1:15; % stiffness values (step .1l) damping

[kGrid, bGrid] = meshgrid(bVals, kVals);
peakVals = nan(size (kGrid)) ;

%% Parameter Sweep
tic;

for idx = 1l:numel (kGrid)
% Solve ODE
[T,Y] = oded45(@(t,y) odesystem(t, y, m, bGrid(idx), kGrid(idx)),
[0, 25], ... % simulate for 25 seconds
[0, 1]1); % initial conditions

% Determine peak value
peakVals (idx) = max(Y(:,1));
end

tl = toc;

08.10.2015 Dr. Stefan Harfst 14

CARL Faculty V — Mathematics and Science
VoM

OSSIETZKY Scientific Computing

universitdt |OLDENBURG

Parameter Sweep: parallel Matlab code

paramSweep batch.m

%% Initialize Problem

m = 5; % mass
bvals = 0.1:.1:15; % damping values (step .1)
kVvals = 1.5:.1:15; % stiffness values (step .1l) damping

[kGrid, bGrid] = meshgrid(bVals, kVals);
peakVals = nan(size (kGrid)) ;

%% Parameter Sweep
tic;

parfor idx = 1l:numel (kGrid)
% Solve ODE
[T,Y] = oded45(@(t,y) odesystem(t, y, m, bGrid(idx), kGrid(idx)),
[0, 25], ... % simulate for 25 seconds
[0, 1]1); % initial conditions

% Determine peak value
peakVals (idx) = max(Y(:,1));
end

tl = toc;

08.10.2015 Dr. Stefan Harfst 15

CARL Faculty V — Mathematics and Science
VoM

OSSIETZKY Scientific Computing

universitdt |OLDENBURG

Mechanics of parfor Loops

k ‘\Worker
[

N -y 2(i) = i; Worker
a = zeros (20, 1) __‘_..\ a(i) = i;
parfor
d
= Worker ‘\Norker
a — - a(i) = i; T a(i) = i;

“‘\\\\JJ_"'/

Pool of MATLAB Workers

08.10.2015 Dr. Stefan Harfst 16

Faculty V — Mathematics and Science

Scientific Computing

universitdt |OLDENBURG

Converting for to parfor

* requirements for parfor loops

— task independent
— order independent

 constraints on the loop body
— cannot introduce variables (e.g. eval, load, global)

— cannot contain break or return statements

— cannot contain another parfor loop

08.10.2015 Dr. Stefan Harfst 17

CARL Faculty V — Mathematics and Science

OSSIETIRY Scientific Computing

universitdt |OLDENBURG

Variable Classification

« all variables referenced at the top level of the parfor must
be resolved and classified

Loop serves as a loop index for arrays

sliced an array whose segments are operated on by different
iterations

broadcast a variable defined before the loop whose value is used

inside the loop, but never assigned in the loop

reduction accumulates a value across iterations of the loop,
regardless of iteration order

temporary variable created inside the loop but unlike sliced or
reduction variables, not available outside the loop

08.10.2015 Dr. Stefan Harfst 18

Faculty V — Mathematics and Science

Scientific Computing

universitdt |OLDENBURG

parfor Examples

 this example cannot be parallized in parfor

j=zeros (100) ; $pre-allocate vector
j(1)=5;
for i=2:100;

J(1)=3(1i-1)+5;

end;

— order of iterations is important

08.10.2015 Dr. Stefan Harfst 19

Faculty V — Mathematics and Science

Scientific Computing

universitdt |OLDENBURG

parfor Examples

 functions with multiple output may confuse Matlab

for 1=1:10
[x{1}(:,1), x{1i} (:,2)]=functionName(z,w)

end;

— use this instead

for 1=1:10
[x1, xZ2]=functionName (z,w)
x{1}=[x1 x27];

end;

08.10.2015 Dr. Stefan Harfst 20

Faculty V — Mathematics and Science

Scientific Computing

universitdt |OLDENBURG

parfor Considerations

 parfor often only involves minimal code changes

« If a for loop cannot be converted to parfor, consider
wrapping a subset of loop body in a function
— e.g. load works not in parfor, however it does work in function
that is called inside a parfor loop
 more information
http://blogs.mathworks.com/loren/2009/10/02/using-
parfor-loops-getting-up-and-running/

« there is a Code-Analyzer to diagnose parfor issues

08.10.2015 Dr. Stefan Harfst 21

http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/

universitdt |OLDENBURG

Faculty V — Mathematics and Science

Scientific Computing

SPMD

« Matlab also knows a parallel environment SPMD

each worker has a separate workspace with variable having the
same name (as in MPI)

client can modify data on any worker
workers can communicate by messages
useful for handling large data sets

° syntax
spmd

statements;

end

08.10.2015 Dr. Stefan Harfst 22

Faculty V — Mathematics and Science

OSSIETIRY Scientific Computing

universitdt |OLDENBURG

SPMD

Client Worker 1 Worker 2
a b e | ¢ d f | ¢ 4 f
a = 3; 3 - - | - - -1 - - -
b = 4; 34 - | - - - | - - -
spmd " | |
c = labindex(); 3 4 - | 1 - - | 2 - -
d =c + a; 3 4 - | 1 4 - | 2 5 -
end | |
e = a + d{1}; 3 4 7 | 1 4 - | 2 5 -
c{2} = 5; 3 4 7 | 1 4 - | 5 6 -
spmd | |
f = c *x b; 3 4 7 | 1 4 4 | 5 620
end

08.10.2015 Dr. Stefan Harfst 23

Faculty V — Mathematics and Science

Scientific Computing

universitdt |OLDENBURG

SPMD

« when a SPMD block ends the workspace is saved, the
worker is paused

« data is preserved from one block to the next

« does not apply to SPMD block in a function after the
function is completed (as regular variables local to a
function)

08.10.2015 Dr. Stefan Harfst 24

Faculty V — Mathematics and Science

OSSIETIRY Scientific Computing

universitdt |OLDENBURG

SPMD Example

x = imread ('balloons. tif');

* read image
« add noise to image

y = imnoise (x, 'salt & pepper’, 0.30);

yd = distributed (y);

spmd ¢ dIStrlbUte data.

yl = gethicaIPart (yd); .
A - parallel working on
£(1:480.,1:640.1) = yi {1}, Image data (filter)

z(1:480,1:640,2)
z(1:480,1:640,3)

yl{2};
yI{3}; * 0N Mmaster Process pUt

together filtered image

08.10.2015 Dr. Stefan Harfst 25

CARL Faculty V — Mathematics and Science
VoM

OSSIETZKY Scientific Computing

universitdt |OLDENBURG

SPMD Example

 Increase contrast of an image

%
% Read an image
%
x = imageread('surfsup.tif’);
%
% Since the image is black and white, it will be distributed by columns
%
xd = distributed (x);
%
% Each worker enhances the contrast on its portion of the picture
%
spmd
x| = getLocalPart(xd);
x| = nlfilter(xI, [3, 3], @adjustContrast);
x| = uint8(xl);
end
%
% Concatenate the submatrices to assemble the whole image
%

xfospmd = [xI{:}];

08.10.2015 Dr. Stefan Harfst 26

Faculty V — Mathematics and Science

Scientific Computing

universitdt |OLDENBURG

SPMD Example

 algorithm produces artifacts when parallelized on multiple
workers

« problem is that increasing contrast requires information from
neighbouring pixel

« distributing tL\e data adds additional boundaries

Filkered on Client Filtered on 4 SPMD ‘“Workers

08.10.2015 /1. JLlowilll 1 1oL 27

Faculty V — Mathematics and Science

Scientific Computing

universitdt |OLDENBURG

labSendReceives

 solution is communication between workers
— each worker has to sent one boundary left and one right

— each worker has to receive one boundary from left and one from
right

— extra columns are added before filter is applied, and need to be
removed again afterwards

08.10.2015 Dr. Stefan Harfst 28

Faculty V — Mathematics and Science

Scientific Computing

universitdt |OLDENBURG

labSendReceive

column = labSendReceive (previous, next, x1(:,1));

if (labindex() < numlabs())
x1 = [x1, column];
end

b
column = labSendReceive (next, previous, x1(:,end));

if (1 < labindex())
x1 = [column, x1]1;
end

08.10.2015 Dr. Stefan Harfst 29

