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Introduction to MDCS

« Matlab Distributed Compute Server
* Preparing Matlab for MDCS
« Example
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What is MDCS

Matlab on your desktop computer:

* you are limited by the compute
power of your local machine

* memory
« CPU speed
* you can only run one job at a time

« your machine may become
unusable while your Matlab job is
running
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(taken from MathWorks marketing)

Parallel Computing with Matlab

« easily experiment with
explicit parallelism on

‘\4—‘ multicore machines

 rapidly develop parallel
applications on local

+%24
&.ﬁ.‘\ computer
4 b 4  take full advantage of
. desktop power, incl.
MATLAB Workers (max 12) G P U S

* Sseparate compute
User’s Desktop cluster not required

Parallel Computing Toolbox
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(taken from MathWorks marketing)

Parallel Computing with Matlab

— — MATLAB Distributed Computing Server

Parallel Computing Toolbox

R B
\. b/

4

-

Jobmanager or 3 party Scheduler

User’s Desktop Compute Cluster / Grid / Cloud
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What is MDCS

« MDCS allows you to off-load Matlab programs to a
compute server

« simplified workflow

— you can develop and test your application locally before
submitting jobs, also in parallel

— results are automatically returned to your local machine for post-
processing

 the Parallel Computing Toolbox provides utilities for
parallelization
— task-parallel
— data-parallel
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Why to use MDCS on the Cluster?

« with MDCS come 224 worker licenses
— these are in addition to the normal Matlab licenses (200)
— you can use also any of the toolboxes (50)
— allows the control over used licenses and prevents failed jobs
— for fair sharing not more than 36 MDCS licenses should be used
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Parallel Computing with Matlab

Larger Compute Pool Larger Memory Pool

Speed up Computations Work with Large Data

4

4

PIENE
P\ L

4\ Juu

A
4 =
& HEE

08.10.2015 Dr. Stefan Harfst 8



Faculty V — Mathematics and Science

Scientific Computing

universitdt |OLDENBURG

Parallel Computing with Matlab

Three levels of Integration:

Support built into Toolboxes

High-level Programming Constructs
(e.g. parfor, batch, distributed)
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Low-level Programming Constructs
(e.g. Jobs/Tasks, MPI-based)
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Parallel Computing Support in Toolboxes

» Optimization Toolbox

» Global Optimization Toolbox

» Statistics Toolbox

» Simulink Design Optimization

« Bioinformatics Toolbox

« Communications Toolbox
 Model-Based Calibration Toolbox
... and more

see
http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.html
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Using MDCS on FLOW/HERO

» Dbefore you can use MDCS a few preparations are needed (only
needed to be done once)
— Matlab needs to be installed (see local web page) on your local
machine, only versions R2010b, R2011a, R2011b are licensed for
MDCS
— your local machine must be able to login to FLOW/HERO via ssh
* Linux/Mac have ssh per default, for Windows you can use PuTTY

 if you are not in the university network you also need to connect to a VPN
(see HPC-Wiki for details)

— a number of files (from a zipped archive from the HPC-Wiki) have to
copied to your local Matlab directory (depending on the setup of your
local machine, your system admin has to help you)

— a parallel configuration has to be setup with Matlab
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Using MDCS on FLOW/HERO

« once you have completed the setup you can submit jobs
to the cluster

— example parameter sweep for 2"d-order ODE
(taken from the HPC-Wiki)

— dampened oscillator

i. [ ]

mx+ b x+ kK x=0
-- -
1,2,... 1,2

12r

— simulate with different values for b and k
— record peak value for each run

Displacement {x)
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2"d-order ODE for example

function dy = odesystem(t, y, m, b, k)
2nd-order ODE

m*X'' + b*X' + k*X = 0
--> system of 1lst-order ODEs
y =X

y' = -1/m * (k*y + b*y')
Copyright 2009 The MathWorks, Inc.

0 ° 0 A o° 0 o o° o°

dy (1) = y(2);
dy(2) = -1/m * (k * y(1) + b * y(2));

dy = dy(:); % convert to column vector
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Parameter Sweep: serial Matlab code

paramSweep batch.m

%% Initialize Problem

m = 5; % mass
bvals = 0.1:.1:15; % damping values (step .1)
kVvals = 1.5:.1:15; % stiffness values (step .1l) damping

[kGrid, bGrid] = meshgrid(bVals, kVals);
peakVals = nan(size (kGrid)) ;

%% Parameter Sweep
tic;

for idx = 1l:numel (kGrid)
% Solve ODE
[T,Y] = oded45(@(t,y) odesystem(t, y, m, bGrid(idx), kGrid(idx)),
[0, 25], ... % simulate for 25 seconds
[0, 1]1); % initial conditions

% Determine peak value
peakVals (idx) = max(Y(:,1));
end

tl = toc;
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Parameter Sweep: parallel Matlab code

paramSweep batch.m

%% Initialize Problem

m = 5; % mass
bvals = 0.1:.1:15; % damping values (step .1)
kVvals = 1.5:.1:15; % stiffness values (step .1l) damping

[kGrid, bGrid] = meshgrid(bVals, kVals);
peakVals = nan(size (kGrid)) ;

%% Parameter Sweep
tic;

parfor idx = 1l:numel (kGrid)
% Solve ODE
[T,Y] = oded45(@(t,y) odesystem(t, y, m, bGrid(idx), kGrid(idx)),
[0, 25], ... % simulate for 25 seconds
[0, 1]1); % initial conditions

% Determine peak value
peakVals (idx) = max(Y(:,1));
end

tl = toc;
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Mechanics of parfor Loops

k ‘\Worker
[

N -y 2(i) = i; Worker
a = zeros (20, 1) __‘_..\ a(i) = i;
parfor
d
= Worker ‘\Norker
a — - a(i) = i; T a(i) = i;

“‘\\\\JJ_"'/

Pool of MATLAB Workers
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Converting for to parfor

* requirements for parfor loops

— task independent
— order independent

 constraints on the loop body
— cannot introduce variables (e.g. eval, load, global)

— cannot contain break or return statements

— cannot contain another parfor loop
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Variable Classification

« all variables referenced at the top level of the parfor must
be resolved and classified

Loop serves as a loop index for arrays

sliced an array whose segments are operated on by different
iterations

broadcast a variable defined before the loop whose value is used

inside the loop, but never assigned in the loop

reduction accumulates a value across iterations of the loop,
regardless of iteration order

temporary variable created inside the loop but unlike sliced or
reduction variables, not available outside the loop
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parfor Examples

 this example cannot be parallized in parfor

j=zeros (100) ; $pre-allocate vector
j(1)=5;
for i=2:100;

J(1)=3(1i-1)+5;

end;

— order of iterations is important
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parfor Examples

 functions with multiple output may confuse Matlab

for 1=1:10
[x{1}(:,1), x{1i} (:,2)]=functionName(z,w)

end;

— use this instead

for 1=1:10
[x1, xZ2]=functionName (z,w)
x{1}=[x1 x27];

end;
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parfor Considerations

 parfor often only involves minimal code changes

« If a for loop cannot be converted to parfor, consider
wrapping a subset of loop body in a function
— e.g. load works not in parfor, however it does work in function
that is called inside a parfor loop
 more information
http://blogs.mathworks.com/loren/2009/10/02/using-
parfor-loops-getting-up-and-running/

« there is a Code-Analyzer to diagnose parfor issues

08.10.2015 Dr. Stefan Harfst 21
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« Matlab also knows a parallel environment SPMD

each worker has a separate workspace with variable having the
same name (as in MPI)

client can modify data on any worker
workers can communicate by messages
useful for handling large data sets

° syntax
spmd

statements;

end

08.10.2015 Dr. Stefan Harfst 22
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SPMD

Client Worker 1 Worker 2
a b e | ¢ d f | ¢ 4 f
a = 3; 3 - - | - - -1 - - -
b = 4; 34 - | - - - | - - -
spmd " | |
c = labindex(); 3 4 - | 1 - - | 2 - -
d =c + a; 3 4 - | 1 4 - | 2 5 -
end | |
e = a + d{1}; 3 4 7 | 1 4 - | 2 5 -
c{2} = 5; 3 4 7 | 1 4 - | 5 6 -
spmd | |
f = c *x b; 3 4 7 | 1 4 4 | 5 620
end
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SPMD

« when a SPMD block ends the workspace is saved, the
worker is paused

« data is preserved from one block to the next

« does not apply to SPMD block in a function after the
function is completed (as regular variables local to a
function)
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SPMD Example

x = imread ('balloons. tif');

* read image
« add noise to image

y = imnoise ( x, 'salt & pepper’, 0.30 );

yd = distributed ( y );

spmd ¢ dIStrlbUte data.

yl = gethicaIPart ( yd ); .
A - parallel working on
£(1:480.,1:640.1) = yi {1}, Image data (filter)

z(1:480,1:640,2)
z(1:480,1:640,3)

yl{2};
yI{3}; * 0N Mmaster Process pUt

together filtered image
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SPMD Example

 Increase contrast of an image

%
% Read an image
%
x = imageread( 'surfsup.tif’ );
%
% Since the image is black and white, it will be distributed by columns
%
xd = distributed (x);
%
% Each worker enhances the contrast on its portion of the picture
%
spmd
x| = getLocalPart(xd);
x| = nlfilter( xI, [3, 3], @adjustContrast);
x| = uint8(xl);
end
%
% Concatenate the submatrices to assemble the whole image
%

xfospmd = [ xI{:} ];
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SPMD Example

 algorithm produces artifacts when parallelized on multiple
workers

« problem is that increasing contrast requires information from
neighbouring pixel

« distributing tL\e data adds additional boundaries

Filkered on Client Filtered on 4 SPMD ‘“Workers
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labSendReceives

 solution is communication between workers
— each worker has to sent one boundary left and one right

— each worker has to receive one boundary from left and one from
right

— extra columns are added before filter is applied, and need to be
removed again afterwards
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labSendReceive

column = labSendReceive ( previous, next, x1(:,1) );

if ( labindex() < numlabs() )
x1 = [ x1, column ];
end

b
column = labSendReceive ( next, previous, x1(:,end) );

if ( 1 < labindex() )
x1 = [ column, x1 ]1;
end
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