

Parallel Computing and GPU Programming with MATLAB

MathWorks Seminar University of Oldenburg Feb 19, 2013

Michael Glaßer Kremena Radeva Application Engineering Education Sales

© 2013 The MathWorks, Inc.

Agenda

13:30 📣	Welcome and Introduction
13:45	Introduction to Parallel Computing with MATLAB
	MATLAB-extensions with built-in support for Parallel Computing
14:15	Interactive development of task- and data-parallel Algorithms
15:15	Coffee Break
15:30	GPU programming with MATLAB
	Parallel batch-jobs
	Cluster Computing with MATLAB
16:15	Q&A Session
17:00	End of Seminar

Your MathWorks Team Today

Kremena Radeva Michael Glaßer Account Manager Application Engineer

Agenda

13:30	Welcome and Introduction
13:45 📣	Introduction to Parallel Computing with MATLAB
	MATLAB-extensions with built-in support for Parallel Computing
14:15	Interactive development of task- and data-parallel Algorithms
15:15	Coffee Break
15:30	GPU programming with MATLAB
	Parallel batch-jobs
	Cluster Computing with MATLAB
16:15	Q&A Session
17:00	End of Seminar

Example: Parameter Sweep of ODEs

• Solve a 2nd order ODE

$$\overset{5}{m} \ddot{x} + \underbrace{b}_{1,2,\dots} \dot{x} + \underbrace{k}_{1,2,\dots} x = 0$$

- Simulate with different values for *b* and *k*
- Record peak value for each run
- Plot results
- Time in serial and in parallel mode

Summary of Example

- Mixed task-parallel and serial code in the same function
- Ran loops on a pool of MATLAB resources
- Used Code Analyser to help in converting existing for-loop into parfor-loop

Solving Big Technical Problems

Large data set

Reduce size of problem

Larger Memory Pool (e.g. More Machines)

High-Performance Hardware is Available

Parallel Computing with MATLAB

- Easily experiment with explicit parallelism on multicore machines
- Rapidly develop parallel applications on local computer
- Take full advantage of desktop power, incl. GPU(s)
- Separate computer cluster not required

Parallel Computing with MATLAB

Why scale up to a cluster?

- Solve larger, computationally-intensive problems with more processing power
- Solve memory-intensive problems
- Schedule computations to offload from your local machine

Supported on All Platforms That Support MATLAB

14

Job Schedulers

 MathWorks Job Scheduler: turn-key solution for MATLAB-only clusters

• Direct support for existing scheduler: MDCS is simply another application

• Open API to support other schedulers

Cloud Computing:

Dynamic Computing and Storage Resources

- Characteristics
 - Scalable ("elastic" resource)
 - Virtualization
 - Service over the Internet

Elastic fox - Mozilla Firefox					
jle Edit Vjew Higtory Bookmarks Iools Help					
C X 🏠 chrome://ec2ui/content/ec2ui main	window.xul		5	7 • Goode	P
Most Visited 🥊 Getting Started 🚵 Latest Headines					
🕦 Kerberos - Amazon.com HQ Wki 💿 📄 Elasticfox		8	-		
Parione us.east.1 Cradentiale Mannik @dv	MS .		TT	amaz	2
				amak	U
MIs and Instances Kernels and Ramdisks KeyPairs Security Groups Elastic IPs	Volumes a	nd Snapshots Bunn		webserv	ice
	II.	and Developing			
< Your Groups		TOUT PERMISSION			
Your Groups		aroup Permissions			
Your Groups					_
Your Groups		Pr From Port/IC	MPV To Port/IC	VP Source Users Source	17
Your Groups Onner Name VI Description 988103224557 default default group		Pr From Port/IC cmp -1	MP	MP Source User: Source 72.21.196	.6
Your Groups Ouner Name Via Ouner 9881033224557 default default group		Pr From Port/IC cmp -1 tcp 0	MP	MP Source Usert Source 72.21.196 988103224557	.6
Your Groups Conner Name Y Description 1985103224557 default default group		Pr From Port/IC cmp -1 tcp 0 udp 0	MP	MP Source User: Source 72.21.196 988103224557 988103224557	EQ .6
You Groups ② ③ ④ Owner Name ♡ Description 688.10.3224557 default default group		Pr From Port/IC cmp -1 top 0 Jdp 0 top 0	MP	MP Source User: Source 72.21.196 988103224557 988103224557 0.0.0.0/0	EQ.
r Your Groups Conner Name V: Description 988103324557 default default group		Pr From Port/IC cmp -1 top 0 Jdp 0 top 1433	MP	MP Source User: Source 72.21.196 988103224557 988103224557 0.0.0.0/0 72.21.192	-0
r four Groups - Counter Name √ Description B881033224557 default default group		From Port/IC cmp 1 tcp 0 Jdp 0 tcp 0 tcp 1 tcp 0 tcp 0 tcp 2	MPV To Port/ICI -1 65535 65535 1000 1433 21	 Source User: Source 988 103224557 988 103224557 0.0.0.0/0 72.21.195 72.21.195 	.0 .6
r Your Groups ⓒ ⓒ ⓒ Oriner Name ♡ Description 9881031224557 default default group		Pr From Port/IC cmp -1 top 0 udp 0 top 1433 top 20 top 3300	MP	 Source User. Source. 988103224557 988103224557 0.0.0.0/0 72.21.192 72.21.196 0.0.0.0 0.0.0.0 	C .6 .6
r four Forups ⓒ ⓒ ⓒ Oinner Name ♡ Description 985103224557 default default group		Pr From Port/IC rp From Port/IC rp </td <td>MP</td> <td> Source User. Source. 72. 21. 196 988 103224557 988 103224557 0.0.0.0[0 72. 21. 192 72. 21. 196 0.0.0.0[0 75. 172.51 </td> <td>.0 .6 .9</td>	MP	 Source User. Source. 72. 21. 196 988 103224557 988 103224557 0.0.0.0[0 72. 21. 192 72. 21. 196 0.0.0.0[0 75. 172.51 	.0 .6 .9

- Benefits
 - Scale computing capacity as needed
 - Purchase and maintenance of cluster is not required
 - Choose desired configuration (e.g., CPU, memory)

Going Beyond Serial Applications

Pool of MATLAB Workers

Configurations

- Save environment-specific parameters for your cluster
- Benefits
 - Enter cluster information only once
 - Modify configurations without changing MATLAB code
 - Apply multiple configurations when running within same session

Parallel Computing with MATLAB enables you to ...

Three levels of integration

Support built into Toolboxes

High-level Programming Constructs (e.g. parfor, batch, distributed)

Low-level Programming Constructs (e.g. Jobs/Tasks, MPI-based)

Agenda

- 13:30Welcome and Introduction
- 13:45 Introduction to Parallel Computing with MATLAB
 - MATLAB–extensions with built-in support for Parallel Computing
- 14:15 Interactive development of task- and data-parallel Algorithms
- 15:15 Coffee Break
- **15:30 GPU programming with MATLAB**

Parallel batch-jobs

Cluster Computing with MATLAB

- 16:15 Q&A Session
- 17:00 End of Seminar

Example: Optimization combined with Monte Carlo Simulation *using built in parallelization*

- Design of suspension system to minimize mean and standard deviation of acceleration
- Account for uncertainty in mass distribution via Monte Carlo simulation

Other Tools Providing Parallel Computing Support

- Optimization Toolbox
- Global Optimization Toolbox
- Statistics Toolbox
- Simulink Design Optimization
- Bioinformatics Toolbox
- Communications Toolbox
- Model-Based Calibration Toolbox

http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.html Directly leverage functions in Parallel Computing Toolbox

Agenda

- 13:30 Welcome and Introduction
- 13:45 Introduction to Parallel Computing with MATLAB

MATLAB-extensions with built-in support for Parallel Computing

- 14:15 **(1**) Interactive development of task- and data-parallel Algorithms
- 15:15 Coffee Break
- **15:30 GPU programming with MATLAB**

Parallel batch-jobs

Cluster Computing with MATLAB

- 16:15 Q&A Session
- 17:00 End of Seminar

Task Parallel Applications

1a3n 1 1a3n 2 1a3n 3 1a3n 4

Time

Benchmark: Multiple Independent Simulations

Example: Optimization combined with Monte Carlo Simulation *using a parallel for loop*

- Design of suspension system to minimize mean and standard deviation of acceleration
- Account for uncertainty in mass distribution via Monte Carlo simulation

Results from Amazon EC2

📣 MATLAB R2012a 64-Bit		
File Edit Text Go Cell Tools Debu	ig Parallel Desktop Window Help	
: 🞦 😂 👗 🖷 🛍 🤊 🝽 🎒 🖻	🕘 Current Folder, C:\Work\TMW\ML_SRC\PCT\suspensionProblem 🔹 🛄 🔁	
Shortcuts 📣 CCC 📣 oPool 📣 cPool 📣	Acoustic_Streamer 📣 VideoLDWS 📣 Suspension 📣 SystemObjects 📣 ProductFlowOnMap 📣 parOptim 📣 parOdeEx	
Current Folder 🖛 🗖 🛪 🗙	🗭 Editor - optimSuspensionScript.m 🥶 🗆 🛪 🗙 Variable Editor	
🔋 🐇 suspensionPro 🕨 🔻 🔎 🖻 🎯	- : 🔼 📁 🖼 🎆 🛃 😹 👒 🇠 🤊 (*) 🍇 🌝 - 🏘 🖛 🌴 (*) 💌 - 🗄 🧏 🕲 👘 🕼 🕼 🕼 🌆 Stack Base 🚽 🍂	× • 🗖 🗗 🗆 🖽
🗋 Name 🔺 Size		
JPEG-Bild	35 - nRuns = 512; % number of Monte-Carlo points (small number to show how)	
🖹 car.jpg 13 KB	36	
Textdokument	37 🔤 %% Run remotely in Parallel	
ns_err_pid/4/6.1 25 KB	38 %	
File Folder	39 - disp('')	
	40 - disp('')	
MyCostFcnRR.m 1 KB	41 % matlabpool('open','tl_jobmanager',8,'AttachedFiles',files)	-
MyNonlConRR.m 1 KB	42 - matlabpool('open', 'FGonEC2', 16, 'AttachedFiles', files)	
🖄 optimSuspensio 2 KB	43 - disp('')	-
🖄 rrDesignParallel 3 KB	44 % disp('Run remotely in parallel')	
🖄 runSimModel.m 1 KB	45 - disp('Run on EC2 in parallel with 16 workes')	
🖄 struct2var.m 1 KB		· · ·
Details	c myCostrenkum × optimsuspensionscript.m ×	
	Command Window	
Workspace IF 7 X	>> optimSuspensionScript	
📜 🔛 🔁 🍓 🐃 🖓 Select data t 👻		
Name A Value		
0 files <1x16 cell>	Starting matlabpool using the 'FGonEC2' profile connected to 16 labs.	
nkuns 512		
totAccel <1x512 double>	Run on EC2 in parallel with 16 workes	
x [1.3333e+04 1.96	Elapsed time is 215.115770 seconds.	
	Sending a stop signal to all the labs stopped.	
	Starting matlabpool using the 'local' profile connected to 4 labs.	
	Run locally in parallel with 4 workers	
	Elapsed time is 969.788383 seconds.	
	Sending a stop signal to all the labs stopped.	
	Run locally in serial	
	Elapsed time is 2335.590516 seconds.	
	fx >>>	
		00 011 010 vite
A Start	script In	82 Col 1 OVR 450

The Mechanics of parfor Loops

Pool of MATLAB Workers

Converting for to parfor

- Requirements for parfor loops
 - Task independent
 - Order independent
- Constraints on the loop body
 - Cannot "introduce" variables (e.g. eval, load, global, etc.)
 - Cannot contain **break** or **return** statements
 - Cannot contain another parfor loop

parfor Variable Classification

 All variables referenced at the top level of the parfor must be resolved and <u>classified</u>

Classification	Description
Loop	Serves as a loop index for arrays
Sliced	An array whose segments are operated on by different iterations of the loop
Broadcast	A variable defined before the loop whose value is used inside the loop, but never assigned inside the loop
Reduction	Accumulates a value across iterations of the loop, regardless of iteration order
Temporary	Variable created inside the loop, but unlike sliced or reduction variables, not available outside the loop

Considerations When Using parfor

Advantages

- parfor often involves just minimal code changes
- parallel execution of independent iterations of a for-loop
- working interactively on local or remote cluster

Limitations

- parfor automatically quits on error
- parfor doesn't provide intermediate results

Advice for Converting for to parfor

- Use the Code-Analyzer to diagnose parfor issues
- If your for loop cannot be converted to a parfor, consider wrapping a subset of the body to a function
- Read the section in the documentation on classification of variables
- http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loopsgetting-up-and-running/

Large Datasets (Data Parallel)

Parallel Terminology

Data-Parallel (Communication)

Benchmark: Solving A\b

Regular MATLAB code

Using Distributed Arrays

Using FORTRAN and MPI

```
+HPL DEFS += -DHPL DETAILED TIMING
+endif
+
+HPL LIBS := $(HPL1ib) $(LAlib) $(MPlib) $(CSlib)
+
+CCNOOPT := -m64 -Wall $ (HPL DEFS)
+CCFLAGS := $ (CCNOOPT) -03 -fomit-frame-pointer -funroll-loops
+#CCFLAGS := $(CCNOOPT) -00 -ggdb -g3
+LINKFLAGS := $ (CCFLAGS)
+ARFLAGS := -r
+
Index: Make.gs22
_____
RCS file: Make.gs22
diff -N Make.qs22
--- /dev/null 1 Jan 1970 00:00:00 -0000
+++ Make.gs22 20 Aug 2008 03:57:53 -0000
                                        1.7
00 -0,0 +1,74 00
+# (C) Copyright IBM Corporation 2008
+#
+
+# Platform
+
+ARCH := qs22
+
+# Tools
+
+SHELL := /bin/sh
+CD
      := cd
+CP := cp
+LN S := ln -s
+MKDIR := mkdir
+TOUCH := touch
+
+CC
     := mpicc
+LINKER := mpicc
+ARCHIVER := /usr/bin/ar
+RANLIB := echo
+
+# Directories
+
+INCdir := $(TOPdir)/include
+BINdir := $ (TOPdir) /bin/$ (ARCH)
+
+# HPL library
+
+HPLlib := $(TOPdir)/lib/$(ARCH)/libhpl.a
+ACLlib := $(TOPdir)/accel/lib/libhpl_accel_ppu.a
+
```

Using Distributed Arrays

function benchmark()
<pre>%% Create distributed arrays</pre>
<pre>A = distributed.rand(10000,10000);</pre>
<pre>b = distributed.rand(10000, 1);</pre>
%% Time solution of Ax = b
tic,
$\underline{x} = A \ ; \ \$ Parallel "\"
t = toc;
୫% Compute Gflops
gflops = (2/3*10000^3 + 3/2*10000^2) / t / 1e9 ;
end

Example: LU Factorization with Distributed Arrays

A MATLAB 7.12.0 (R2011a) 64-Bit	
<u>File Edit Debug Parallel D</u> esktop <u>W</u> indow <u>H</u> elp	
: 🞦 🗃 👗 ங 🛍 🤊 🥙 🐉 🗊 🖹 🥝 Current Folde <u>r</u> : C:\Wo	rk\TMW\ML_SRC\PCT\DIV\SPMD\SPMD_LU
🗄 Shortcuts 📣 CCC 📣 openPool 📣 closePool 📣 SystemObjects 📣 Acc	ustic_Streamer 📣 BER 📣 parOptim 📣 parOdeEx 📣 distributed_LU 📣 batchODE 📣 ODE_J&T 📣 MPI 💙
Figures - Figure 1 + C 7 ×	Java Package 📝 Editor - demo07_lu_distributed.m → □ ? × O
x • 🗖 🗗 🖽 😫 🔍 🔍 🖑 🔏 • 🔹 🖽 🖽 🗗 🗖 • ×	. [²] × • • □ * × 3 ³ • • • • • • • • • • • • • • • • • • •
10 0.5 0.8 10 0.5	2 - n = 32;
	3 - A = distributed.rand(n,n);
30 0.2 30 0.5	4 - [L,U,perm] = lu(A, 'vector');
10 20 30 10 20 30 to 10 ⁻¹⁶	5 - normres = norm(L*U-A(perm,:),inf)
	demo07 lu distributed.m × demo07 lu serial.m ×
10 10 0	Command Window
20 20 -5	>> matlabpool open 2
30 -2 30 -10	Starting matlabpool using the 'speedy-ah' config
10 20 30 10 20 30	normres =
Current Folder Workspace 🖛 🗖 🛪 🗙	4.5519e-015
🛅 📷 ங 🤑 Stack: Base 👻 🐼 Select data to plot 🛛 👻	Lab 1:
Name 🔺 Value Class	ans =
A <32x32 distributed> distributed	32 16
L <32x32 distributed> distributed	Tab 2:
U <32x32 distributed> distributed	ans =
ans [32,32] double	22 16
n 32 aouble	
perm <1x32 double> double	Name Size Bytes Class -
	A 32X32 /33 distributed
< III	
▲ <u>S</u> tart	OVR ≠€ 2

38

Client-side Distributed Arrays and SPMD

- Client-side distributed arrays
 - Class distributed
 - Can be created and manipulated directly from the client.
 - Simpler access to memory on labs
 - Client-side visualization capabilities

spmd

- Block of code executed on workers
- Worker specific commands
- Explicit communication between workers
- Mixture of parallel and serial code

spmd

- Single Program, Multiple Data
- Unlike variables used in multiple parfor loops, distributed arrays used in multiple spmd blocks retain state
- Use Code Analyzer to diagnose spmd issues

Distributed Arrays

	1	2	3	4	5	6	7	8	9	10	11	12	
	13	14	15	16	17	18	19	20	21	22	23	24	
	25	26	27	28	29	30	31	32	33	34	35	36	
						1							-
	Lab [•]	1		La	ab 2			Lab	3		I	_ab 4	4
		1		Li	ab 2			Lab	3			_ab 4	4
1	Lab ²	1 3		La 4	ab 2 5	6	7	Lab	3 9		l 10	_ab 4	4 12
1 13	Lab ² 2 14	1 3 15		La 4 16	ab 2 5 17	<mark>6</mark> 18	7	Lab 8 20	9 9 2		10 22	_ab 4 11 23	4 12 24
1 13 25	Lab 2 2 14 26	3 15 27		La 4 16 28	ab 2 5 17 29	6 18 30	7 19 31	Lab 8 20 32	9 9 2 2 3	1	10 22 34	_ab 4 11 23 35	12 24 36

Replicated Arrays

Lab 1

1	2	3
4	5	6
7	8	9

L	_ab	2
1	2	3
4	5	6
7	8	9

L	Lab 3					
1	2	3				
4	5	6				
7	8	9				

Lab 4

1	2	3
4	5	6
7	8	9

Variant Arrays

Lab 1

1	2	3
4	5	6
7	8	9

L	_ab ź	2
2	4	6
8	10	12
14	16	18

3 6 9	3 6 9 12 15 18	Lad 3					
	12 15 18	3	6	9			

Lab 4

4	8	12
16	20	24
28	32	36

Private Arrays

Lab 1

Ø

L	.ab 2	2
1	2	3
4	5	6
7	8	9

Lab 3

Lab 4

Parallel Functions

Operations with Communication

>> spmd, D * D, end

Lab 1	Lab 2	Lab 3	Lab 4
	2	3	4
	6	7	8
	10	11	12
	14	15	16
Lab 1 90 202 314 426	Lab 2 100 228 356 484	Lab 3 110 254 398 542	120 280 440 600

Indexing

>> data = D(3, 5)

Lab 1			Lab 2			Lab 3			Lab 4		
1	2	3	4	5	6	7	8	9	10	11	12
13	14	15	16	17	18	19	20	21	22	23	24
25	26	27	28 (29	30	31	32	33	34	35	36

Distributed Arrays and Parallel Algorithms

- Distributed arrays
 - Store segments of data across participating workers
 - Create from any built-in class in MATLAB
 - Examples: doubles, sparse, logicals, cell arrays, and arrays of structs
- Parallel algorithms for codistributed arrays
 - Matrix manipulation operations
 - Examples: indexing, data type conversion, and transpose
 - Parallel linear algebra functions, such as **svd** and **lu**
 - Data distribution
 - Automatic, specify your own, or change at any time

Enhanced MATLAB Functions That Operate on Codistributed Arrays

Type of Function	Function Names				
Data functions	<u>cumprod</u> , <u>cumsum</u> , <u>fft</u> , <u>max</u> , <u>min</u> , <u>prod</u> , <u>sum</u>				
Data type functions	<u>arrayfun, cast, cell2mat, cell2struct, celldisp, cellfun, char, double,</u> <u>fieldnames, int16, int32, int64, int8, logical, num2cell, rmfield, single,</u> <u>struct2cell, swapbytes, typecast, uint16, uint32, uint64, uint8</u>				
Elementary and trigonometric functions	<u>abs, acos, acosd, acosh, acot, acotd, acoth, acsc, acscd, acsch, angle, asec, asecd, asech, asin, asind, asinh, atan, atan2, atand, atanh, cei1, complex, conj, cos, cosd, cosh, cot, cotd, coth, csc, cscd, csch, exp, expm1, fix, floor, hypot, imag, isreal, log, log10, log1p, log2, mod, nextpow2, nthroot, pow2, real, reallog, realpow, realsqrt, rem, round, sec, secd, sech, sign, sin, sind, sinh, sqrt, tan, tand, tanh</u>				
Elementary matrices	<u>cat, diag, eps, find, isempty, isequal, isequalwithequalnans, isfinite, isinf, isnan, length, meshgrid, ndgrid, ndims, numel, reshape, size, sort, tril, triu</u>				
Matrix functions	<u>chol, eig, inv, lu, norm, normest, qr, svd</u>				
Array operations	<pre>all, and (&), any, bitand, bitor, bitxor, ctranspose ('), end, eq (==), ge (>=), gt (>), horzcat ([]), ldivide (.\), le (<=), lt (<), minus (-), mldivide (\), mrdivide (/), mtimes (*), ne (~=), not (~), or (1), plus (+), power (.^), rdivide (./), subsasgn, subsindex, subsref, times (.*), transpose (.'), uminus (-), uplus (+), vertcat ([;]), xor</pre>				
Sparse matrix functions	<u>full, issparse, nnz, nonzeros, nzmax, sparse, spfun, spones</u>				
Special functions	dot				

MPI-Based Functions in Parallel Computing Toolbox

Use when a high degree of control over parallel algorithm is required

- High-level abstractions of MPI functions
 - labSendReceive, labBroadcast, and others
 - Send, receive, and broadcast any data type in MATLAB
- Automatic bookkeeping
 - Setup: communication, ranks, etc.
 - Error detection: deadlocks and miscommunications
- Pluggable
 - Use any MPI implementation that is *binary*-compatible with MPICH2

Example: MPI-based Functions

C:\Wo	C:\Work\TMW\ML_SRC\PCT\DIV\MPI colsum\colsum_ones.m						
<u>F</u> ile <u>E</u> dit	File Edit Text Go Cell Tools Debug Desktop Window Help						
i 🛅 🚰	📓 🛃 🔜 👗 🐂 🛍 🤊 (*) 🌭 🖅 - 🙌 🆛 🖚 🍂 🕨 - 🔁 🎗 🖷 🐏 🗊 🕼 Stady: Base 🕑 fx						
	$\stackrel{*}{=} \downarrow \stackrel{=}{=} -1.0 + \div 1.1 \times \% \% \% \bigcirc$						
1	<pre>function total_sum = colsum_ones</pre>						
2							
3 —	if labindex == 1						
4	% Send simple matrix to other labs						
5 —	M = ones(numlabs)						
6 -	A = labBroadcast(1,M);						
7 -	else						
8	% Receive broadcast on other labs						
9 -	<pre>A = labBroadcast(1);</pre>						
10	<pre>% Multiply by labindex</pre>						
11 -	A = A * labindex	= -					
12 -	end						
13							
14	% Calculate sum of column identified by labindex for this lab	_					
15 -	column sum = sum(A(:,labindex))						
16							
17	% Calculate total sum by combining column sum from all labs						
18 -	total sum = gplus(column sum);						
19							
20 -	if labindex==numlabs						
21 -	<pre>fprintf('\n\nTotal colsum is: %4d\n',total_sum</pre>);					
<		>					
	colsum_ones In 1 Col 1	OVR:					

Parallel Profiler

Profiles the execution time for a function

- Similar to the MATLAB profiler
- Includes information about the communication between labs
 - Time spent in communication
 - Amount of data passed between labs
- Benefits
 - Identify the bottlenecks in your parallel algorithm
 - Understand which operations require communication

One MATLABPOOL, Many Uses

A Command Window						
File Edit Debug Desktop Window Help	اد ا					
>> % Start a pool of MATLAB workers	^					
>> matlabpool						
Connected to a matlabpool session with 8 labs						
>>						
>> % Look for patterns in max SVD values of random matr	rices					
>> % of sizes 1 - 10000						
>>>						
>> $y = zeros(1e5, 1);$						
>> parfor k = 1 : 2000 % Smaller values						
y(k) = max(svd(rand(k, k)));						
end k = 1 large values of $k = 1$ larger matrices						
\sim for k = 2001 · 10000						
spmd & Use distributed arrays to handle large data	_					
t = max(syd(rand(k, k, codistributor())))						
end	_					
$\mathbf{v}(\mathbf{k}) = \mathbf{t}\{1\}; \ $ grab max value						
end						
>>						
>> % Use built-in parallel in Optimization Toolbox						
<pre>>> options = optimset(options,'UseParallel','Always');</pre>						
>> x = fmincon(ExpObjFun, x0, A, b, Aeq, beq, lb, ub, NonLinCon	straintsFun,					
Max Line search Di	rectional F					
Iter F-count f(x) constraint steplength d	lerivative 💡					
	>					
	OVR:					

Parallel Computing Tools Address...

Agenda

13:30	D	Welcome and Introduction
13:45	5	Introduction to Parallel Computing with MATLAB
		MATLAB-extensions with built-in support for Parallel Computing
14:15	5	Interactive development of task- and data-parallel Algorithms
15:15	5 📣	Coffee Break
15:30	D	GPU programming with MATLAB
		Parallel batch-jobs
		Cluster Computing with MATLAB
16:15	5	Q&A Session
17:00	0	End of Seminar

Agenda

- 13:30 Welcome and Introduction
- 13:45 Introduction to Parallel Computing with MATLAB

MATLAB-extensions with built-in support for Parallel Computing

- 14:15 Interactive development of task- and data-parallel Algorithms
- 15:15 Coffee Break
- 15:30 **4** GPU programming with MATLAB

Parallel batch-jobs

Cluster Computing with MATLAB

- 16:15 Q&A Session
- 17:00 End of Seminar

Graphics Processing Units (GPUs)

- Originally for graphics acceleration, now also used for scientific calculations
- Massively parallel array of integer and floating point processors
 - Typically hundreds of processors per card
 - GPU cores complement CPU cores
- Dedicated high-speed memory

Performance Gain with More Hardware

Common Terms Used in GPU Computing

- CUDA[®]: A parallel computing technology from NVIDIA[®]
 - Consists of a parallel computing architecture and developer tools, libraries, and programming directives for GPU computing
- **Device:** Card containing GPU and associated memory
- Host: CPU and system memory
- Kernel: Code written for execution on the GPU
 - Functions that can run on a large number of threads
 - Parallelism from each thread independently running the same program on different data

Criteria for Good Problems to Run on a GPU

• Massively parallel:

- Able to break down calculations into hundreds or thousands of independent units of work
- Motivation: Best performance when hundreds of GPU cores are kept busy

Computationally intensive:

- Computation time should significantly exceed time spent on data transfer to and from GPU
- Motivation: Data transfer is costly since
 GPU is attached to CPU via the PCI Express bus

Benchmarking A\b on the GPU

Problems for Running on the GPU

A selection of problems from the CUDA Community Showcase:

Computational Fluid Dynamics

Computational Finance

Weather Modeling

N-Body Simulations

Molecular Modeling

Digital Signal Processing

GPU Support with Parallel Computing Toolbox

- NVIDIA GPUs with compute capability 1.3 or greater
 - Includes Tesla 10-series and 20-series products
 (e.g., NVIDIA Tesla C2075 GPU: 448 processors, 6 GB memory)
 - <u>http://www.nvidia.com/object/cuda_gpus.html</u>

- Why we require compute capability 1.3
 - Support doubles (base data type in MATLAB)
 - Guarantee IEEE compliance
 - Provide cross-platform support

Options for Targeting GPUs

Ease of Use

Use GPU array interface with MATLAB built-in functions

Execute custom functions on elements of the GPU array

Create kernels from existing CUDA code and PTX files

Greater Control

Overloaded MATLAB Functions

```
A = magic(1000);
G = gpuArray(A); %Push to GPU memory
b = parallel.gpu.GPUArray.rand(1000,1); %Create on GPU
F = fft(G);
x = G\b;
z = gather(x); %Bring back into MATLAB
```

Full list of built-in functions that support GPUArray User's Guide \rightarrow GPU Computing \rightarrow Using GPUArray

Example: Solving 2D Wave Equation

 Solve 2nd order wave equation using spectral methods:

$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$$

- Run for 50 time steps on both CPU and GPU
- Using gpuArray and overloaded functions

Benchmark: Solving 2D Wave Equation CPU vs GPU

Grid Size	CPU (s)	GPU (s)	Speedup		
64 x 64	0.1004	0.3553	0.28		
128 x 128	0.1931	0.3368	0.57		
256 x 256	0.5888	0.4217	1.4		
512 x 512	2.8163	0.8243	3.4		
1024 x 1024	13.4797	2.4979	5.4		
2048 x 2048	74.9904	9.9567	7.5		

Intel Xeon Processor X5650, NVIDIA Tesla C2050 GPU

Example: Corner Detection on the GPU

Example: Corner Detection on the CPU

```
dx = cdata(2:end-1,3:end) - cdata(2:end-1,1:e)
                                            1. Calculate derivatives
dy = cdata(3:end,2:end-1) - cdata(1:end-2,2:e)
dx^2 = dx \cdot dx;
dy2 = dy.*dy;
dxy = dx.*dy;
qaussHalfWidth = max( 1, ceil( 2*qaussSigma )
                                            2. Smooth using convolution
ssg = gaussSigma^2;
t = -gaussHalfWidth : gaussHalfWidth;
gaussianKernel1D = exp(-(t.*t)/(2*ssq))/(2*pi*ssq); % The Gaussian 1D filter
gaussianKernel1D = gaussianKernel1D / sum(gaussianKernel1D);
smooth dx2 = conv2( gaussianKernel1D, gaussianKernel1D, dx2, 'valid' );
smooth dy2 = conv2( gaussianKernel1D, gaussianKernel1D, dy2, 'valid' );
smooth dxy = conv2( gaussianKernel1D, gaussianKernel1D, dxy, 'valid' );
det = smooth dx2 .* smooth dy2 - smooth dxy .* smooth dxy;
trace = smooth dx^2 + smooth dy^2;
                                            3. Calculate score
score = det - 0.25*edgePhobia*(trace.*trace);
```


Example: Corner Detection on the GPU

```
cdata = gpuArray( cdata );
                                              0. Move data to GPU
dx = cdata(2:end-1,3:end) - cdata(2:end-1,1:end-2);
dy = cdata(3:end,2:end-1) - cdata(1:end-2,2:end-1);
dx^2 = dx \cdot dx;
dy2 = dy.*dy;
dxy = dx.*dy;
gaussHalfWidth = max( 1, ceil( 2*gaussSigma ) );
ssq = gaussSigma^2;
t = -gaussHalfWidth : gaussHalfWidth;
gaussianKernel1D = exp(-(t.*t)/(2*ssq))/(2*pi*ssq); % The Gaussian 1D filter
qaussianKernel1D = qaussianKernel1D / sum(qaussianKernel1D);
smooth dx2 = conv2( gaussianKernel1D, gaussianKernel1D, dx2, 'valid' );
smooth dy2 = conv2( gaussianKernel1D, gaussianKernel1D, dy2, 'valid' );
smooth dxy = conv2( gaussianKernel1D, gaussianKernel1D, dxy, 'valid' );
det = smooth dx2 .* smooth dy2 - smooth dxy .* smooth dxy;
trace = smooth dx^2 + smooth dy^2;
score = det - 0.25*edgePhobia*(trace.*trace);
                                              4. Bring data back
score = gather( score );
```


Options for Targeting GPUs

Ease of Use

Use GPU array interface with MATLAB built-in functions

Execute custom functions on elements of the GPU array

Create kernels from existing CUDA code and PTX files

Greater Control

Using arrayfun on GPU

```
gain = 1.5;
offset = -0.1;
x = parallel.gpu.GPUArray.rand(1000,1); %Create on GPU
fh = @(x) myGPUfun(x, gain, offset);
x = arrayfun(fh, x)%Execute on GPU
function c = myGPUfun(x, gain, offset)
c = (x .* gain) + offset;
end
```

Full list of functions for use with <code>arrayfun on GPU</code> User's Guide \rightarrow GPU Computing \rightarrow Execute MATLAB Code on a GPU

Example: N-Body Simulation

- Simulation of the mutual gravitational influence of (celestial) objects
- Compute orbits for a given number of bodies for a given length of time (in years)
- Using arrayfun and gpuArray

Benchmark: N-Body Simulation CPU vs GPU

Objects	CPU (10 ³ s)	GPU (10 ³ s)	Speed up
60	0.015	0.099	0.15
120	0.027	0.099	0.27
240	0.083	0.108	0.76
480	0.559	0.126	4.42
960	2.83	0.241	11.77
1920	11.3	0.655	17.17
3360	35.3	1.822	19.38

Intel Xeon Processor W3550, NVIDIA Tesla C2050 GPU

Options for Targeting GPUs

Use GPU array interface with MATLAB built-in functions

Execute custom functions on elements of the GPU array

Create kernels from existing CUDA code and PTX files

Greater Control

Webinar: "GPU Computing with MATLAB" http://www.mathworks.com/company/events/webinars

Invoking CUDA Kernels

```
% Setup
kernel = parallel.gpu.CUDAKernel(`myKern.ptx',`myKern.cu');
% Configure
kernel.ThreadBlockSize = 512;
kernel.GridSize = [2 2];
% Run
[c, d] = feval(kernel, a, b);
```


Best Practices for using GPU with MATLAB

- Profile your code to identify your bottlenecks
- Work on large enough matrices to see the benefits of GPU parallelization
- Minimize data transfer between CPU and GPU
 - Sustained use of supported functionality
 - Create variables directly on the GPU
- Combine multiple element-wise calculations together into a single function call by using arrayfun

Support for Communications System Toolbox

- GPU implementations of LDPC Decoder, Viterbi Decoder, AWGN Channel, PSK Modulator, Block Interleaver, Block Deinterleaver
- DVB-S System Simulation Demo <u>http://www.mathworks.com/products/communications/demos.html</u>

simulation runs 7.36 times faster using the GPU-based LDPC Decoder Using CPU-based LDPC Decoder: 10 frames decoded, 2.20 sec/frame Bit error rate: 0.00785634 Using GPU-based LDPC Decoder: 10 frames decoded, 0.30 sec/frame Bit error rate: 0.00785634

Scaling Up to Run on Multiple GPUs

Summary GPU Functionality

- GPU array data type
 - Store arrays in GPU device memory
 - Algorithm support for over 100 functions
 - Integer and double support
- GPU functions
 - Invoke element-wise MATLAB functions on the GPU
- CUDA kernel interface
 - Invoke CUDA kernels directly from MATLAB
 - No MEX programming necessary

Additional Resources

- MATLAB documentation
 - MATLAB → Programming Fundamentals → Performance
- GPU Demos and Benchmarks
 - <u>http://www.mathworks.com/products/parallel-computing/demos.html</u>
- A Mandelbrot Set on The GPU
 - <u>http://blogs.mathworks.com/loren/2011/07/18/a-mandelbrot-set-on-the-gpu/</u>
- GPU Programming in MATLAB
 - <u>http://www.mathworks.com/company/newsletters/articles/gpu-programming-in-matlab.html</u>
- Parallel Computing with MATLAB on Multicore Desktops and GPUs
 - <u>http://www.mathworks.com/company/events/webinars/wbnr56334.html</u>

Agenda

- 13:30 Welcome and Introduction
- 13:45 Introduction to Parallel Computing with MATLAB

MATLAB-extensions with built-in support for Parallel Computing

- 14:15 Interactive development of task- and data-parallel Algorithms
- 15:15 Coffee Break
- **15:30 GPU programming with MATLAB**

Parallel batch-jobs

Cluster Computing with MATLAB

- 16:15 Q&A Session
- 17:00 End of Seminar

Interactive to Scheduling

Interactive

- Great for prototyping
- Immediate access to MATLAB workers
- Scheduling
 - Offloads work to other MATLAB workers (local or on a cluster)
 - Access to more computing resources for improved performance
 - Frees up local MATLAB session

Scheduling Scripts and Functions with batch

Example: Schedule Processing

- Offload parameter sweep to local workers
- Get peak value results when processing is complete
- Plot results in local MATLAB

Summary of Example

- Used batch for off-loading work
- Used matlabpool option to off-load and run in parallel
- Used load to retrieve worker's workspace

Agenda

- 13:30 Welcome and Introduction
- 13:45 Introduction to Parallel Computing with MATLAB

MATLAB-extensions with built-in support for Parallel Computing

- 14:15 Interactive development of task- and data-parallel Algorithms
- 15:15 Coffee Break
- **15:30 GPU programming with MATLAB**

Parallel batch-jobs

- **A** Cluster Computing with MATLAB
- 16:15 Q&A Session
- 17:00 End of Seminar

Scheduling Jobs and Tasks

Factors to Consider for Scheduling

- There is always an overhead to distribution
 - Combine small repetitive function calls
- Share code and data with workers efficiently
 - Set job properties (AttachedFiles, AdditionalPaths)
- Minimize I/O
 - Enable Workspace option for batch
- Capture command window output
 - Enable CaptureDiary option for batch

Optimal Number of Tasks

	Short Execution Time	Long Execution Time
Few Function Calls	Local Sequential Execution	Distributed (One task per function call)
Many Function Calls	Distributed (Aggregate function calls in tasks)	Distributed

When to Use parfor vs. jobs and tasks

parfor

- Seamless integration to user's code
- Several for loops throughout the code to convert
- Automatic load balancing

Jobs and tasks

- Explicit control
- Query results after each task is finished

Try parfor first. If it doesn't apply to your application, create jobs and tasks.

Run up to 12 Local Workers on Desktop

- Rapidly develop parallel applications on local computer
- Take full advantage of desktop power
- Separate computer cluster not required

Scale Up to Clusters, Grids and Clouds

Moving beyond the desktop

- Offload Computation:
 - Free up desktop
 - Access better computers
- Scale speed-up:
 - Use more cores
 - Go from hours to minutes
- Scale memory:
 - Utilize distributed arrays
 - Solve larger problems without re-coding

Utilize MATLAB Distributed Computing Server

- 1. Prototype code
- 2. Switch cluster profile
- 3. Utilize cluster

Migrate from Desktop to Cluster

Change hardware without changing algorithmic code

Benchmark: Parameter Sweep of ODEs

Changing number of cores used on cluster

Cluster cores	Job Time minutes	Speedup
1	239 (4 hrs)	-
12	24	10
32	8.7	28
64	4.5	53
96	3.2	75
128	2.5	96
160	2.1	111
192	2.3	104

Processor: Intel Xeon E5-2670

MATLAB Distributed Computing Server

- Extension of Parallel Computing Toolbox
- Complete pre-built solution
 - Framework and infrastructure
 - Communication between computers
- Cost-effective
 - License for number of cores you will use
 - Simplified maintenance

Parallel Computing Products

Summary Parallel Computing with MATLAB

Simple and portable

- Straightforward program speed up
- Interactive parallel programming
- Portable code

Scalable

- Support parallelism on desktop
- Treat large resource as extensions of desktop

HPC Hardware Leverage

• Supports multicore, multi-CPU, GPUs, Clusters, Grids and Clouds

Deployable

- Simple path from development to standalone application
- Supported for CPU and GPU

Integrated into organization

- Dynamic licensing
- Support for third-party schedulers

More information available on the Web

www.mathworks.com/parallel-computing

