
1 © 2013 The MathWorks, Inc.

Parallel Computing and GPU Programming

with MATLAB

MathWorks Seminar

University of Oldenburg

Feb 19, 2013

Michael Glaßer Application Engineering

Kremena Radeva Education Sales

2

Agenda

13:30 Welcome and Introduction

13:45 Introduction to Parallel Computing with MATLAB

 MATLAB–extensions with built-in support for Parallel Computing

14:15 Interactive development of task- and data-parallel Algorithms

15:15 Coffee Break

15:30 GPU programming with MATLAB

 Parallel batch-jobs

 Cluster Computing with MATLAB

16:15 Q&A Session

17:00 End of Seminar

3

Kremena Radeva Account Manager

Michael Glaßer Application Engineer

Your MathWorks Team Today

5

Agenda

13:30 Welcome and Introduction

13:45 Introduction to Parallel Computing with MATLAB

 MATLAB–extensions with built-in support for Parallel Computing

14:15 Interactive development of task- and data-parallel Algorithms

15:15 Coffee Break

15:30 GPU programming with MATLAB

 Parallel batch-jobs

 Cluster Computing with MATLAB

16:15 Q&A Session

17:00 End of Seminar

6

Example: Parameter Sweep of ODEs

 Solve a 2nd order ODE

 Simulate with different

values for b and k

 Record peak value for each run

 Plot results

 Time in serial and in parallel mode



  0
,...2,1,...2,1

5

 xkxbxm  m

b

k
x

0 5 10 15 20 25
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

D
is

p
la

ce
m

e
n
t

(x
)

m = 5, b = 2, k = 2

m = 5, b = 5, k = 5

7

Summary of Example

 Mixed task-parallel and serial

code in the same function

 Ran loops on a pool of

MATLAB resources

 Used Code Analyser to help
in converting existing for-loop

into parfor-loop

8

Solving Big Technical Problems

Large data set

Challenges

Long running

 Computationally

intensive

Wait

Larger Memory Pool

(e.g. More Machines)

Solutions

Larger Compute Pool

(e.g. More Processors)

Reduce size

of problem

You could…

9

Single

processor

Multicore Multiprocessor Cluster

Grid,

Cloud

High-Performance Hardware is Available

GPU GP

10

Parallel Computing with MATLAB

User’s Desktop

Parallel Computing Toolbox

MATLAB Workers (max 12)

 Easily experiment with

explicit parallelism on

multicore machines

 Rapidly develop parallel

applications on local

computer

 Take full advantage of

desktop power, incl.

GPU(s)

 Separate computer

cluster not required

11

Parallel Computing with MATLAB

User’s Desktop

Parallel Computing Toolbox
MATLAB Distributed Computing Server

Compute Cluster / Grid / Cloud

Jobmanager or 3rd party Scheduler

12

Why scale up to a cluster?

 Solve larger, computationally-intensive problems with

more processing power

 Solve memory-intensive problems

 Schedule computations to offload from your local

machine

13

Supported on All Platforms That Support

MATLAB

14

Job Schedulers

TORQUE

• Direct support for existing scheduler:

MDCS is simply another application

• Open API to support other schedulers

• MathWorks Job Scheduler:

turn-key solution for MATLAB-only clusters

http://www.microsoft.com/hpc/en/us/default.aspx
http://www.univa.com/

15

Cloud Computing:
Dynamic Computing and Storage Resources

 Characteristics

– Scalable (“elastic” resource)

– Virtualization

– Service over the Internet

 Benefits

– Scale computing capacity as needed

– Purchase and maintenance of cluster is not required

– Choose desired configuration (e.g., CPU, memory)

16

Going Beyond Serial Applications

Worker Worker

Worker

Worker

Worker
Worker

Worker

Worker TOOLBOXES

BLOCKSETS

Pool of MATLAB Workers

MATLAB Client

17

Configurations

 Save environment-specific parameters for your cluster

 Benefits

– Enter cluster information only once

– Modify configurations without changing MATLAB code

– Apply multiple configurations when running within same session

18

Parallel Computing with MATLAB enables you

to …

Larger Compute Pool Larger Memory Pool

11 26 41

12 27 42

13 28 43

14 29 44

15 30 45

16 31 46

17 32 47

17 33 48

19 34 49

20 35 50

21 36 51

22 37 52

Speed up Computations Work with Large Data

19

Three levels of integration

E
a

s
e

 o
f

U
s

e

G
re

a
te

r
 F

u
n

c
tio

n
a

lity
 Low-level Programming Constructs

(e.g. Jobs/Tasks, MPI-based)

High-level Programming Constructs
(e.g. parfor, batch, distributed)

Support built into Toolboxes

20

Agenda

13:30 Welcome and Introduction

13:45 Introduction to Parallel Computing with MATLAB

 MATLAB–extensions with built-in support for Parallel Computing

14:15 Interactive development of task- and data-parallel Algorithms

15:15 Coffee Break

15:30 GPU programming with MATLAB

 Parallel batch-jobs

 Cluster Computing with MATLAB

16:15 Q&A Session

17:00 End of Seminar

21

Example: Optimization combined with Monte

Carlo Simulation using built in parallelization

 Design of suspension system to minimize mean and

standard deviation of acceleration

 Account for uncertainty in mass distribution via Monte

Carlo simulation

22

Other Tools Providing

Parallel Computing Support

 Optimization Toolbox

 Global Optimization Toolbox

 Statistics Toolbox

 Simulink Design Optimization

 Bioinformatics Toolbox

 Communications Toolbox

 Model-Based Calibration Toolbox

 …

http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.html

Worker

Worker

Worker

Worker Worker

Worker

Worker TOOLBOXES

BLOCKSETS

Directly leverage functions in Parallel Computing Toolbox

http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.html
http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.html
http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.html
http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.html
http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.html
http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.html
http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.html
http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.html

23

Agenda

13:30 Welcome and Introduction

13:45 Introduction to Parallel Computing with MATLAB

 MATLAB–extensions with built-in support for Parallel Computing

14:15 Interactive development of task- and data-parallel Algorithms

15:15 Coffee Break

15:30 GPU programming with MATLAB

 Parallel batch-jobs

 Cluster Computing with MATLAB

16:15 Q&A Session

17:00 End of Seminar

24

Task Parallel Applications

Time Time

Task 1 Task 2 Task 3 Task 4 Task 1 Task 2 Task 3 Task 4

TOOLBOXES

BLOCKSETS

Worker

Worker

Worker

Worker

25

Benchmark: Multiple Independent Simulations

26

Example: Optimization combined with Monte

Carlo Simulation using a parallel for loop

 Design of suspension system to minimize mean and

standard deviation of acceleration

 Account for uncertainty in mass distribution via Monte

Carlo simulation

27

Results from Amazon EC2

28

The Mechanics of parfor Loops

Pool of MATLAB Workers

a = zeros(20, 1)

parfor i = 1:20

 a(i) = i;

end

a
a(i) = i;

a(i) = i;

a(i) = i;

a(i) = i;

Worker

Worker

Worker Worker

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3

29

Converting for to parfor

 Requirements for parfor loops

– Task independent

– Order independent

 Constraints on the loop body

– Cannot “introduce” variables (e.g. eval, load, global, etc.)

– Cannot contain break or return statements

– Cannot contain another parfor loop

30

parfor Variable Classification

 All variables referenced at the top level of the parfor

must be resolved and classified

Classification Description

Loop Serves as a loop index for arrays

Sliced An array whose segments are operated on by different

iterations of the loop

Broadcast A variable defined before the loop whose value is used

inside the loop, but never assigned inside the loop

Reduction Accumulates a value across iterations of the loop,

regardless of iteration order

Temporary Variable created inside the loop, but unlike sliced or

reduction variables, not available outside the loop

31

Considerations When Using parfor

Advantages

 parfor often involves just minimal code changes

 parallel execution of independent iterations of a for-loop

 working interactively on local or remote cluster

Limitations

 parfor automatically quits on error

 parfor doesn’t provide intermediate results

32

Advice for Converting for to parfor

 Use the Code-Analyzer to diagnose parfor issues

 If your for loop cannot be converted to a parfor, consider

wrapping a subset of the body to a function

 Read the section in the documentation on

classification of variables

 http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-

getting-up-and-running/

http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/

33

Large Datasets (Data Parallel)

11 26 41

12 27 42

13 28 43

14 29 44

15 30 45

16 31 46

17 32 47

17 33 48

19 34 49

20 35 50

21 36 51

22 37 52

TOOLBOXES

BLOCKSETS

11 26 41

12 27 42

13 28 43

14 29 44

15 30 45

16 31 46

17 32 47

17 33 48

19 34 49

20 35 50

21 36 51

22 37 52

34

Parallel Terminology

CPU Lab 2 CPU Lab 1

CPU Lab 3 CPU Lab 4

CPU Worker CPU Worker

CPU Worker CPU Worker

Task-Parallel

(Independent)

Data-Parallel

(Communication)

35

Benchmark: Solving A\b

Range of a typical

desktop computer

64000-x-64000 double-

precision > 30GB

36

Using Distributed Arrays Regular MATLAB code

37

Using FORTRAN and MPI Using Distributed Arrays

38

Example: LU Factorization with Distributed Arrays

39

Client-side Distributed Arrays and SPMD

 Client-side distributed arrays

– Class distributed

– Can be created and manipulated directly from the client.

– Simpler access to memory on labs

– Client-side visualization capabilities

 spmd

– Block of code executed on workers

– Worker specific commands

– Explicit communication between workers

– Mixture of parallel and serial code

40

spmd

 Single Program, Multiple Data

 Unlike variables used in multiple parfor loops,

distributed arrays used in multiple spmd blocks retain

state

 Use Code Analyzer to diagnose spmd issues

41

Distributed Arrays

Lab 1

Lab 2 Lab 3

Lab 4

1 2 3 4 5 6 7 8 9 10 11 12

13 14 15 16 17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32 33 34 35 36

272625

151413

321

272625

151413

321

302928

181716

654

302928

181716

654

333231

212019

987

333231

212019

987

363534

242322

121110

363534

242322

121110

42

Replicated Arrays

Lab 1

Lab 2 Lab 3 Lab 4

987

654

321

987

654

321

987

654

321

987

654

321

987

654

321

987

654

321

987

654

321

987

654

321

43

Variant Arrays

Lab 1

Lab 2 Lab 3 Lab 4

181614

12108

642

181614

12108

642

272421

181512

963

272421

181512

963

363228

242016

1284

363228

242016

1284

987

654

321

987

654

321

44

Private Arrays

Lab 1



Lab 2 Lab 3



Lab 4


 987

654

321

987

654

321

45

Parallel Functions

Lab 1

Lab 2 Lab 3

Lab 4

Lab 1

Lab 2 Lab 3

Lab 4

sum

5

1

5

1

6

2

6

2

7

3

7

3

8

4

8

4

1010 12128866

46

Operations with Communication

>> spmd, D * D, end

Lab 1

Lab 2 Lab 3 Lab 4

13

9

5

1

13

9

5

1

Lab 1

Lab 2 Lab 3

14

10

6

2

14

10

6

2

15

11

7

3

15

11

7

3

16

12

8

4

16

12

8

4

426

314

202

90

426

314

202

90

484

356

228

100

484

356

228

100

542

398

254

110

542

398

254

110

600

440

280

120

600

440

280

120

47

Indexing

>> data = D(3, 5)

Lab 1

Lab 2 Lab 3

Lab 4

272625

151413

321

272625

151413

321

302928

181716

654

302928

181716

654

333231

212019

987

333231

212019

987

363534

242322

121110

363534

242322

121110

48

Distributed Arrays and Parallel Algorithms

 Distributed arrays

– Store segments of data across participating workers

– Create from any built-in class in MATLAB

 Examples: doubles, sparse, logicals, cell arrays, and arrays of structs

 Parallel algorithms for codistributed arrays

– Matrix manipulation operations

 Examples: indexing, data type conversion, and transpose

– Parallel linear algebra functions, such as svd and lu

– Data distribution

 Automatic, specify your own, or change at any time

49

Enhanced MATLAB Functions That Operate on

Codistributed Arrays

50

MPI-Based Functions in

Parallel Computing Toolbox

Use when a high degree of control over parallel algorithm is required

 High-level abstractions of MPI functions

– labSendReceive, labBroadcast, and others

– Send, receive, and broadcast any data type in MATLAB

 Automatic bookkeeping

– Setup: communication, ranks, etc.

– Error detection: deadlocks and miscommunications

 Pluggable

– Use any MPI implementation that is binary-compatible with MPICH2

51

Example: MPI-based Functions

52

Parallel Profiler

 Profiles the execution time for a function

– Similar to the MATLAB profiler

– Includes information about the communication between labs

 Time spent in communication

 Amount of data passed between labs

 Benefits

– Identify the bottlenecks in your parallel algorithm

– Understand which operations require communication

53

One MATLABPOOL, Many Uses

54

Parallel Computing Tools Address…

Long computations

– Multiple independent

iterations

– Series of tasks

Large data problems

parfor i = 1 : n

 % do something with i

end

Task 1 Task 2 Task 3 Task 4

11 26 41

12 27 42

13 28 43

14 29 44

15 30 45

16 31 46

17 32 47

17 33 48

19 34 49

20 35 50

21 36 51

22 37 52

Task-Parallel Data-Parallel

55

Agenda

13:30 Welcome and Introduction

13:45 Introduction to Parallel Computing with MATLAB

 MATLAB–extensions with built-in support for Parallel Computing

14:15 Interactive development of task- and data-parallel Algorithms

15:15 Coffee Break

15:30 GPU programming with MATLAB

 Parallel batch-jobs

 Cluster Computing with MATLAB

16:15 Q&A Session

17:00 End of Seminar

56

Agenda

13:30 Welcome and Introduction

13:45 Introduction to Parallel Computing with MATLAB

 MATLAB–extensions with built-in support for Parallel Computing

14:15 Interactive development of task- and data-parallel Algorithms

15:15 Coffee Break

15:30 GPU programming with MATLAB

 Parallel batch-jobs

 Cluster Computing with MATLAB

16:15 Q&A Session

17:00 End of Seminar

57

Graphics Processing Units (GPUs)

 Originally for graphics acceleration, now also used for

scientific calculations

 Massively parallel array of integer and

floating point processors

– Typically hundreds of processors per card

– GPU cores complement CPU cores

 Dedicated high-speed memory

58

Core 1

Core 3 Core 4

Core 2

Cache

Performance Gain with More Hardware

Using More Cores (CPUs) Using GPUs

High Speed Device Memory

59

Common Terms Used in GPU Computing

 CUDA® : A parallel computing technology from NVIDIA®

– Consists of a parallel computing architecture and developer tools,

libraries, and programming directives for GPU computing

 Device: Card containing GPU and associated memory

 Host: CPU and system memory

 Kernel: Code written for execution on the GPU

– Functions that can run on a large number of threads

– Parallelism from each thread independently running the same program

on different data

60

Criteria for Good Problems to Run on a GPU

 Massively parallel:

– Able to break down calculations into hundreds

or thousands of independent units of work

– Motivation: Best performance when hundreds

of GPU cores are kept busy

 Computationally intensive:

– Computation time should significantly exceed

time spent on data transfer to and from GPU

– Motivation: Data transfer is costly since

GPU is attached to CPU via the PCI Express bus

61

Benchmarking A\b on the GPU

62

Computational

Fluid Dynamics

Computational

Finance

Weather

Modeling

N-Body

Simulations

Molecular

Modeling

Digital Signal

Processing

Problems for Running on the GPU

A selection of problems from the CUDA Community Showcase:

http://www.nvidia.com/object/cuda_showcase_html.html

63

GPU Support with Parallel Computing Toolbox

 NVIDIA GPUs with compute capability 1.3 or greater

– Includes Tesla 10-series

and 20-series products

(e.g., NVIDIA Tesla C2075 GPU:

 448 processors, 6 GB memory)

– http://www.nvidia.com/object/cuda_gpus.html

 Why we require compute capability 1.3

– Support doubles (base data type in MATLAB)

– Guarantee IEEE compliance

– Provide cross-platform support

http://www.nvidia.com/object/cuda_gpus.html
http://www.nvidia.com/object/cuda_gpus.html
http://www.nvidia.com/object/cuda_gpus.html

64

Options for Targeting GPUs

Use GPU array interface with MATLAB

built-in functions

Execute custom functions on elements

of the GPU array

Create kernels from existing CUDA

code and PTX files

E
a

s
e

 o
f

U
s

e

G
re

a
te

r C
o

n
tro

l

65

Overloaded MATLAB Functions

A = magic(1000);

G = gpuArray(A); %Push to GPU memory

b = parallel.gpu.GPUArray.rand(1000,1); %Create on GPU

F = fft(G);

x = G\b;

z = gather(x); %Bring back into MATLAB

Full list of built-in functions that support GPUArray

 User’s Guide → GPU Computing → Using GPUArray

66

Example: Solving 2D Wave Equation

 Solve 2nd order wave

equation using spectral

methods:

𝜕2𝑢

𝜕𝑡2
=

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2

 Run for 50 time steps on

both CPU and GPU

 Using gpuArray and

overloaded functions

67

Benchmark: Solving 2D Wave Equation
CPU vs GPU

Intel Xeon Processor X5650, NVIDIA Tesla C2050 GPU

Grid Size
CPU

(s)

GPU

(s)
Speedup

64 x 64 0.1004 0.3553 0.28

128 x 128 0.1931 0.3368 0.57

256 x 256 0.5888 0.4217 1.4

512 x 512 2.8163 0.8243 3.4

1024 x 1024 13.4797 2.4979 5.4

2048 x 2048 74.9904 9.9567 7.5

68

Example: Corner Detection on the GPU

69

Example: Corner Detection on the CPU

dx = cdata(2:end-1,3:end) - cdata(2:end-1,1:end-2);

dy = cdata(3:end,2:end-1) - cdata(1:end-2,2:end-1);

dx2 = dx.*dx;

dy2 = dy.*dy;

dxy = dx.*dy;

gaussHalfWidth = max(1, ceil(2*gaussSigma));

ssq = gaussSigma^2;

t = -gaussHalfWidth : gaussHalfWidth;

gaussianKernel1D = exp(-(t.*t)/(2*ssq))/(2*pi*ssq); % The Gaussian 1D filter

gaussianKernel1D = gaussianKernel1D / sum(gaussianKernel1D);

smooth_dx2 = conv2(gaussianKernel1D, gaussianKernel1D, dx2, 'valid');

smooth_dy2 = conv2(gaussianKernel1D, gaussianKernel1D, dy2, 'valid');

smooth_dxy = conv2(gaussianKernel1D, gaussianKernel1D, dxy, 'valid');

det = smooth_dx2 .* smooth_dy2 - smooth_dxy .* smooth_dxy;

trace = smooth_dx2 + smooth_dy2;

score = det - 0.25*edgePhobia*(trace.*trace);

1. Calculate derivatives

2. Smooth using convolution

3. Calculate score

70

Example: Corner Detection on the GPU

cdata = gpuArray(cdata);

dx = cdata(2:end-1,3:end) - cdata(2:end-1,1:end-2);

dy = cdata(3:end,2:end-1) - cdata(1:end-2,2:end-1);

dx2 = dx.*dx;

dy2 = dy.*dy;

dxy = dx.*dy;

gaussHalfWidth = max(1, ceil(2*gaussSigma));

ssq = gaussSigma^2;

t = -gaussHalfWidth : gaussHalfWidth;

gaussianKernel1D = exp(-(t.*t)/(2*ssq))/(2*pi*ssq); % The Gaussian 1D filter

gaussianKernel1D = gaussianKernel1D / sum(gaussianKernel1D);

smooth_dx2 = conv2(gaussianKernel1D, gaussianKernel1D, dx2, 'valid');

smooth_dy2 = conv2(gaussianKernel1D, gaussianKernel1D, dy2, 'valid');

smooth_dxy = conv2(gaussianKernel1D, gaussianKernel1D, dxy, 'valid');

det = smooth_dx2 .* smooth_dy2 - smooth_dxy .* smooth_dxy;

trace = smooth_dx2 + smooth_dy2;

score = det - 0.25*edgePhobia*(trace.*trace);

score = gather(score);

0. Move data to GPU

4. Bring data back

71

Options for Targeting GPUs

Use GPU array interface with MATLAB

built-in functions

Execute custom functions on elements

of the GPU array

Create kernels from existing CUDA

code and PTX files

E
a

s
e

 o
f

U
s

e

G
re

a
te

r C
o

n
tro

l

72

Using arrayfun on GPU

gain = 1.5;

offset = -0.1;

x = parallel.gpu.GPUArray.rand(1000,1); %Create on GPU

fh = @(x) myGPUfun(x, gain, offset);

x = arrayfun(fh, x)%Execute on GPU

function c = myGPUfun(x, gain, offset)

c = (x .* gain) + offset;

end

Full list of functions for use with arrayfun on GPU

 User’s Guide → GPU Computing → Execute MATLAB Code on a GPU

73

Example: N-Body Simulation

 Simulation of the mutual gravitational influence of

(celestial) objects

 Compute orbits for a given number of bodies for a given

length of time (in years)

 Using arrayfun and

gpuArray

74

Benchmark: N-Body Simulation

CPU vs GPU

Intel Xeon Processor W3550, NVIDIA Tesla C2050 GPU

Objects
CPU

(103s)

GPU

(103 s)

Speed

up

60 0.015 0.099 0.15

120 0.027 0.099 0.27

240 0.083 0.108 0.76

480 0.559 0.126 4.42

960 2.83 0.241 11.77

1920 11.3 0.655 17.17

3360 35.3 1.822 19.38

75

Options for Targeting GPUs

Use GPU array interface with MATLAB

built-in functions

Execute custom functions on elements

of the GPU array

Create kernels from existing CUDA

code and PTX files

E
a

s
e

 o
f

U
s

e

G
re

a
te

r C
o

n
tro

l

Webinar: “GPU Computing with MATLAB”

http://www.mathworks.com/company/events/webinars

76

Invoking CUDA Kernels

% Setup

kernel = parallel.gpu.CUDAKernel(‘myKern.ptx’,‘myKern.cu’);

% Configure

kernel.ThreadBlockSize = 512;

kernel.GridSize = [2 2];

% Run

[c, d] = feval(kernel, a, b);

77

Best Practices for using GPU with MATLAB

 Profile your code to identify your bottlenecks

 Work on large enough matrices to see the benefits of

GPU parallelization

 Minimize data transfer between CPU and GPU

– Sustained use of supported functionality

– Create variables directly on the GPU

 Combine multiple element-wise calculations together
into a single function call by using arrayfun

78

Support for Communications System Toolbox

 GPU implementations of LDPC Decoder, Viterbi

Decoder, AWGN Channel, PSK Modulator, Block

Interleaver, Block Deinterleaver

 DVB-S System Simulation Demo
http://www.mathworks.com/products/communications/demos.html

http://www.mathworks.com/products/communications/demos.html

79

Scaling Up to Run on Multiple GPUs

Worker
Worker

Worker Worker

Worker

Worker

Worker

Worker

80

Summary GPU Functionality

 GPU array data type

– Store arrays in GPU device memory

– Algorithm support for over 100 functions

– Integer and double support

 GPU functions

– Invoke element-wise MATLAB functions on the GPU

 CUDA kernel interface

– Invoke CUDA kernels directly from MATLAB

– No MEX programming necessary

81

Additional Resources

 MATLAB documentation

– MATLAB  Programming Fundamentals  Performance

 GPU Demos and Benchmarks

– http://www.mathworks.com/products/parallel-computing/demos.html

 A Mandelbrot Set on The GPU

– http://blogs.mathworks.com/loren/2011/07/18/a-mandelbrot-set-

on-the-gpu/

 GPU Programming in MATLAB

– http://www.mathworks.com/company/newsletters/articles/gpu-

programming-in-matlab.html

 Parallel Computing with MATLAB on Multicore Desktops and GPUs

– http://www.mathworks.com/company/events/webinars/wbnr56334.html

http://www.mathworks.com/products/parallel-computing/demos.html
http://www.mathworks.com/products/parallel-computing/demos.html
http://www.mathworks.com/products/parallel-computing/demos.html
http://blogs.mathworks.com/loren/2011/07/18/a-mandelbrot-set-on-the-gpu/
http://blogs.mathworks.com/loren/2011/07/18/a-mandelbrot-set-on-the-gpu/
http://blogs.mathworks.com/loren/2011/07/18/a-mandelbrot-set-on-the-gpu/
http://blogs.mathworks.com/loren/2011/07/18/a-mandelbrot-set-on-the-gpu/
http://blogs.mathworks.com/loren/2011/07/18/a-mandelbrot-set-on-the-gpu/
http://blogs.mathworks.com/loren/2011/07/18/a-mandelbrot-set-on-the-gpu/
http://blogs.mathworks.com/loren/2011/07/18/a-mandelbrot-set-on-the-gpu/
http://blogs.mathworks.com/loren/2011/07/18/a-mandelbrot-set-on-the-gpu/
http://blogs.mathworks.com/loren/2011/07/18/a-mandelbrot-set-on-the-gpu/
http://blogs.mathworks.com/loren/2011/07/18/a-mandelbrot-set-on-the-gpu/
http://blogs.mathworks.com/loren/2011/07/18/a-mandelbrot-set-on-the-gpu/
http://blogs.mathworks.com/loren/2011/07/18/a-mandelbrot-set-on-the-gpu/
http://blogs.mathworks.com/loren/2011/07/18/a-mandelbrot-set-on-the-gpu/
http://www.mathworks.com/company/newsletters/articles/gpu-programming-in-matlab.html
http://www.mathworks.com/company/newsletters/articles/gpu-programming-in-matlab.html
http://www.mathworks.com/company/newsletters/articles/gpu-programming-in-matlab.html
http://www.mathworks.com/company/newsletters/articles/gpu-programming-in-matlab.html
http://www.mathworks.com/company/newsletters/articles/gpu-programming-in-matlab.html
http://www.mathworks.com/company/newsletters/articles/gpu-programming-in-matlab.html
http://www.mathworks.com/company/newsletters/articles/gpu-programming-in-matlab.html
http://www.mathworks.com/company/newsletters/articles/gpu-programming-in-matlab.html
http://www.mathworks.com/company/events/webinars/wbnr56334.html
http://www.mathworks.com/company/events/webinars/wbnr56334.html

82

Agenda

13:30 Welcome and Introduction

13:45 Introduction to Parallel Computing with MATLAB

 MATLAB–extensions with built-in support for Parallel Computing

14:15 Interactive development of task- and data-parallel Algorithms

15:15 Coffee Break

15:30 GPU programming with MATLAB

 Parallel batch-jobs

 Cluster Computing with MATLAB

16:15 Q&A Session

17:00 End of Seminar

83

Interactive to Scheduling

 Interactive

– Great for prototyping

– Immediate access to MATLAB workers

 Scheduling

– Offloads work to other MATLAB workers (local or on a cluster)

– Access to more computing resources for improved performance

– Frees up local MATLAB session

84

Scheduling Scripts and Functions with batch

TOOLBOXES

BLOCKSETS

Result

Work
Worker

Worker

Worker

Worker

85

Example: Schedule Processing

 Offload parameter sweep

to local workers

 Get peak value results when

processing is complete

 Plot results in local MATLAB

0 5 10 15 20 25
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

D
is

p
la

ce
m

e
n
t

(x
)

m = 5, b = 2, k = 2

m = 5, b = 5, k = 5

86

Summary of Example

 Used batch for off-loading work

 Used matlabpool option to

off-load and run in parallel

 Used load to retrieve

worker’s workspace

0 5 10 15 20 25
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

D
is

p
la

ce
m

e
n
t

(x
)

m = 5, b = 2, k = 2

m = 5, b = 5, k = 5

87

Agenda

13:30 Welcome and Introduction

13:45 Introduction to Parallel Computing with MATLAB

 MATLAB–extensions with built-in support for Parallel Computing

14:15 Interactive development of task- and data-parallel Algorithms

15:15 Coffee Break

15:30 GPU programming with MATLAB

 Parallel batch-jobs

 Cluster Computing with MATLAB

16:15 Q&A Session

17:00 End of Seminar

88

Scheduling Jobs and Tasks

TOOLBOXES

BLOCKSETS

Scheduler

Job

Results

Worker

Worker

Worker

Worker

Task

Result

Task

Task

Task

Result

Result

Result

89

Factors to Consider for Scheduling

 There is always an overhead to distribution

– Combine small repetitive function calls

 Share code and data with workers efficiently

– Set job properties (AttachedFiles, AdditionalPaths)

 Minimize I/O

– Enable Workspace option for batch

 Capture command window output

– Enable CaptureDiary option for batch

90

Optimal Number of Tasks

Short

Execution Time

Long

Execution Time

Few

Function

Calls

Local Sequential

Execution

Distributed

(One task per

function call)

Many

Function

Calls

Distributed

(Aggregate function

calls in tasks)

Distributed

91

When to Use parfor vs. jobs and tasks

parfor

 Seamless integration to

user’s code

 Several for loops

throughout the code to

convert

 Automatic load balancing

Jobs and tasks

 Explicit control

 Query results after each

task is finished

Try parfor first. If it doesn’t apply to your application,

create jobs and tasks.

92

Run up to 12 Local Workers on Desktop

 Rapidly develop parallel

applications on local

computer

 Take full advantage of

desktop power

 Separate computer

cluster not required

Desktop Computer

Parallel Computing Toolbox

93

Scale Up to Clusters, Grids and Clouds

Desktop Computer

Parallel Computing Toolbox

Computer Cluster

MATLAB Distributed Computing Server

Scheduler

94

Desktop Computer

Parallel Computing Toolbox

Moving beyond the desktop

 Offload Computation:

– Free up desktop

– Access better computers

 Scale speed-up:

– Use more cores

– Go from hours to minutes

 Scale memory:

– Utilize distributed arrays

– Solve larger problems without re-coding

Computer Cluster

95

Desktop Computer

Parallel Computing Toolbox

Your

MATLAB

code

Utilize MATLAB Distributed Computing Server

1. Prototype code

2. Switch cluster profile

3. Utilize cluster

profile

Computer Cluster

MATLAB Distributed Computing Server

Head

Node

96

Migrate from Desktop to Cluster

 Change hardware without changing algorithmic code



  0
,...2,1,...2,1

5

 xkxbxm 

 Parameter Sweep of ODEs
Parallel for-loops

97

Benchmark: Parameter Sweep of ODEs
Changing number of cores used on cluster

Processor: Intel Xeon E5-2670

Cluster

cores

Job Time

minutes
Speedup

1 239 (4 hrs) -

12 24 10

32 8.7 28

64 4.5 53

96 3.2 75

128 2.5 96

160 2.1 111

192 2.3 104
1 32 64 96 128 160 192

0

70

140

210

280

T
im

e
 (

m
in

u
te

s
)

Total cores used on Cluster

Relative Performance

1 32 64 96 128 160 192
1

32

64

96

128

160

192

S
p

e
e

d
-u

p

98

 Extension of Parallel Computing Toolbox

 Complete pre-built solution

– Framework and infrastructure

– Communication between computers

 Cost-effective

– License for number of cores you will use

– Simplified maintenance

MATLAB Distributed Computing Server

Computer Cluster

MATLAB Distributed Computing Server

Head

Node

99

Parallel Computing Products

100

Summary Parallel Computing with MATLAB

Simple and portable

• Straightforward program speed up

• Interactive parallel programming

• Portable code

Scalable

• Support parallelism on desktop

• Treat large resource as

extensions of desktop

HPC Hardware Leverage

• Supports multicore, multi-CPU,

GPUs, Clusters, Grids and Clouds

Deployable

• Simple path from development to

standalone application

• Supported for CPU and GPU

Integrated into organization

• Dynamic licensing

• Support for third-party schedulers

101

More information available on the Web

www.mathworks.com/parallel-computing

