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Example: Parameter Sweep of ODEs 

 Solve a 2nd order ODE 

 

 

 
 

 Simulate with different 

values for b and k 
 

 Record peak value for each run 
 

 Plot results 
 

 Time in serial and in parallel mode 
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Summary of Example 

 Mixed task-parallel and serial 

code in the same function 

 

 Ran loops on a pool of 

MATLAB resources 

 

 Used Code Analyser to help 
in converting existing for-loop 

into parfor-loop 
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Solving Big Technical Problems 

Large data set           

Challenges 

Long running 

 

 Computationally 

intensive 

Wait 

Larger Memory Pool 

(e.g. More Machines) 

Solutions 

Larger Compute Pool 

(e.g. More Processors) 

Reduce size 

of problem 

You could… 
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Single  

processor 

Multicore Multiprocessor Cluster 

Grid, 

Cloud 

High-Performance Hardware is Available 

 

GPU GP 
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Parallel Computing with MATLAB 

User’s Desktop 

Parallel Computing Toolbox 

MATLAB Workers (max 12) 

 Easily experiment with 

explicit parallelism on 

multicore machines 
 

 Rapidly develop parallel 

applications on local 

computer 
 

 Take full advantage of 

desktop power, incl. 

GPU(s) 
 

 Separate computer 

cluster not required 
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Parallel Computing with MATLAB 

User’s Desktop 

Parallel Computing Toolbox 
MATLAB Distributed Computing Server 

Compute Cluster / Grid / Cloud 

Jobmanager or 3rd party Scheduler 
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Why scale up to a cluster? 

 Solve larger, computationally-intensive problems with 

more processing power 

 

 Solve memory-intensive problems 

 

 Schedule computations to offload from your local 

machine 
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Supported on All Platforms That Support  

MATLAB 
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Job Schedulers 

TORQUE 

• Direct support for existing scheduler: 

MDCS is simply another application 

• Open API to support other schedulers 

• MathWorks Job Scheduler:  

turn-key solution for MATLAB-only clusters 

http://www.microsoft.com/hpc/en/us/default.aspx
http://www.univa.com/


15 

Cloud Computing: 
Dynamic Computing and Storage Resources 

 

 Characteristics 

– Scalable (“elastic” resource) 

– Virtualization 

– Service over the Internet 
 
 

 Benefits  

– Scale computing capacity as needed 

– Purchase and maintenance of cluster is not required 

– Choose desired configuration (e.g., CPU, memory) 
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Going Beyond Serial Applications 

Worker Worker 

Worker 

Worker 

Worker 
Worker 

Worker 

Worker TOOLBOXES 

BLOCKSETS 

Pool of MATLAB Workers 

MATLAB Client 
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Configurations 

 Save environment-specific parameters for your cluster 

 Benefits 

– Enter cluster information only once 

– Modify configurations without changing MATLAB code 

– Apply multiple configurations when running within same session 
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Parallel Computing with MATLAB enables you 

to … 

Larger Compute Pool Larger Memory Pool 

11 26 41 

12 27 42 

13 28 43 

14 29 44 

15 30 45 

16 31 46 

17 32 47 

17 33 48 

19 34 49 

20 35 50 

21 36 51 

22 37 52 

Speed up Computations Work with Large Data 
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Three levels of integration 
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 Low-level Programming Constructs 

(e.g. Jobs/Tasks, MPI-based) 

 

High-level Programming Constructs 
(e.g. parfor, batch, distributed) 

 

Support built into Toolboxes  
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Example: Optimization combined with Monte 

Carlo Simulation using built in parallelization 

 Design of suspension system to minimize mean and 

standard deviation of acceleration 
 

 Account for uncertainty in mass distribution via Monte 

Carlo simulation 



22 

Other Tools Providing 

Parallel Computing Support 

 Optimization Toolbox 

 Global Optimization Toolbox 

 Statistics Toolbox 

 Simulink Design Optimization 

 Bioinformatics Toolbox 

 Communications Toolbox 

 Model-Based Calibration Toolbox 

 … 

 
http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.html 

Worker 

Worker 

Worker 

Worker Worker 

Worker 

Worker TOOLBOXES 

BLOCKSETS 

Directly leverage functions in Parallel Computing Toolbox 

http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.html
http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.html
http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.html
http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.html
http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.html
http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.html
http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.html
http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.html
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Task Parallel Applications 

Time Time 

Task 1 Task 2 Task 3 Task 4 Task 1 Task 2 Task 3 Task 4 

TOOLBOXES 

BLOCKSETS 

Worker 

Worker 

Worker 

Worker 
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Benchmark: Multiple Independent Simulations  
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Example: Optimization combined with Monte 

Carlo Simulation using a parallel for loop 

 Design of suspension system to minimize mean and 

standard deviation of acceleration 
 

 Account for uncertainty in mass distribution via Monte 

Carlo simulation 
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Results from Amazon EC2 
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The Mechanics of parfor Loops 

Pool of MATLAB Workers 

 

a = zeros(20, 1) 

parfor i = 1:20  

 a(i) = i; 

end 

a 
a(i) = i; 

a(i) = i; 

a(i) = i; 

a(i) = i; 

Worker 

Worker 

Worker Worker 

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 
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Converting for to parfor  

 Requirements for parfor loops  

– Task independent 

– Order independent 

 

 Constraints on the loop body 

– Cannot “introduce” variables (e.g. eval, load, global, etc.) 

– Cannot contain break or return statements 

– Cannot contain another parfor loop 
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parfor Variable Classification 

 All variables referenced at the top level of the parfor 

must be resolved and classified 

 

Classification Description 

Loop Serves as a loop index for arrays 

Sliced An array whose segments are operated on by different 

iterations of the loop 

Broadcast A variable defined before the loop whose value is used 

inside the loop, but never assigned inside the loop 

Reduction Accumulates a value across iterations of the loop, 

regardless of iteration order 

Temporary Variable created inside the loop, but unlike sliced or 

reduction variables, not available outside the loop 
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Considerations When Using parfor 

Advantages 

 parfor often involves just minimal code changes 

 parallel execution of independent iterations of a for-loop 

 working interactively on local or remote cluster 

 

Limitations  

 parfor automatically quits on error 

 parfor doesn’t provide intermediate results 
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Advice for Converting for to parfor  

 Use the Code-Analyzer to diagnose parfor issues  

 

 If your for loop cannot be converted to a parfor, consider 

wrapping a subset of the body to a function 

 

 Read the section in the documentation on 

classification of variables 

 

 http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-

getting-up-and-running/ 

 

http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
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Large Datasets (Data Parallel) 
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TOOLBOXES 

BLOCKSETS 

11 26 41 
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13 28 43 

14 29 44 
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19 34 49 

20 35 50 

21 36 51 

22 37 52 
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Parallel Terminology 

CPU Lab 2 CPU Lab 1 

CPU Lab 3 CPU Lab 4 

CPU Worker CPU Worker 

CPU Worker CPU Worker 

Task-Parallel 

(Independent) 

Data-Parallel 

(Communication) 
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Benchmark: Solving A\b 

Range of a typical 

desktop computer 

64000-x-64000 double-

precision > 30GB 
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Using Distributed Arrays Regular MATLAB code 
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Using FORTRAN and MPI Using Distributed Arrays 
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Example: LU Factorization with Distributed Arrays 
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Client-side Distributed Arrays and SPMD 

 

 
 Client-side distributed arrays 

– Class distributed 

– Can be created and manipulated directly from the client.  

– Simpler access to memory on labs 

– Client-side visualization capabilities 

 

 spmd 

– Block of code executed on workers 

– Worker specific commands 

– Explicit communication between workers 

– Mixture of parallel and serial code 
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spmd 

 Single Program, Multiple Data 

 Unlike variables used in multiple parfor loops, 

distributed arrays used in multiple spmd blocks retain 

state 

 Use Code Analyzer to diagnose spmd issues  
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Distributed Arrays 

Lab 1 

 

 

 

 

 

 

Lab 2 Lab 3 

 

 

 

 

 

 

Lab 4 

 

 

 

 

 
 

1 2 3 4 5 6 7 8 9 10 11 12 

13 14 15 16 17 18 19 20 21 22 23 24 

25 26 27 28 29 30 31 32 33 34 35 36 

272625

151413

321

272625

151413

321

302928

181716

654

302928

181716

654

333231

212019

987

333231

212019

987

363534

242322

121110

363534

242322

121110
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Replicated Arrays 

Lab 1 

 

 

 

 

 

 

Lab 2 Lab 3 Lab 4 

987

654

321

987

654

321

987

654

321

987

654

321

987

654

321

987

654

321

987

654

321

987

654

321
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Variant Arrays 

Lab 1 

 

 

 

 

 

 

Lab 2 Lab 3 Lab 4 

181614

12108

642

181614

12108

642

272421

181512

963

272421

181512

963

363228

242016

1284

363228

242016

1284

987

654

321

987

654

321
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Private Arrays 

Lab 1 

 

 

 

 

 
 

 

 

 

 

 

Lab 2 Lab 3 

 

 

 

 

 

 

Lab 4 

 

 

 

 

 
 987

654

321

987

654

321
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Parallel Functions 

Lab 1 

 

 

Lab 2 Lab 3 

 

 

Lab 4 

 

 
 

Lab 1 

 

 

 

Lab 2 Lab 3 

 

 

 

Lab 4 

 

 

 
 

sum 

5

1

5

1

6

2

6

2

7

3

7

3

8

4

8

4

1010 12128866
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Operations with Communication 

>> spmd, D * D, end 

Lab 1 

 

 

 

 

 

 

Lab 2 Lab 3 Lab 4 

 
 

13

9

5

1

13

9

5

1

Lab 1 

 

 

 

 

 

 

Lab 2 Lab 3 

14
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6

2

14

10

6

2

15

11

7

3

15

11

7
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16
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426

314

202

90

426

314

202

90

484

356
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100

484

356

228

100

542

398

254

110

542

398

254

110

600

440

280

120

600

440

280

120
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Indexing 

>> data = D(3, 5) 

Lab 1 

 

 

 

 

 

 

Lab 2 Lab 3 

 

 

 

 

 

 

Lab 4 
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Distributed Arrays and Parallel Algorithms 

 Distributed arrays 

– Store segments of data across participating workers 

– Create from any built-in class in MATLAB 

 Examples: doubles, sparse, logicals, cell arrays, and arrays of structs 

 

 Parallel algorithms for codistributed arrays 

– Matrix manipulation operations 

 Examples: indexing, data type conversion, and transpose 

– Parallel linear algebra functions, such as svd and lu 

– Data distribution 

 Automatic, specify your own, or change at any time 
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Enhanced MATLAB Functions That Operate on 

Codistributed Arrays 
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MPI-Based Functions in  

Parallel Computing Toolbox 

Use when a high degree of control over parallel algorithm is required 

 

 High-level abstractions of MPI functions 

– labSendReceive, labBroadcast, and others 

– Send, receive, and broadcast any data type in MATLAB 

 

 Automatic bookkeeping 

– Setup: communication, ranks, etc. 

– Error detection: deadlocks and miscommunications 
 

 Pluggable  

– Use any MPI implementation that is binary-compatible with MPICH2 
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Example: MPI-based Functions 
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Parallel Profiler 

 Profiles the execution time for a function  

– Similar to the MATLAB profiler 

– Includes information about the communication between labs 

 Time spent in communication 

 Amount of data passed between labs 

 

 Benefits 

– Identify the bottlenecks in your parallel algorithm 

– Understand which operations require communication  
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One MATLABPOOL, Many Uses 
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Parallel Computing Tools Address… 

 

Long computations 
 

– Multiple independent 

iterations 

 

 

 
 

– Series of tasks 

 

 

 

Large data problems 

parfor i = 1 : n 

   % do something with i 

end 

Task 1 Task 2 Task 3 Task 4 

11 26 41 

12 27 42 

13 28 43 

14 29 44 

15 30 45 

16 31 46 

17 32 47 

17 33 48 

19 34 49 

20 35 50 

21 36 51 

22 37 52 

Task-Parallel Data-Parallel 
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Graphics Processing Units (GPUs) 

 Originally for graphics acceleration, now also used for 

scientific calculations 
 

 Massively parallel array of integer and 

floating point processors 

– Typically hundreds of processors per card 

– GPU cores complement CPU cores 

 

 Dedicated high-speed memory 
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Core 1 

Core 3 Core 4 

Core 2 

Cache 

Performance Gain with More Hardware 

Using More Cores (CPUs) Using GPUs 

High Speed Device Memory 
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Common Terms Used in GPU Computing 

 CUDA® : A parallel computing technology from NVIDIA® 

– Consists of a parallel computing architecture and developer tools, 

libraries, and programming directives for GPU computing 
 

 Device:  Card containing GPU and associated memory 
 

 Host:  CPU and system memory 
 

 Kernel:  Code written for execution on the GPU 

– Functions that can run on a large number of threads 

– Parallelism from each thread independently running the same program 

on different data 
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Criteria for Good Problems to Run on a GPU 

 Massively parallel: 

– Able to break down calculations into hundreds   

or thousands of independent units of work 

– Motivation: Best performance when hundreds 

of GPU cores are kept busy 

 

 Computationally intensive: 

– Computation time should significantly exceed 

time spent on data transfer to and from GPU  

– Motivation: Data transfer is costly since  

GPU is attached to CPU via the PCI Express bus 
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Benchmarking A\b on the GPU 
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Computational 

Fluid Dynamics 

Computational 

Finance 

Weather 

Modeling 

N-Body 

Simulations 

Molecular 

Modeling 

Digital Signal 

Processing 

Problems for Running on the GPU 

A selection of problems from the CUDA Community Showcase: 

http://www.nvidia.com/object/cuda_showcase_html.html 
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GPU Support with Parallel Computing Toolbox 

 NVIDIA GPUs with compute capability 1.3 or greater 

– Includes Tesla 10-series 

and 20-series products  

(e.g., NVIDIA Tesla C2075 GPU: 

 448 processors, 6 GB memory) 

– http://www.nvidia.com/object/cuda_gpus.html 

 

 Why we require compute capability 1.3 

– Support doubles (base data type in MATLAB) 

– Guarantee IEEE compliance  

– Provide cross-platform support 

 

http://www.nvidia.com/object/cuda_gpus.html
http://www.nvidia.com/object/cuda_gpus.html
http://www.nvidia.com/object/cuda_gpus.html
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Options for Targeting GPUs 

Use GPU array interface with MATLAB 

built-in functions 

Execute custom functions on elements 

of the GPU array 

 

Create kernels from existing CUDA 

code and PTX files 
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Overloaded MATLAB Functions 

 

A = magic(1000); 

G = gpuArray(A); %Push to GPU memory 

b = parallel.gpu.GPUArray.rand(1000,1); %Create on GPU  

F = fft(G);    

x = G\b;     

z = gather(x); %Bring back into MATLAB 

 

 

 

Full list of built-in functions that support GPUArray 

 User’s Guide → GPU Computing →  Using GPUArray 
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Example: Solving 2D Wave Equation 

 

 Solve 2nd order wave 

equation using spectral 

methods: 
 

𝜕2𝑢

𝜕𝑡2
=

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
  

 

 

 Run for 50 time steps on 

both CPU and GPU 
 

 Using gpuArray and  

overloaded functions  
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Benchmark: Solving 2D Wave Equation 
CPU vs GPU 

Intel Xeon Processor X5650, NVIDIA Tesla C2050 GPU 

Grid Size 
CPU 

(s) 

GPU 

(s) 
Speedup 

64 x 64 0.1004 0.3553 0.28 

128 x 128 0.1931 0.3368 0.57 

256 x 256 0.5888 0.4217 1.4 

512 x 512 2.8163 0.8243 3.4 

1024 x 1024 13.4797 2.4979 5.4 

2048 x 2048 74.9904 9.9567 7.5 



68 

Example: Corner Detection on the GPU 
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Example: Corner Detection on the CPU 

 

 

dx = cdata(2:end-1,3:end) - cdata(2:end-1,1:end-2); 

dy = cdata(3:end,2:end-1) - cdata(1:end-2,2:end-1); 

dx2 = dx.*dx; 

dy2 = dy.*dy; 

dxy = dx.*dy; 

 

gaussHalfWidth = max( 1, ceil( 2*gaussSigma ) ); 

ssq = gaussSigma^2; 

t = -gaussHalfWidth : gaussHalfWidth; 

gaussianKernel1D = exp(-(t.*t)/(2*ssq))/(2*pi*ssq);     % The Gaussian 1D filter 

gaussianKernel1D = gaussianKernel1D / sum(gaussianKernel1D); 

smooth_dx2 = conv2( gaussianKernel1D, gaussianKernel1D, dx2, 'valid' ); 

smooth_dy2 = conv2( gaussianKernel1D, gaussianKernel1D, dy2, 'valid' ); 

smooth_dxy = conv2( gaussianKernel1D, gaussianKernel1D, dxy, 'valid' ); 

 

det = smooth_dx2 .* smooth_dy2 - smooth_dxy .* smooth_dxy; 

trace = smooth_dx2 + smooth_dy2; 

score = det - 0.25*edgePhobia*(trace.*trace); 

 

 

 

 

1. Calculate derivatives 

2. Smooth using convolution 

3. Calculate score 
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Example: Corner Detection on the GPU 

cdata = gpuArray( cdata ); 

 

dx = cdata(2:end-1,3:end) - cdata(2:end-1,1:end-2); 

dy = cdata(3:end,2:end-1) - cdata(1:end-2,2:end-1); 

dx2 = dx.*dx; 

dy2 = dy.*dy; 

dxy = dx.*dy; 

 

gaussHalfWidth = max( 1, ceil( 2*gaussSigma ) ); 

ssq = gaussSigma^2; 

t = -gaussHalfWidth : gaussHalfWidth; 

gaussianKernel1D = exp(-(t.*t)/(2*ssq))/(2*pi*ssq);     % The Gaussian 1D filter 

gaussianKernel1D = gaussianKernel1D / sum(gaussianKernel1D); 

smooth_dx2 = conv2( gaussianKernel1D, gaussianKernel1D, dx2, 'valid' ); 

smooth_dy2 = conv2( gaussianKernel1D, gaussianKernel1D, dy2, 'valid' ); 

smooth_dxy = conv2( gaussianKernel1D, gaussianKernel1D, dxy, 'valid' ); 

 

det = smooth_dx2 .* smooth_dy2 - smooth_dxy .* smooth_dxy; 

trace = smooth_dx2 + smooth_dy2; 

score = det - 0.25*edgePhobia*(trace.*trace); 

 

score = gather( score ); 

 

 

0. Move data to GPU 

4. Bring data back 
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Options for Targeting GPUs 

Use GPU array interface with MATLAB 

built-in functions 

Execute custom functions on elements 

of the GPU array 

 

Create kernels from existing CUDA 

code and PTX files 
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Using arrayfun on GPU  

gain = 1.5;  

offset = -0.1; 

x = parallel.gpu.GPUArray.rand(1000,1); %Create on GPU 

fh = @(x) myGPUfun(x, gain, offset); 

x = arrayfun(fh, x)%Execute on GPU 

 

function c = myGPUfun(x, gain, offset)  

c = (x .* gain) + offset; 

end 

 

Full list of functions for use with arrayfun on GPU 

 User’s Guide → GPU Computing → Execute MATLAB Code on a GPU 
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Example: N-Body Simulation 

 Simulation of the mutual gravitational influence of  

(celestial) objects 
 

 

 Compute orbits for a given number of bodies for a given 

length of time (in years) 
 

 

 Using arrayfun and  

gpuArray  
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Benchmark: N-Body Simulation 

CPU vs GPU 

Intel Xeon Processor W3550, NVIDIA Tesla C2050 GPU 

Objects 
CPU 

(103s) 

GPU 

(103 s) 

Speed

up 

60 0.015 0.099 0.15 

120 0.027 0.099 0.27 

240 0.083 0.108 0.76 

480 0.559 0.126 4.42 

960 2.83 0.241 11.77 

1920 11.3 0.655 17.17 

3360 35.3 1.822 19.38 
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Options for Targeting GPUs 

Use GPU array interface with MATLAB 

built-in functions 

Execute custom functions on elements 

of the GPU array 

 

Create kernels from existing CUDA 

code and PTX files 
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Webinar: “GPU Computing with MATLAB” 

http://www.mathworks.com/company/events/webinars 
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Invoking CUDA Kernels 

% Setup 

kernel = parallel.gpu.CUDAKernel(‘myKern.ptx’,‘myKern.cu’); 

 

% Configure 

kernel.ThreadBlockSize = 512; 

kernel.GridSize = [2 2]; 

 

% Run 

[c, d] = feval(kernel, a, b); 
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Best Practices for using GPU with MATLAB 

 Profile your code to identify your bottlenecks 
 

 Work on large enough matrices to see the benefits of 

GPU parallelization 
 

 Minimize data transfer between CPU and GPU 

– Sustained use of supported functionality 

– Create variables directly on the GPU 
 

 Combine multiple element-wise calculations together 
into a single function call by using arrayfun 
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Support for Communications System Toolbox 

 GPU implementations of LDPC Decoder, Viterbi 

Decoder, AWGN Channel, PSK Modulator, Block 

Interleaver, Block Deinterleaver 
 

 

 DVB-S System Simulation Demo 
http://www.mathworks.com/products/communications/demos.html 

 

http://www.mathworks.com/products/communications/demos.html
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Scaling Up to Run on Multiple GPUs 

Worker 
Worker 

Worker Worker 

Worker 

Worker 

Worker 

Worker 
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Summary GPU Functionality 

 GPU array data type 

– Store arrays in GPU device memory 

– Algorithm support for over 100 functions 

– Integer and double support 

 

 GPU functions 

– Invoke element-wise MATLAB functions on the GPU 

 

 CUDA kernel interface 

– Invoke CUDA kernels directly from MATLAB 

– No MEX programming necessary 
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Additional Resources 

 MATLAB documentation 

– MATLAB  Programming Fundamentals  Performance 
 

 GPU Demos and Benchmarks 

– http://www.mathworks.com/products/parallel-computing/demos.html 
 

 A Mandelbrot Set on The GPU  

– http://blogs.mathworks.com/loren/2011/07/18/a-mandelbrot-set- 

on-the-gpu/ 
 

 GPU Programming in MATLAB 

– http://www.mathworks.com/company/newsletters/articles/gpu-

programming-in-matlab.html 
 

 Parallel Computing with MATLAB on Multicore Desktops and GPUs  

– http://www.mathworks.com/company/events/webinars/wbnr56334.html 

http://www.mathworks.com/products/parallel-computing/demos.html
http://www.mathworks.com/products/parallel-computing/demos.html
http://www.mathworks.com/products/parallel-computing/demos.html
http://blogs.mathworks.com/loren/2011/07/18/a-mandelbrot-set-on-the-gpu/
http://blogs.mathworks.com/loren/2011/07/18/a-mandelbrot-set-on-the-gpu/
http://blogs.mathworks.com/loren/2011/07/18/a-mandelbrot-set-on-the-gpu/
http://blogs.mathworks.com/loren/2011/07/18/a-mandelbrot-set-on-the-gpu/
http://blogs.mathworks.com/loren/2011/07/18/a-mandelbrot-set-on-the-gpu/
http://blogs.mathworks.com/loren/2011/07/18/a-mandelbrot-set-on-the-gpu/
http://blogs.mathworks.com/loren/2011/07/18/a-mandelbrot-set-on-the-gpu/
http://blogs.mathworks.com/loren/2011/07/18/a-mandelbrot-set-on-the-gpu/
http://blogs.mathworks.com/loren/2011/07/18/a-mandelbrot-set-on-the-gpu/
http://blogs.mathworks.com/loren/2011/07/18/a-mandelbrot-set-on-the-gpu/
http://blogs.mathworks.com/loren/2011/07/18/a-mandelbrot-set-on-the-gpu/
http://blogs.mathworks.com/loren/2011/07/18/a-mandelbrot-set-on-the-gpu/
http://blogs.mathworks.com/loren/2011/07/18/a-mandelbrot-set-on-the-gpu/
http://www.mathworks.com/company/newsletters/articles/gpu-programming-in-matlab.html
http://www.mathworks.com/company/newsletters/articles/gpu-programming-in-matlab.html
http://www.mathworks.com/company/newsletters/articles/gpu-programming-in-matlab.html
http://www.mathworks.com/company/newsletters/articles/gpu-programming-in-matlab.html
http://www.mathworks.com/company/newsletters/articles/gpu-programming-in-matlab.html
http://www.mathworks.com/company/newsletters/articles/gpu-programming-in-matlab.html
http://www.mathworks.com/company/newsletters/articles/gpu-programming-in-matlab.html
http://www.mathworks.com/company/newsletters/articles/gpu-programming-in-matlab.html
http://www.mathworks.com/company/events/webinars/wbnr56334.html
http://www.mathworks.com/company/events/webinars/wbnr56334.html
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Agenda 

13:30 Welcome and Introduction 

13:45 Introduction to Parallel Computing with MATLAB 

 MATLAB–extensions with built-in support for Parallel Computing 

14:15 Interactive development of task- and data-parallel Algorithms 

15:15 Coffee Break 

15:30 GPU programming with MATLAB 

 Parallel batch-jobs 

 Cluster Computing with MATLAB 

16:15 Q&A Session 

17:00 End of Seminar 
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Interactive to Scheduling 

 Interactive 

– Great for prototyping  

– Immediate access to MATLAB workers  

 

 Scheduling 

– Offloads work to other MATLAB workers (local or on a cluster) 

– Access to more computing resources for improved performance 

– Frees up local MATLAB session 
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Scheduling Scripts and Functions with batch 

TOOLBOXES 

BLOCKSETS 

Result 

Work 
Worker 

Worker 

Worker 

Worker 
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Example: Schedule Processing 

 Offload parameter sweep 

to local workers  

 

 Get peak value results when 

processing is complete 

 

 Plot results in local MATLAB 
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Summary of Example 

 Used batch for off-loading work 

 

 Used matlabpool option to 

off-load and run in parallel 

 

 Used load to retrieve 

worker’s workspace 
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Agenda 

13:30 Welcome and Introduction 

13:45 Introduction to Parallel Computing with MATLAB 

 MATLAB–extensions with built-in support for Parallel Computing 

14:15 Interactive development of task- and data-parallel Algorithms 

15:15 Coffee Break 

15:30 GPU programming with MATLAB 

 Parallel batch-jobs 

 Cluster Computing with MATLAB 

16:15 Q&A Session 

17:00 End of Seminar 
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Scheduling Jobs and Tasks 

TOOLBOXES 

BLOCKSETS 

Scheduler 

Job 

Results 

Worker 

Worker 

Worker 

Worker 

Task 

Result 

Task 

Task 

Task 

Result 

Result 

Result 
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Factors to Consider for Scheduling 

 

 There is always an overhead to distribution 

– Combine small repetitive function calls 

 

 Share code and data with workers efficiently 

– Set job properties (AttachedFiles, AdditionalPaths) 
 

 Minimize I/O 

– Enable Workspace option for batch 

 

 Capture command window output 

– Enable CaptureDiary option for batch 
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Optimal Number of Tasks 

Short  

Execution Time 

Long  

Execution Time 

Few 

Function 

Calls 

Local Sequential 

Execution 

Distributed 

(One task per  

function call) 

Many 

Function 

Calls 

Distributed 

(Aggregate function 

calls in tasks) 

Distributed 
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When to Use parfor vs. jobs and tasks 

parfor 

 Seamless integration to 

user’s code 

 Several for loops 

throughout the code to 

convert 

 Automatic load balancing 

Jobs and tasks 

 Explicit control 

 Query results after each 

task is finished 

 

 

 

Try parfor first.  If it doesn’t apply to your application, 

create jobs and tasks. 
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Run up to 12 Local Workers on Desktop 

 

 Rapidly develop parallel 

applications on local 

computer 

 

 Take full advantage of 

desktop power 

 

 Separate computer 

cluster not required 

 

Desktop Computer 

Parallel Computing Toolbox 
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Scale Up to Clusters, Grids and Clouds 

Desktop Computer 

Parallel Computing Toolbox 

Computer Cluster 

MATLAB Distributed Computing Server 

Scheduler 
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Desktop Computer 

Parallel Computing Toolbox 

Moving beyond the desktop  

 Offload Computation: 

– Free up desktop 

– Access better computers 

 

 Scale speed-up:  

– Use more cores 

– Go from hours to minutes 

 

 Scale memory:  

– Utilize distributed arrays 

– Solve larger problems without re-coding 

 

Computer Cluster 
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Desktop Computer 

Parallel Computing Toolbox 

Your  

MATLAB  

code 

Utilize MATLAB Distributed Computing Server 

1. Prototype code  

2. Switch cluster profile 

3. Utilize cluster 

profile 

Computer Cluster 

MATLAB Distributed Computing Server 

Head 

Node 
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Migrate from Desktop to Cluster  

 Change hardware without changing algorithmic code  



  0
,...2,1,...2,1

5

 xkxbxm 

 Parameter Sweep of ODEs 
Parallel for-loops 

 

 



97 

Benchmark: Parameter Sweep of ODEs 
Changing number of cores used on cluster  

Processor: Intel Xeon E5-2670 

Cluster 

cores 

Job Time 

minutes 
Speedup 

1 239 (4 hrs) - 

12 24  10 

32 8.7 28 

64 4.5   53 

96 3.2  75 

128 2.5  96 
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192 2.3  104 
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 Extension of Parallel Computing Toolbox 
 

 Complete pre-built solution 

– Framework and infrastructure 

– Communication between computers 
 

 Cost-effective 

– License for number of cores you will use 

– Simplified maintenance 

 

 

 

MATLAB Distributed Computing Server 

 

Computer Cluster 

MATLAB Distributed Computing Server 

Head 

Node 
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Parallel Computing Products 
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Summary Parallel Computing with MATLAB 

 

Simple and portable 

• Straightforward program speed up 

• Interactive parallel programming 

• Portable code 

 

 

Scalable  

• Support parallelism on desktop 

• Treat large resource as 

extensions of desktop 

HPC Hardware Leverage 

• Supports multicore, multi-CPU, 

GPUs, Clusters, Grids and Clouds 

 

 

Deployable 

• Simple path from development to 

standalone application 

• Supported for CPU and GPU 

 

 

Integrated into organization 

• Dynamic licensing 

• Support for third-party schedulers 
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More information available on the Web 
 

www.mathworks.com/parallel-computing 


