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What is OpenMP and why use it?
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• OpenMP is a standard programming model for shared 
memory parallelization
– portable across different shared memory architectures
– allows incremental parallelization
– based on compiler directives and a few library routines
– supports Fortran and C/C++

• easy approach to multi-threaded programming
– allows to exploit modern multi-core CPUs
– good performance gain for invested effort
– hybrid-parallelization with MPI-OpenMP 
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OpenMP Programming Model
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• OpenMP ist a shared memory model
• workload is distributed among threads
• variables can be

– shared among all threads
– duplicated for each thread (private)

• threads communicate by sharing variables
– unintended sharing can lead to race condition

• synchronization for execution control and to avoid data 
conflicts
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OpenMP Execution Model
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OpenMP Parallel Region Construct
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Example: OMP_HelloWorld
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• code available on Stud.IP / HPC Wiki

#include <iostream>
#include <omp.h>

using namespace std;

int main () {

  #pragma omp parallel
  {
    cout << "Hello World from thread " 
         << omp_get_thread_num() << endl;
  } /* end omp parallel */

}
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Compiling and Running OpenMP Programs
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• compilation with an extra option, e.g.

– different compilers use different options

• before running may set environment for control

– default is to use all available cores

• running the program as usual

$ g++ -fopenmp OMP_HelloWorld.cpp -o OMP_HelloWorld
$ icpc -qopenmp OMP_HelloWorld.cpp -o OMP_HelloWorld

$ export OMP_NUM_THREADS=4

$ ./OMP_HelloWorld
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Running OpenMP Programs with SLURM

• basic job script

– OpenMP programs as single task (and single node)
– number of cores set by --cpus-per-task=<n> or -c <n>
– environment variable SLURM_CPUS_PER_TASK available cpus-per-

task has been set
– srun may used to create a separate job step (better accounting)
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#!/bin/bash

#SBATCH -p carl.p
#SBATCH -n 1                 # single task with
#SBATCH -c 8                 # cpus-per-task

# execute code 
export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK
srun ./OMP_HelloWorld

#!/bin/bash

#SBATCH -p carl.p
#SBATCH -n 1                 # single task with
#SBATCH -c 8                 # cpus-per-task

# execute code 
export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK
srun ./OMP_HelloWorld
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OpenMP Programming
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• include library

• available library routines
– setting number of threads
– getting number of threads
– getting thread ID
– wall clock time 

#include <omp.h>

omp_set_num_threads() 
omp_get_num_threads() 
omp_get_thread_num()
omp_get_wtime() 
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OMP_HelloWorld2
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• what will happen here?
int main () {

  int threadID, nthreads;
  #pragma omp parallel
  {
    threadID = omp_get_thread_num();
    cout << "Hello World from thread " << threadID << endl;

    // wait for all threads
    #pragma omp barrier
    if (threadID==0) {
      nthreads = omp_get_num_threads();
      cout << "Using " << nthreads << " threads!" << endl;
    }
  } /* end omp parallel */
}
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Shared and Private Variables
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• in OMP_HelloWorld2 threadID is shared among all 
threads

• race condition
– every thread is writing to the same memory address
– final value unpredictable

• solution is to make threadID private 

#pragma omp parallel private(threadID)
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Clauses for Parallel Regions
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• private(variable list)
– each thread has its own copy of the variables in the list
– variables are not initialized (firstprivate does that)
– no change to variable outside of parallel region (lastprivate does 

that)

• shared(variable list)
– all threads shared the same variable
– typically initialized outside of the parallel region
– changes persist outside the parallel region
– be careful to avoid race conditions
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Shared and Private Variables
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• in OMP_HelloWorld2 threadID is shared among all 
threads

• race condition
– every thread is writing to the same memory address
– final value unpredictable

• solution is to make threadID private 

#pragma omp parallel private(threadID)
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Work Sharing Directives
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• parallel region to create a team of threads
– every thread executes the same code
– example

– every thread does the same work (and there is a race condition)

const int N=1000000;
double x[N];
#pragma omp parallel
{
  int threadID = omp_get_thread_num();
  
  for(int i=0; i<N; i++)
    x[i] = 1./double(threadID+1);
}
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Work Sharing Directives
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• parallel region to create a team of threads
– every thread executes the same code
– example

– But now every thread does a chunk of work

const int N=1000000;
double x[N];
#pragma omp parallel
{
  int threadID = omp_get_thread_num();
  #pragma omp for
  for(int i=0; i<N; i++)
    x[i] = 1./double(threadID+1);
}
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Work Sharing Directives
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• parallel region to create a team of threads
– every thread executes the same code
– example

– Directive can be seperated or combines as needed

const int N=1000000;
double x[N];
#pragma omp parallel for
{
  for(int i=0; i<N; i++)
    x[i] = 1./double(i+1);
}
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Work Sharing Directives
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● usable in parallel regions
● directives to specify how the work is distributed
● no synchronization at entry, only at exit (disable with nowait)
● directives

● for splits a loop into parallel tasks

● sections / section defines a task for one thread 

● single / master one thread only, no syncronization

● critial only one thread at a time

● …

● Additional clauses e.g. to further specify distribution of work 
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Example: Mean of Random Numbers

• how to parallelize the program Random.cpp with 
OpenMP?
– e.g. the calculation of the mean value
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// calculate mean value
double mean=0;
for (int i=0; i<NSIZE; i++)
   mean += vec[i];
mean /= NSIZE;
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OpenMP Directive critical

• only one thread at a time can execute critical code block
– in the example 

this ensures mean is calculated without race condition
– overhead for synchronization and serialization of code block
– a faster alternative is provided by the atomic directive

– has limitation on the expressions (critical is more general) 
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#pragma omp critical
mean += mean_loc;

#pragma omp atomic
mean += mean_loc;
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OpenMP Clauses

• the behavior of OpenMP directives can be adjusted using 
clauses
– e.g. the following clauses can be used with the for directive: 
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private(list)
firstprivate(list)
lastprivate(list)

reduction(reduction-identifier:list)

schedule([modifier [,modifier]:]kind[, chunk_size])
collapse(n)
ordered[(n)]

nowait
no implicit barrier at the end of loop construct

how work of loop
is distributed among
threads

compiler creates reduction operation

how data is treated
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OpenMP reduction Clause

• an alternative (optimal?) solution can be obtained with 
the reduction clause

– no need of critical section and private variable mean_loc
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// calculate mean value
double mean=0;
#pragma omp parallel reduction(+:mean)
{
   #pragma omp for
   for (int i=0; i<NSIZE; i++)
      mean += vec[i];
} 
mean /= NSIZE;
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Code Portability

2827.03.2019 Introduction HPC - Session 05

• it is often desirable to have the same code file being used 
for serial and OpenMP parallel code
– use conditional compilation, e.g.

– pragmas only have effect when OpenMP option is used at 
compile time

– code becomes more difficult to read

#ifdef _OPENMP
  double wt1 = omp_get_wtime();
#endif
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OpenMP Summary
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• standard for easy shared memory parallelization
• uses compiler directives and some library functions
• based on threads and a fork-join model
• incremental parallelization
• serial and parallel code in one source file
• difference between shared and private data is important
• be careful about race conditions
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Practicing
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Calculate Pi in Parallel
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• modify the program Pi.cpp so that it parallelizes the 
computation of Pi with OpenMP
– add a parallel region to the code
– parallelize the loop so that each thread computes a part of sum 

(integral)
– combine the partial sums for the final answer
– also add a wall clock timer (omp_get_wtime()) and compare the 

change in CPU and wall clock time for different number of 
threads

– All files are on the WIKI page of this course
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