Scientific Computing

V.. School of Mathematics and Science

Introduction to
High-Performance Computing

Session 05
Introduction to OpenMP

CARL . " .
05SIETZRY Scientific Computing
universitdt|OLDENBURG . School of Mathematics and Science

What is OpenMP and why use it?

* OpenMP is a standard programming model for shared
memory parallelization
— portable across different shared memory architectures
— allows incremental parallelization
— based on compiler directives and a few library routines
— supports Fortran and C/C++

* easy approach to multi-threaded programming
— allows to exploit modern multi-core CPUs
— good performance gain for invested effort
— hybrid-parallelization with MPI-OpenMP

27.03.2019 Introduction HPC - Session 05 7

CARL . " .
05SIETZRY Scientific Computing
universitdt|OLDENBURG \/. School of Mathematics and Science

OpenMP Programming Model

* OpenMP ist a shared memory model
* workload is distributed among threads

* variables can be
— shared among all threads
— duplicated for each thread (private)

* threads communicate by sharing variables
— unintended sharing can lead to race condition

* synchronization for execution control and to avoid data
conflicts

27.03.2019 Introduction HPC - Session 05 8

CARL

VON

OSSIETZ.If‘(
universitadt|OLDENBURG

Sequential Part
Parallel Region
Sequential Part
Parallel Region

Sequential Part

27.03.2019

Scientific Computing

\/.. School of Mathematics and Science

OpenMP Execution Model

Introduction HPC - Session 05

Team of Threads

Master Thread

Team of Threads

Master Thread

10

CARL — . . .
ossiETeY Scientific Computing
universitdt|OLDENBURG \/. School of Mathematics and Science

OpenMP Parallel Region Construct

Fortran: I$OMP PARALLEL

ISOMP END PARALLEL

C/C++: #pragma omp parallel

structured block . * *

/* omp end parallel */

27.03.2019 Introduction HPC - Session 05 11

m I Scientific Computing
universitdt|OLDENBURG V. School of Mathematics and Science
Example: OMP_HelloWorld

* code available on Stud.IP / HPC Wik

#include <iostream>
#include <omp.h>

using namespace std;
int main () {

#pragma omp parallel
{

cout << "Hello World from thread "
<< omp_get_thread_num() << endl;
} /* end omp parallel */

}

27.03.2019 Introduction HPC - Session 05 12

CARL . " .
05SIETZRY Scientific Computing
universitdt|OLDENBURG V. School of Mathematics and Science

Compiling and Running OpenMP Programs

* compilation with an extra option, e.g.

$ g++ -fopenmp OMP_HelloWorld.cpp -o OMP_HelloWorld
$ icpc -gopenmp OMP_HelloWorld.cpp -o OMP_HelloWorld

— different compilers use different options

* before running may set environment for control

$ export OMP_NUM_THREADS=4
— default is to use all available cores

* running the program as usual
$./OMP_HelloWorld

27.03.2019 Introduction HPC - Session 05 13

m Computing
universitdt|OLDENBURG ematics and Science
Running OpenMP Programs with SLURM

* basic job script
#1/bin/bash

#SBATCH -p carl.p
#SBATCH -n 1 # single task with

#SBATCH -c 8 # cpus-per-task

execute code
export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK
srun ./OMP_HelloWorld

— OpenMP programs as single task (and single node)
— number of cores set by - -cpus-per-task=<n> or -¢c <n>

— environment variable SLURM_CPUS_PER_TASK available cpus-per -
task has been set

— Sruh may used to create a separate job step (better accounting)

CARL

VON

OSSIETZ'If‘I
universitadt|OLDENBURG

* include library

#include <omp.h>

* available library routines
— setting number of threads
— getting number of threads
— getting thread ID
— wall clock time

Scientific Computing

V. School of Mathematics and Science

OpenMP Programming

omp_set_num_threads()
omp_get_num_threads()
omp_get_thread_num()
omp_get_wtime()

27.03.2019 Introduction HPC - Session 05 15

CARL . 4 . i
05SIETZRY Scientific Computing
universitdt|OLDENBURG \/. School of Mathematics and Science

OMP HelloWorld2

* what will happen here?

int main () {

int threadID, nthreads;
#pragma omp parallel

{
threadID = omp_get_thread_num();

cout << "Hello World from thread " << threadID << endl;

// wait for all threads
#pragma omp barrier
if (threadID==0) {
nthreads = omp_get_num_threads();
cout << "Using " << nthreads << " threads!" << endl;

}
} /* end omp parallel */

}

27.03.2019 Introduction HPC - Session 05 16

CARL g . " .
0ssiETIXY Scientific Computing
universitdt|OLDENBURG \/. School of Mathematics and Science

Shared and Private Variables

* in OMP_HelloWorld2 threadID is shared among all
threads

* race condition
— every thread is writing to the same memory address
— final value unpredictable

* solution is to make threadlD private

#pragma omp parallel private(threadID)

27.03.2019 Introduction HPC - Session 05 17

CARL . " .
05SIETZRY Scientific Computing
universitdt|OLDENBURG \/. School of Mathematics and Science

Clauses for Parallel Regions

* private(variable list)
— each thread has its own copy of the variables in the list
— variables are not initialized (firstprivate does that)
— no change to variable outside of parallel region (lastprivate does
that)
* shared(variable list)
— all threads shared the same variable
— typically initialized outside of the parallel region
— changes persist outside the parallel region
— be careful to avoid race conditions

27.03.2019 Introduction HPC - Session 05 18

CARL g . " .
0ssiETIXY Scientific Computing
universitdt|OLDENBURG \/. School of Mathematics and Science

Shared and Private Variables

* in OMP_HelloWorld2 threadID is shared among all
threads

* race condition
— every thread is writing to the same memory address
— final value unpredictable

* solution is to make threadlD private

#pragma omp parallel private(threadID)

27.03.2019 Introduction HPC - Session 05 19

CARL . " .
05SIETZRY Scientific Computing
universitdt|OLDENBURG \/. School of Mathematics and Science

Work Sharing Directives

* parallel region to create a team of threads
— every thread executes the same code
— example
const int N=1000000;

double Xx[N];
#pragma omp parallel

{
int threadID = omp_get_thread_num();

for(int 1i=0; 1i<N; i++)

x[1] = 1./double(threadID+1);
}

— every thread does the same work (and there is a race condition)

27.03.2019 Introduction HPC - Session 05 20

CARL . 4 . i
05SIETZRY Scientific Computing
universitdt|OLDENBURG \/. School of Mathematics and Science

Work Sharing Directives

* parallel region to create a team of threads
— every thread executes the same code
— example

const int N=1000000;
double Xx[N];
#pragma omp parallel
{
int threadID = omp_get_thread_num();
#pragma omp for
for(int 1i=0; 1i<N; i++)
x[1] = 1./double(threadID+1);
}

— But now every thread does a chunk of work

27.03.2019 Introduction HPC - Session 05 21

CARL . . 4 . i
0ssiETIXY Scientific Computing
universitdt|OLDENBURG \/. School of Mathematics and Science

Work Sharing Directives

* parallel region to create a team of threads
— every thread executes the same code
— example
const int N=1000000;

double Xx[N];
#pragma omp parallel for

{
for(int 1i=0; 1i<N; i++)
x[i] = 1./double(1i+1);

— Directive can be seperated or combines as needed

19.09.2017 Introduction HPC - Session 05 22

CARL . " .
05SIETZRY Scientific Computing
universitdt|OLDENBURG \/. School of Mathematics and Science

Work Sharing Directives

* usable in parallel regions

* directives to specify how the work is distributed

* no synchronization at entry, only at exit (disable with nowait)
* directives

* for splits a loop into parallel tasks
* sections / section defines a task for one thread
* single / master one thread only, no syncronization

* critial only one thread at a time

* Additional clauses e.g. to further specify distribution of work

27.03.2019 Introduction HPC - Session 05 23

”ZZS%ﬂ i | Scientific Computing
universitdt|OLDENBURG V. School of Mathematics and Science
Example: Mean of Random Numbers

* how to parallelize the program Random.cpp with
OpenMP?
— e.g. the calculation of the mean value

// calculate mean value

double mean=0;

for (int i=0; i<NSIZE; i++)
mean += vec[i];

mean /= NSIZE;

27.03.2019 Introduction HPC - Session 05 24

CARL . " .
05SIETZRY Scientific Computing
universitdt|OLDENBURG \/. School of Mathematics and Science

OpenMP Directive critical

* only one thread at a time can execute critical code block
— In the example

#pragma omp critical
mean += mean_loc;

this ensures mean is calculated without race condition
— overhead for synchronization and serialization of code block
— a faster alternative is provided by the atomic directive

#pragma omp atomic
mean += mean_loc;

— has limitation on the expressions (critical is more general)

27.03.2019 Introduction HPC - Session 05 25

CARL . " .
05SIETZRY Scientific Computing
universitdt|OLDENBURG \/. School of Mathematics and Science

OpenMP Clauses

* the behavior of OpenMP directives can be adjusted using
clauses

— e.g. the following clauses can be used with the for directive:

private(list)

firstprivate(list) r how data is treated
lastprivate(list)

reduction(reduction-identifier:list) } compiler creates reduction operation

schedule([modifier [,modifier]:]kind[, chunk_size]) | how work of loop

g?ﬁiig;‘;%:;] r~ is distributed among
threads

nowait -

} no implicit barrier at the end of loop construct

27.03.2019 Introduction HPC - Session 05 26

CARL . 4 . i
05SIETZRY Scientific Computing
universitdt|OLDENBURG \/. School of Mathematics and Science

OpenMP reduction Clause

* an alternative (optimal?) solution can be obtained with
the reduction clause

// calculate mean value
double mean=0;
#pragma omp parallel reduction(+:mean)

{
#pragma omp for
for (int 1i=0; 1i<NSIZE; i++)
mean += vec[i];
}

mean /= NSIZE;

— no need of critical section and private variable mean_loc

27.03.2019 Introduction HPC - Session 05 27

CARL . " .
05SIETZRY Scientific Computing
universitdt|OLDENBURG \/. School of Mathematics and Science

Code Portabillity

* it is often desirable to have the same code file being used
for serial and OpenMP parallel code
— use conditional compilation, e.g.

#ifdef _OPENMP
double wtl = omp_get_wtime();
#endif

— pragmas only have effect when OpenMP option is used at
compile time

— code becomes more difficult to read

27.03.2019 Introduction HPC - Session 05 28

CARL . " .
05SIETZRY Scientific Computing
universitdt|OLDENBURG . School of Mathematics and Science

OpenMP Summary

* standard for easy shared memory parallelization

* uses compiler directives and some library functions

* based on threads and a fork-join model

* Incremental parallelization

* serial and parallel code in one source file

* difference between shared and private data is important
* be careful about race conditions

27.03.2019 Introduction HPC - Session 05 29

Practicing

27.03.2019

Introduction HPC - Session 05

30

CARL . " .
05SIETZRY Scientific Computing
universitdt|OLDENBURG . School of Mathematics and Science

Calculate Pi1 in Parallel

* modify the program Pi.cpp so that it parallelizes the
computation of Pi with OpenMP
— add a parallel region to the code
— parallelize the loop so that each thread computes a part of sum
(integral)
— combine the partial sums for the final answer

— also add a wall clock timer (omp_get_wtime()) and compare the
change in CPU and wall clock time for different number of
threads

— All files are on the WIKI page of this course

27.03.2019 Introduction HPC - Session 05 31

	Folie 1
	What is OpenMP and why use it?
	OpenMP Programming Model
	OpenMP Execution Model
	OpenMP Parallel Region Construct
	Example: OMP_HelloWorld
	Compiling and Running OpenMP Programs
	Running OpenMP Programs with SLURM
	OpenMP Programming
	OMP_HelloWorld2
	Shared and Private Variables
	Clauses for Parallel Regions
	Folie 19
	Folie 20
	Work Sharing Directives
	Folie 22
	Folie 23
	Example: Mean of Random Numbers
	OpenMP Directive critical
	OpenMP Clauses
	OpenMP reduction Clause
	Code Portability
	OpenMP Summary
	Folie 30
	Calculate Pi in Parallel

