
Scientific Computing
V. School of Mathematics and Science

Introduction to
High-Performance Computing

Session 05

Introduction to OpenMP

Scientific Computing
V. School of Mathematics and Science

What is OpenMP and why use it?

727.03.2019 Introduction HPC - Session 05

• OpenMP is a standard programming model for shared
memory parallelization
– portable across different shared memory architectures
– allows incremental parallelization
– based on compiler directives and a few library routines
– supports Fortran and C/C++

• easy approach to multi-threaded programming
– allows to exploit modern multi-core CPUs
– good performance gain for invested effort
– hybrid-parallelization with MPI-OpenMP

Scientific Computing
V. School of Mathematics and Science

OpenMP Programming Model

827.03.2019 Introduction HPC - Session 05

• OpenMP ist a shared memory model
• workload is distributed among threads
• variables can be

– shared among all threads
– duplicated for each thread (private)

• threads communicate by sharing variables
– unintended sharing can lead to race condition

• synchronization for execution control and to avoid data
conflicts

Scientific Computing
V. School of Mathematics and Science

OpenMP Execution Model

1027.03.2019 Introduction HPC - Session 05

Scientific Computing
V. School of Mathematics and Science

OpenMP Parallel Region Construct

1127.03.2019 Introduction HPC - Session 05

Scientific Computing
V. School of Mathematics and Science

Example: OMP_HelloWorld

1227.03.2019 Introduction HPC - Session 05

• code available on Stud.IP / HPC Wiki

#include <iostream>
#include <omp.h>

using namespace std;

int main () {

 #pragma omp parallel
 {
 cout << "Hello World from thread "
 << omp_get_thread_num() << endl;
 } /* end omp parallel */

}

Scientific Computing
V. School of Mathematics and Science

Compiling and Running OpenMP Programs

1327.03.2019 Introduction HPC - Session 05

• compilation with an extra option, e.g.

– different compilers use different options

• before running may set environment for control

– default is to use all available cores

• running the program as usual

$ g++ -fopenmp OMP_HelloWorld.cpp -o OMP_HelloWorld
$ icpc -qopenmp OMP_HelloWorld.cpp -o OMP_HelloWorld

$ export OMP_NUM_THREADS=4

$./OMP_HelloWorld

Scientific Computing
V. School of Mathematics and Science

Running OpenMP Programs with SLURM

• basic job script

– OpenMP programs as single task (and single node)
– number of cores set by --cpus-per-task=<n> or -c <n>
– environment variable SLURM_CPUS_PER_TASK available cpus-per-

task has been set
– srun may used to create a separate job step (better accounting)

1427.03.2019 Introduction HPC - Session 05

#!/bin/bash

#SBATCH -p carl.p
#SBATCH -n 1 # single task with
#SBATCH -c 8 # cpus-per-task

execute code
export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK
srun ./OMP_HelloWorld

#!/bin/bash

#SBATCH -p carl.p
#SBATCH -n 1 # single task with
#SBATCH -c 8 # cpus-per-task

execute code
export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK
srun ./OMP_HelloWorld

Scientific Computing
V. School of Mathematics and Science

OpenMP Programming

1527.03.2019 Introduction HPC - Session 05

• include library

• available library routines
– setting number of threads
– getting number of threads
– getting thread ID
– wall clock time

#include <omp.h>

omp_set_num_threads()
omp_get_num_threads()
omp_get_thread_num()
omp_get_wtime()

Scientific Computing
V. School of Mathematics and Science

OMP_HelloWorld2

1627.03.2019 Introduction HPC - Session 05

• what will happen here?
int main () {

 int threadID, nthreads;
 #pragma omp parallel
 {
 threadID = omp_get_thread_num();
 cout << "Hello World from thread " << threadID << endl;

 // wait for all threads
 #pragma omp barrier
 if (threadID==0) {
 nthreads = omp_get_num_threads();
 cout << "Using " << nthreads << " threads!" << endl;
 }
 } /* end omp parallel */
}

Scientific Computing
V. School of Mathematics and Science

Shared and Private Variables

1727.03.2019 Introduction HPC - Session 05

• in OMP_HelloWorld2 threadID is shared among all
threads

• race condition
– every thread is writing to the same memory address
– final value unpredictable

• solution is to make threadID private

#pragma omp parallel private(threadID)

Scientific Computing
V. School of Mathematics and Science

Clauses for Parallel Regions

1827.03.2019 Introduction HPC - Session 05

• private(variable list)
– each thread has its own copy of the variables in the list
– variables are not initialized (firstprivate does that)
– no change to variable outside of parallel region (lastprivate does

that)

• shared(variable list)
– all threads shared the same variable
– typically initialized outside of the parallel region
– changes persist outside the parallel region
– be careful to avoid race conditions

Scientific Computing
V. School of Mathematics and Science

Shared and Private Variables

1927.03.2019 Introduction HPC - Session 05

• in OMP_HelloWorld2 threadID is shared among all
threads

• race condition
– every thread is writing to the same memory address
– final value unpredictable

• solution is to make threadID private

#pragma omp parallel private(threadID)

Scientific Computing
V. School of Mathematics and Science

Work Sharing Directives

2027.03.2019 Introduction HPC - Session 05

• parallel region to create a team of threads
– every thread executes the same code
– example

– every thread does the same work (and there is a race condition)

const int N=1000000;
double x[N];
#pragma omp parallel
{
 int threadID = omp_get_thread_num();

 for(int i=0; i<N; i++)
 x[i] = 1./double(threadID+1);
}

Scientific Computing
V. School of Mathematics and Science

Work Sharing Directives

2127.03.2019 Introduction HPC - Session 05

• parallel region to create a team of threads
– every thread executes the same code
– example

– But now every thread does a chunk of work

const int N=1000000;
double x[N];
#pragma omp parallel
{
 int threadID = omp_get_thread_num();
 #pragma omp for
 for(int i=0; i<N; i++)
 x[i] = 1./double(threadID+1);
}

Scientific Computing
V. School of Mathematics and Science

Work Sharing Directives

2219.09.2017 Introduction HPC - Session 05

• parallel region to create a team of threads
– every thread executes the same code
– example

– Directive can be seperated or combines as needed

const int N=1000000;
double x[N];
#pragma omp parallel for
{
 for(int i=0; i<N; i++)
 x[i] = 1./double(i+1);
}

Scientific Computing
V. School of Mathematics and Science

Work Sharing Directives

2327.03.2019 Introduction HPC - Session 05

● usable in parallel regions
● directives to specify how the work is distributed
● no synchronization at entry, only at exit (disable with nowait)
● directives

● for splits a loop into parallel tasks

● sections / section defines a task for one thread

● single / master one thread only, no syncronization

● critial only one thread at a time

● …

● Additional clauses e.g. to further specify distribution of work

Scientific Computing
V. School of Mathematics and Science

Example: Mean of Random Numbers

• how to parallelize the program Random.cpp with
OpenMP?
– e.g. the calculation of the mean value

2427.03.2019 Introduction HPC - Session 05

// calculate mean value
double mean=0;
for (int i=0; i<NSIZE; i++)
 mean += vec[i];
mean /= NSIZE;

Scientific Computing
V. School of Mathematics and Science

OpenMP Directive critical

• only one thread at a time can execute critical code block
– in the example

this ensures mean is calculated without race condition
– overhead for synchronization and serialization of code block
– a faster alternative is provided by the atomic directive

– has limitation on the expressions (critical is more general)

2527.03.2019 Introduction HPC - Session 05

#pragma omp critical
mean += mean_loc;

#pragma omp atomic
mean += mean_loc;

Scientific Computing
V. School of Mathematics and Science

OpenMP Clauses

• the behavior of OpenMP directives can be adjusted using
clauses
– e.g. the following clauses can be used with the for directive:

2627.03.2019 Introduction HPC - Session 05

private(list)
firstprivate(list)
lastprivate(list)

reduction(reduction-identifier:list)

schedule([modifier [,modifier]:]kind[, chunk_size])
collapse(n)
ordered[(n)]

nowait
no implicit barrier at the end of loop construct

how work of loop
is distributed among
threads

compiler creates reduction operation

how data is treated

Scientific Computing
V. School of Mathematics and Science

OpenMP reduction Clause

• an alternative (optimal?) solution can be obtained with
the reduction clause

– no need of critical section and private variable mean_loc

2727.03.2019 Introduction HPC - Session 05

// calculate mean value
double mean=0;
#pragma omp parallel reduction(+:mean)
{
 #pragma omp for
 for (int i=0; i<NSIZE; i++)
 mean += vec[i];
}
mean /= NSIZE;

Scientific Computing
V. School of Mathematics and Science

Code Portability

2827.03.2019 Introduction HPC - Session 05

• it is often desirable to have the same code file being used
for serial and OpenMP parallel code
– use conditional compilation, e.g.

– pragmas only have effect when OpenMP option is used at
compile time

– code becomes more difficult to read

#ifdef _OPENMP
 double wt1 = omp_get_wtime();
#endif

Scientific Computing
V. School of Mathematics and Science

OpenMP Summary

2927.03.2019 Introduction HPC - Session 05

• standard for easy shared memory parallelization
• uses compiler directives and some library functions
• based on threads and a fork-join model
• incremental parallelization
• serial and parallel code in one source file
• difference between shared and private data is important
• be careful about race conditions

Scientific Computing
V. School of Mathematics and Science

Practicing

3027.03.2019 Introduction HPC - Session 05

Scientific Computing
V. School of Mathematics and Science

Calculate Pi in Parallel

3127.03.2019 Introduction HPC - Session 05

• modify the program Pi.cpp so that it parallelizes the
computation of Pi with OpenMP
– add a parallel region to the code
– parallelize the loop so that each thread computes a part of sum

(integral)
– combine the partial sums for the final answer
– also add a wall clock timer (omp_get_wtime()) and compare the

change in CPU and wall clock time for different number of
threads

– All files are on the WIKI page of this course

	Folie 1
	What is OpenMP and why use it?
	OpenMP Programming Model
	OpenMP Execution Model
	OpenMP Parallel Region Construct
	Example: OMP_HelloWorld
	Compiling and Running OpenMP Programs
	Running OpenMP Programs with SLURM
	OpenMP Programming
	OMP_HelloWorld2
	Shared and Private Variables
	Clauses for Parallel Regions
	Folie 19
	Folie 20
	Work Sharing Directives
	Folie 22
	Folie 23
	Example: Mean of Random Numbers
	OpenMP Directive critical
	OpenMP Clauses
	OpenMP reduction Clause
	Code Portability
	OpenMP Summary
	Folie 30
	Calculate Pi in Parallel

