
Scientific Computing
V. School of Mathematics and Science

Introduction to

High-Performance Computing

Session 03

Basic Cluster Usage II:

Environment: File Systems, Modules,

Compiler and Toolchains

Scientific Computing
V. School of Mathematics and Science

HPC User Environment

217.09.2019 Introduction HPC - Session 03

the user environment on a HPC cluster consists of:

• the operating system (OS)
– e.g. RHEL Linux (all HPC systems in top500 have Linux-like OS)

– basic functionality (login, create and edit files, …)

• data storage
– one or more file systems

– temporary, short and long term storage

• software
– scientific applications

– libraries

– compiler

• job scheduler

Scientific Computing
V. School of Mathematics and Science

File Systems

317.09.2019 Introduction HPC - Session 03

Scientific Computing
V. School of Mathematics and Science

HPC File Systems

417.09.2019 Introduction HPC - Session 03

• typically on a HPC system different file systems are available

Name Description Features

$TMPDIR or

/scratch

temporary storage provided on a per

job basis, deleted after job

often local disk or similar

very fast I/O, up to a few

TB, no backup

$WORK temporary storage for job data, maybe

kept after job, typically parallel file

system attached to interconnect

fast, parallel I/O, up to PB,

no backup

$DATA mid-term storage for job output,

parallel filesystem or NFS

up to PB, maybe with

backup

$HOME NFS storage, long term and secure,

for program codes, initial conditions

few 100GB, full backup,

snapshots

$ARCH permanent archive, storage for

finished projects, tape library

few PB, possible slow

read

http://www.fz-juelich.de/ias/jsc/EN/Expertise/Datamanagement/JUDAC/Filesystems/filesystems_node.html

http://www.fz-juelich.de/ias/jsc/EN/Expertise/Datamanagement/JUDAC/Filesystems/filesystems_node.html

Scientific Computing
V. School of Mathematics and Science

File Systems

517.09.2019 Introduction HPC - Session 03

http://wiki.hpcuser.uni-oldenburg.de/index.php?title=File_system_and_Data_Management

• central Enterprise Spectrum Scale storage (ESS)
– used for HOME, DATA, GROUP and OFFSITE directories

– NFS mounted over 2x 10Gb Ethernet

– full backup and snapshot functionality

– can be mounted on local workstation using SMB

• shared parallel storage (GPFS)
– used for WORK directory only

– data transfer over FDR Infiniband

– no backup

– can also be mounted on local workstation using SMB

• local disks or SSDs for scratch
– CARL compute nodes have local storage (1-2TB per node)

– EDDY compute nodes have 1GB RAM disk (for compatibility)

– usable during job run time

https://wiki.hpcuser.uni-oldenburg.de/index.php?title=File_system_and_Data_Management

Scientific Computing
V. School of Mathematics and Science

Directory Structure

617.09.2019 Introduction HPC - Session 03

• on every filesystem ($HOME, $DATA, $WORK) users will
have their own subdirectory
– e.g. for $HOME

– default permissions prevent other users from seeing the contents
of their directory

– user can give permissions to others to access files or
subdirectory as needed (user‘s responsibility)

– file and directory access can be based on primary (the working
group) and secondary (e.g. the institute) Unix groups

– recommendation: keep access restricted on $HOME and if
needed share files/dirs. on $DATA or $WORK

drwx------ abcd1234 agsomegroup /user/abcd1234

https://wiki.hpcuser.uni-oldenburg.de/index.php?title=File_system_and_Data_Management#Managing_access_rights_of_your_folders

https://wiki.hpcuser.uni-oldenburg.de/index.php?title=File_system_and_Data_Management#Managing_access_rights_of_your_folders

Scientific Computing
V. School of Mathematics and Science

File Systems

File

System

Env.

Variable
Path Used for

Home $HOME /user/abcd1234 critical data that cannot easily be

reproduced (program codes, initial

conditions, results from data analysis)

Data $DATA /nfs/data/abcd1234 important data from simulations for

on-going analysis and mid term

(project duration) storage

Work $WORK /gss/work/abcd1234 data storage for simulation runtime,

pre- and post-processing, short term

(weeks) storage

Scratch $TMPDIR /scratch/<job-dir> temporary data storage during job

runtime

Offsite $OFFSITE /nfs/offsite/user/

abcd1234

long term storage for inactive data,

only available on login nodes

717.09.2019 Introduction HPC - Session 03

• HOME, DATA and OFFSITE have backup for disaster recovery and daily snapshots for file recovery

• special quota rule for WORK

Scientific Computing
V. School of Mathematics and Science

Quotas

• on every file system default quotas are in place

– HOME, DATA and OFFSITE have 1TB, 20TB and 25TB,

respectively

– WORK has 50TB

– maybe increased upon request (if resources are available)

• special quota on WORK

– in addition to hard limit above, WORK also has soft quota of 25TB

– if usage is over soft quota a grace period of 30 days is triggered

– after grace period no data can be written to WORK by user

 clean up your data on work regularly

817.09.2019 Introduction HPC - Session 03

https://wiki.hpcuser.uni-oldenburg.de/index.php?title=File_system_and_Data_Management#Quotas

https://wiki.hpcuser.uni-oldenburg.de/index.php?title=File_system_and_Data_Management#Quotas

Scientific Computing
V. School of Mathematics and Science

Group Directories

• group directories are available upon request

– storage on the ESS

– can be mounted via SMB (only version 2 or better)

– path: $GROUP or /nfs/group/agyourgroup

– should be used for data shared among members of the same

group, in particular to avoid multiple copies of the same file

– group leader is owner of directory

– default rights are set so that anyone in group can read and write

to group directory

917.09.2019 Introduction HPC - Session 03

Scientific Computing
V. School of Mathematics and Science

File System Shares

• you can mount your $HOME, $DATA and $WORK as well

as $OFFSITE and $GROUP directories on your local

workstation

• server address for mounting are

$HOME //smb.uni-oldenburg.de/hpc_home

$DATA //smb.uni-oldenburg.de/hpc_data

$WORK //smb.hpc.uni-oldenburg.de/hpc_work

$OFFSITE //smb.uni-oldenburg.de/hpc_offsite

$GROUP //smb.uni-oldenburg.de/<groupname>

– for Windows connect a network drive (and replace “/” with “\”)

– for Linux add information in /etc/fstab

1017.09.2019 Introduction HPC - Session 03

https://wiki.hpcuser.uni-oldenburg.de/index.php?title=Local_Mounting_of_File_Systems

https://wiki.hpcuser.uni-oldenburg.de/index.php?title=Local_Mounting_of_File_Systems

Scientific Computing
V. School of Mathematics and Science

File System Use

• applications with high I/O demands can put a lot of stress

on the used file system

• I/O-performance depends on the I/O profile

– I/O with few but large files is better than many small files

– sequential I/O is better than random access

• pick the right file system for your I/O profile

– local disks or SSDs are best for I/O with small block sizes

– parallel files system (WORK) is best for large files and parallel I/O

– HOME and DATA (and all NFS mounted directories) should be

avoided for I/O at runtime

simple I/O performance tests can be done with dd

1117.09.2019 Introduction HPC - Session 03

https://www.thomas-krenn.com/de/wiki/Linux_I/O_Performance_Tests_mit_dd

https://www.thomas-krenn.com/de/wiki/Linux_I/O_Performance_Tests_mit_dd

Scientific Computing
V. School of Mathematics and Science

Best Practices for File System Use

• if your job is doing heavy I/O use $WORK or $TMPDIR

– I/O bandwidth to $WORK is >10GB/s (shared for the whole cluster),
compared to 100MB/s at most to $HOME and $DATA

– try to use parallel I/O and avoid using many small files

– $TMPDIR is best for small files and random access (in particular on
the bignodes)

• keep your data on $WORK while it is being processed

– data that is currently not needed can be moved to $DATA

– consider creating compressed archives and organise your data

– only keep important data and delete as much as possible when a
project is finished

– use $GROUP if you frequently need to share data within your group
to avoid unneccessary copies of data

1217.09.2019 Introduction HPC - Session 03

Scientific Computing
V. School of Mathematics and Science

Final Remarks File Systems

• setting file permissions

– add execute (x) permission to directories to allow cd

– add read (r) permission to directories to all ls

– avoid adding write (w) permission for group or others on

directories (you cannot change ownership of files)

• checking quotas

– use the lastquota command to find out how much diskspace

your are using

– also weekly e-mails to all users

1317.09.2019 Introduction HPC - Session 03

Scientific Computing
V. School of Mathematics and Science

Software and Modules

1417.09.2019 Introduction HPC - Session 03

Scientific Computing
V. School of Mathematics and Science

Software

1517.09.2019 Introduction HPC - Session 03

• software is installed centrally on the cluster

– /cm/shared/uniol/software

– user can use preinstalled software

– software can be optimized for system

– own software can be installed too

• installed software includes

– compilers

– libraries (MPI, numerical libraries,…)

– scientific application

– overview and help in the HPC wiki

Scientific Computing
V. School of Mathematics and Science

Modules

1617.09.2019 Introduction HPC - Session 03

• Linux settings are defined by environment variables

– applications require correct settings of environment variables

$ echo $HOME # home directory

/user/lees4820

$ echo $PATH # where to look for applications

/cm/shared/apps/slurm/current/sbin:/cm/shared/apps/slurm/

current/bin:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/

sbin:/opt/ibutils/bin:/user/lees4820/.local/bin:/user/lee

s4820/bin

$ env # full list

HOSTNAME=hpcl002

TERM=xterm

. . .

Scientific Computing
V. School of Mathematics and Science

Modules

1717.09.2019 Introduction HPC - Session 03

• the environment settings for installed applications are

managed using modules

$ module list # show loaded modules

Currently Loaded Modules:

1) slurm/current 2) hpc-uniol-env

$ module av # show available modules

------------- /cm/shared/uniol/modules/core -------------------

hpc-uniol-env (L) slurm/current (L)

------------- /cm/shared/uniol/modules/bio --------------------

BCFtools/1.3.1 CD-HIT/4.6.4 SOAPdenovo2/r240

BEDTools/2.26.0 FASTX-Toolkit/0.0.14 Stacks/1.42

. . .

Scientific Computing
V. School of Mathematics and Science

Module Commands

• find modules
module available [module-name]

module spider [module-name]

– list all modules [with given module name]

– spider is case-insensitive and understands reg-exp

• load/unload
module load <module-name>

module remove <module-name>

– to return to a default state

module restore

• information about modules
module list

module help <module-name>

module spider <module-name>

1817.09.2019 Introduction HPC - Session 03

https://wiki.hpcuser.uni-oldenburg.de/index.php?title=User_environment_-_The_usage_of_module_2016

https://wiki.hpcuser.uni-oldenburg.de/index.php?title=User_environment_-_The_usage_of_module_2016

Scientific Computing
V. School of Mathematics and Science

Examples: Module Commands

$ module list

1) hpc-uniol-env 2) slurm/current

$ module load GCC/4.9.4

$ module list

1) hpc-uniol-env 2) slurm/current 3) GCC/4.9.4

4) …

$ module swap GCC/4.9.4 GCC/5.4.0

$ module restore

$ module purge

$ module load hpc-uniol-env

1917.09.2019 Introduction HPC - Session 03

Scientific Computing
V. School of Mathematics and Science

hpc-env Modules

• in the module core-section you can find a number of hpc-env
modules

– these modules provide some basic settings (e.g. $DATA, loading the Slurm
module) and make a specific module stack available

– the version corresponds to a specific GCC version and all modules in the
stack are based on this GCC version

– the non-version modules are older and not based on a specific GCC

– most software is installed in hpc-uniol-env and hpc-env/6.4

– if you login you will find hpc-uniol-env loaded, this can be changed (e.g.
with module save)

– only one hpc-env module can be loaded at any time

2017.09.2019 Introduction HPC - Session 03

$ ml av

------------ /cm/shared/uniol/modules/core ---------------

hpc-env/6.4 (D) hpc-uniol-env

hpc-env/8.1 hpc-uniol-new-env

hpc-env/8.2 (L)

Scientific Computing
V. School of Mathematics and Science

Modules

2117.09.2019 Introduction HPC - Session 03

• why use modules

– modules allows multiple versions of the same application to be

installed

– modules change all the environment settings as needed

– modules know about dependencies and conflicts

• modules and jobs

– modules have to be loaded within a job script (as needed)

– modules loaded when the job is submitted are remembered by

SLURM

(but you may submit a job later again with different modules

loaded)

Scientific Computing
V. School of Mathematics and Science

Compiler, Libraries and

Toolchains

2217.09.2019 Introduction HPC - Session 03

Scientific Computing
V. School of Mathematics and Science

Compiler

2317.09.2019 Introduction HPC - Session 03

• different compilers available (from vendors and also open-source)

– Intel compiler usally gives very good performance (icc and ifort)

– using different compilers may help to better understand your code

– some compiler support special hardware (e.g. GPUs by PGI)

– always load one compiler (don‘t use OS GCC)

---------- /cm/shared/uniol/modules/compiler -----------

CUDA-Toolkit/8.0.44 NAG_Fortran/5.2

GCC/4.9.4-2.25 PGI/12.10

GCC/5.4.0-2.26 PGI/15.10

GCC/6.2.0-2.27 (D) PGI/16.10 (D)

LLVM/3.8.1-goolf-5.2.01 icc/2016.3.210

LLVM/3.8.1-intel-2016b ifort/2016.3.210

LLVM/3.9.0-intel-2016b (D)

Scientific Computing
V. School of Mathematics and Science

Example: RandomWalk.cpp

2417.09.2019 Introduction HPC - Session 03

• download the code RandomWalk.cpp (and the other

RandomWalk files) from Stud.IP

– the code simulates a 2d random walk, each step of length one in

random direction, prints out distance from start after N steps

– expected distance is SQRT(N)

– compile with GCC or ICS

$ g++ RandomWalk.cpp –o RandomWalk

$ icpc RandomWalk.cpp –o RandomWalk

– run with one argument for seed, e.g.

$./RandomWalk 12345

– timing with

$ time ./RandomWalk 12345

or

Scientific Computing
V. School of Mathematics and Science

Libraries

• libraries are available as modules

– numerical libraries provide optimized solutions of general problems

2517.09.2019 Introduction HPC - Session 03

------------ /cm/shared/uniol/modules/numlib -------------

ATLAS/3.10.2 Octave/4.0.3

Armadillo/7.500.1 OpenBLAS/0.2.19

CLHEP/2.2.0.4-intel-2016b Qhull/2015.2

Eigen/3.2.9 ScaLAPACK/2.0.2

FFTW/3.3.5-gompi-5.2.01 SuiteSparse/4.5.3

FIAT/1.6.0-intel-2016b cuDNN/5.1-CUDA-8.0.44

GMP/6.1.1 (D) cvx/2.1

GSL/2.1 imkl/11.3.3.210

Hypre/2.11.1 leda/6.3

LinBox/1.4.0 maple/18

MATLAB/2016b maple/2016 (D)

MPFR/3.1.4 stata/13

NTL/9.8.1

Scientific Computing
V. School of Mathematics and Science

Example: Matrix-Matrix Multiplication

• basic linear algebra is available in many different

numerical libraries

– OpenBLAS, Lapack, MKL, …

– Basic Linear Algebra Subprograms (BLAS) contain e.g. a

General Matrix Multiplication (gemm) of the form:

𝐶 = 𝛼𝐴 ⋅ 𝐵 + 𝛽𝐶

– original version written in Fortran

– used in the mm.cpp example (cblas_dgemm is the C-interface for

double precision gemm)

2617.09.2019 Introduction HPC - Session 03

// A, B, and C are objects of class SqMatrix but A[0] etc. are

// pointers to first element in matrix which is what dgemm expects

cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,

n, n, n, alpha, A[0], n, B[0], n, beta, C[0], n);

Scientific Computing
V. School of Mathematics and Science

Toolchains

• some modules are called toolchains

– provide a collection of compiler, MPI, and/or numerical libraries

• examples:

– goolf: GCC, OpenMPI, OpenBLAS, ScaLAPACK, FFTW

– foss: free and open source software (same as goolf currently)

– gompi: GCC, OpenMPI

– intel: Intel compilers, MPI, MKL

2717.09.2019 Introduction HPC - Session 03

------------- /cm/shared/uniol/modules/toolchain ------------------

foss/2016b gompi/5.2.01 iimpi/2013b intel/2016b (D)

gimpi/6.2016 gompi/6.2.01 (D) iimpi/2016b (D)

gompi/4.1.10 goolf/5.2.01 intel/2013b

http://easybuild.readthedocs.io/en/latest/eb_list_toolchains.html

http://easybuild.readthedocs.io/en/latest/eb_list_toolchains.html

Scientific Computing
V. School of Mathematics and Science

Example: Matrix-Matrix Multiplication

• the code mm.cp uses OpenBLAS which is included in the goolf-toolchain

2817.09.2019 Introduction HPC - Session 03

$ ml restore

Resetting modules to system default

$ make clean

rm mm mm.o

$ make

g++ -O2 -c mm.cpp

mm.cpp:7:19: fatal error: cblas.h: No such file or directory

#include "cblas.h"

^

compilation terminated.

make: *** [mm.o] Error 1

$ ml foss

$ make

g++ -O2 -c mm.cpp

g++ -O2 -o mm mm.o -lopenblas

Scientific Computing
V. School of Mathematics and Science

Example: Matrix-Matrix Multiplication

• alternatively the code can be compiled with Intel MKL

– requires some code change (different header file)

– requires changes to Makefile (different libraries to link)

– result: code runs faster by 25%

2917.09.2019 Introduction HPC - Session 03

$ sacct -j 2591679 -o JobID,JobName,Partition,Elapsed,MaxRSS,State,ExitCode

JobID JobName Partition Elapsed MaxRSS State ExitCode

------------ ---------- ---------- ---------- ---------- ---------- --------

2591679 run_mm.job carl.p 00:06:21 COMPLETED 0:0

2591679.bat+ batch 00:06:21 7336K COMPLETED 0:0

2591679.0 mm 00:00:33 37600K COMPLETED 0:0

2591679.1 mm 00:00:32 113412K COMPLETED 0:0

2591679.2 mm 00:00:33 412420K COMPLETED 0:0

2591679.3 mm 00:00:32 1592064K COMPLETED 0:0

2591679.4 mm 00:04:09 6310656K COMPLETED 0:0

Scientific Computing
V. School of Mathematics and Science

Exercises

3017.09.2019 Introduction HPC - Session 03

Scientific Computing
V. School of Mathematics and Science

Exercise: ORCA Job

3117.09.2019 Introduction HPC - Session 03

• examples for using installed software on the cluster can

be found in the HPC wiki

– e.g. ORCA (chemistry)

http://wiki.hpcuser.uni-oldenburg.de/index.php?title=ORCA_2016

– download the files for serial runs and submit job

– use ORCA 3.0.3

– the job script is rather complex

• module is loaded

• files are copied to $TMPDIR

• application is started from $TMPDIR

• output is copied to $WORK

http://wiki.hpcuser.uni-oldenburg.de/index.php?title=ORCA_2016

Scientific Computing
V. School of Mathematics and Science

Exercise: RandomWalk

3217.09.2019 Introduction HPC - Session 03

• task: run RandomWalk several (M=10) times to get the

average distance after N steps from multiple runs

– different seed every time

– each run as SLURM job

– write job script based on the example from the lecture

– think how to analyse after jobs are completed

• how to combine the output of M different jobs

Scientific Computing
V. School of Mathematics and Science

Job Arrays

3317.09.2019 Introduction HPC - Session 03

Scientific Computing
V. School of Mathematics and Science

Job Arrays

3417.09.2019 Introduction HPC - Session 03

• task: run program isprime several (M) times

– different input parameter every time

– all input parameters are in file parameter.dat

– simple approach: make M copies of job script, modifiy the input

parameter in every file

– clever approach: task array as prepared in prime.job

– analysis after job array is completed e.g. with awk script

Scientific Computing
V. School of Mathematics and Science

Job Arrays

3517.09.2019 Introduction HPC - Session 03

• job or task arrays are defined by Slurm options

– range of tasks can be defined as from-to:increment

– multiple ranges with comma-separated list

– limiting the number of parallel tasks possible (if tasks have large

requirements)

$ cat array.job

. . .

settings for job array

#SBATCH --array 1-10:1%4 # define task array

format range:step%tasklimit

. . .

Scientific Computing
V. School of Mathematics and Science

Job Arrays

3617.09.2019 Introduction HPC - Session 03

• additional variable with task-ID is provided

can be used

– e.g. to number input or output files

– computation in bash (limited)

– read specific line from input file

$ cat prime.job

. . .

get paramter from file for each task

parameter=$(awk "NR==$SLURM_ARRAY_TASK_ID {print $1}" parameter.dat)

echo -n "Task $SLURM_ARRAY_TASK_ID tested if $parameter is prime? "

./isprime $parameter

. . .

Scientific Computing
V. School of Mathematics and Science

Job Arrays

3717.09.2019 Introduction HPC - Session 03

• job array are a powerful tool for task parallel jobs

– to be preferred over submitting many individual jobs

– each tasks in a job array should be sufficiently long (e.g. > 1h),

due to the overhead for a single task

• requires some strategy for post-processing

– often Linux tools can do the trick, more complex tasks may

require post-processing script in e.g. Python

• additional environment variables for first and last task

– however, tasks may not complete in the correct order

– alternatively job dependencies can be used

Scientific Computing
V. School of Mathematics and Science

awk

3817.09.2019 Introduction HPC - Session 03

• powerful Linux tool that searches the lines of a file for

patterns and performs an action on that line

– similar tools are grep (pattern matching) and sed (streaming edit)

– works well with data files (tables)

– uses a C-like syntax

• example: prime.awk

– reads all output files from the job array (using cat to combine

them)

– counts yes and no answers

– prints final result

http://www.gnu.org/software/gawk/manual/gawk.html

http://www.gnu.org/software/gawk/manual/gawk.html

Scientific Computing
V. School of Mathematics and Science

Job Arrays and Alternatives

• task-parallel jobs can be handled in different ways (from

simple to more complex approaches)

– single job containing a loop, useful if individual tasks only run for

a very short time

– job array (as shown before), simple and native approach

– single job using the parallel command, again useful if

individual tasks are short-running

– parallel (MPI-)program that implements a master-worker scheme,

useful e.g. if results from tasks generate new tasks

also see https://wiki.hpcuser.uni-oldenburg.de/index.php?title=How_to_Manage_Many_Jobs

3917.09.2019 Introduction HPC - Session 03

https://wiki.hpcuser.uni-oldenburg.de/index.php?title=How_to_Manage_Many_Jobs

