

Introduction to High-Performance Computing

Session 03 Basic Cluster Usage II: Environment: File Systems, Modules, Compiler and Toolchains

HPC User Environment

the user environment on a HPC cluster consists of:

- the operating system (OS)
 - e.g. RHEL Linux (all HPC systems in top500 have Linux-like OS)
 - basic functionality (login, create and edit files, ...)
- data storage
 - one or more file systems
 - temporary, short and long term storage
- software
 - scientific applications
 - libraries
 - compiler
- job scheduler

File Systems

HPC File Systems

http://www.fz-juelich.de/ias/jsc/EN/Expertise/Datamanagement/JUDAC/Filesystems/filesystems_node.html

• typically on a HPC system different file systems are available

Name	Description	Features
\$TMPDIR or /scratch	temporary storage provided on a per job basis, deleted after job often local disk or similar	very fast I/O, up to a few TB, no backup
\$WORK	temporary storage for job data, maybe kept after job, typically parallel file system attached to interconnect	fast, parallel I/O, up to PB, no backup
\$DATA	mid-term storage for job output, parallel filesystem or NFS	up to PB, maybe with backup
\$HOME	NFS storage, long term and secure, for program codes, initial conditions	few 100GB, full backup, snapshots
\$ARCH	permanent archive, storage for finished projects, tape library	few PB, possible slow read

http://wiki.hpcuser.uni-oldenburg.de/index.php?title=File_system_and_Data_Management

- central ISILON storage
 - used for home directories (as before)
 - NFS mounted over 10Gb Ethernet
 - full backup and snapshot functionality
 - can be mounted on local workstation using SMB
- shared parallel storage (GPFS)
 - used for data and work directories
 - data transfer over FDR Infiniband
 - currently no backup
 - can also be mounted on local workstation using SMB
- local disks or SSDs for scratch
 - CARL compute nodes have local storage (1-2TB per node)
 - EDDY compute nodes have 1GB RAM disk (for compatibility)
 - usable during job run time

Directory Structure

- on every filesystem (\$HOME, \$DATA, \$WORK) users will have their own subdirectory
 - e.g. for \$HOME

```
drwx----- abcd1234 agsomegroup /user/abcd1234
```

- default permissions prevent other users from seeing the contents of their directory
- user can give permissions to others to access files or subdirectory as needed (user's responsibility)
- file and directory access can be based on primary (the working group) and secondary (e.g. the institute) Unix groups
- recommendation: keep access restricted on \$HOME and if needed share files/dirs. on \$DATA or \$WORK

https://wiki.hpcuser.uni-oldenburg.de/index.php?title=File_system_and_Data_Management#Managing_access_rights_of_your_folders

File Systems

File System	Env. Variable	Path	Used for
Home	\$HOME	/user/abcd1234	critical data that cannot easily be reproduced (program codes, initial conditions, results from data analysis)
Data	\$DATA	/gss/data/abcd1234	important data from simulations for on-going analysis and long term (project duration) storage
Work	\$WORK	/gss/work/abcd1234	data storage for simulation runtime, pre- and post-processing, short term (weeks) storage
Scratch	\$TMPDIR	/scratch/ <job-dir></job-dir>	temporary data storage during job runtime

- home and data can be mounted on local workstations
- data may have some kind of backup in the future
- special quota rule for work

https://wiki.hpcuser.uni-oldenburg.de/index.php?title=File_system_and_Data_Management#Quotas

- on every file system default quotas are in place
 - HOME and DATA have 1TB and 20TB, respectively
 - WORK has 50TB
 - maybe increased upon request
- special quota on WORK
 - in addition to hard limit above, work also has soft quota of 25TB
 - if usage is over soft quota a grace period of 30 days is triggered
 - after grace period no data can be written to work by user

→ clean up your data on WORK regularly

- setting file permissions
 - add execute (x) permission to directories to allow cd
 - add read (r) permission to directories to all Is
 - avoid adding write (w) permission for group or others on directories (you cannot change ownership of files)
- checking quotas
 - use the lastquota command to find out how much diskspace your are using
 - also weekly e-mails to all users

File System Shares

https://wiki.hpcuser.uni-oldenburg.de/index.php?title=Local_Mounting_of_File_Systems

- you can mount your **\$HOME** directory on your local workstation
- it will be also possible to mount \$DATA locally (work in progress)
- server address for mounting are
 - \$HOME //daten.uni-oldenburg.de/hpchome
 \$DATA //daten.uni-oldenburg.de/hpcdata
 (data does not work yet)
 - for Windows connect a network drive
 - for Linux add information in /etc/fstab

Software and Modules

- software is installed centrally on the cluster
 - /cm/shared/uniol/software
 - user can use preinstalled software
 - software can be optimized for system
 - own software can be installed too
- installed software includes
 - compilers
 - libraries (MPI, numerical libraries,...)
 - scientific application
 - overview and help in the HPC wiki

Modules

• Linux settings are defined by environment variables

- applications require correct settings of environment variables

 the environment settings for installed applications are managed using modules

<pre>\$ module list # show loaded modules Currently Loaded Modules:</pre>					
1) slurm/current	2) hpc-uniol-env				
\$ module av	<pre># show available modul</pre>	es			
/cm/shared/uniol/modules/core/cm/shared/uniol/modules/core/cm/shared/uniol/modules/core					
/cm/shared/uniol/modules/bio/cm/shared/uniol/modules/bio					
BCFtools/1.3.1	CD-HIT/4.6.4	SOAPdenovo2/r240			
BEDTools/2.26.0	FASTX-Toolkit/0.0.14	Stacks/1.42			
• • •					

Module Commands

https://wiki.hpcuser.uni-oldenburg.de/index.php?title=User_environment_-_The_usage_of_module_2016

• find modules

module available [module-name]
module spider [module-name]

- list all modules [with given module name]
- spider is case-insensitive and understands reg-exp
- load/unload
 - module load <module-name>
 - module remove <module-name>
 - to return to a default state
 module restore
- information about modules

module list
module help <module-name>
module spider <module-name>

Examples: Module Commands

```
$ module list
1) hpc-uniol-env 2) slurm/current
$ module load GCC/4.9.4
$ module list
1) hpc-uniol-env 2) slurm/current 3) GCC/4.9.4
4) ...
$ module swap GCC/4.9.4 GCC/5.4.0
$ module restore
$ module purge
$ module load hpc-uniol-env
```


- why use modules
 - modules allows multiple versions of the same application to be installed
 - modules change all the environment settings as needed
 - modules know about dependencies and conflicts
- modules and jobs
 - modules have to be loaded within a job script (as needed)
 - modules loaded when the job is submitted are remembered by SLURM
 (but you may submit a job later again with different modules loaded)

Compiler, Libraries and Toolchains

Compiler

• different compilers available (from vendors and also open-source)

/cm/shared/uniol/modules/compiler				
CUDA-Toolkit/8.0.44		NAG_Fortran/5.2		
GCC/4.9.4-2.25		PGI/12.10		
GCC/5.4.0-2.26		PGI/15.10		
GCC/6.2.0-2.27	(D)	PGI/16.10	(D)	
LLVM/3.8.1-goolf-5.2.01		icc/2016.3.210		
LLVM/3.8.1-intel-2016b		ifort/2016.3.210		
LLVM/3.9.0-intel-2016b	(D)			

- Intel compiler usally gives very good performance (icc and ifort)
- using different compilers may help to better understand your code
- some compiler support special hardware (e.g. GPUs by PGI)
- always load one compiler (don't use OS GCC)

Example: RandomWalk.cpp

- download the code RandomWalk.cpp (and the other RandomWalk files) from Stud.IP
 - the code simulates a 2d random walk, each step of lenght one in random direction, prints out distance from start after N steps
 - expected distance is SQRT(N)
 - compile with GCC or ICS
 - \$ gcc RandomWalk.cpp –o RandomWalk
 - \$ icpc RandomWalk.cpp –o RandomWalk
 - run with one argument for seed, e.g.
 - \$./RandomWalk 12345
 - timing with
 - \$ time ./RandomWalk 12345

- libraries are available as modules
 - numerical libraries provide optimized solutions of general problems

```
/cm/shared/uniol/modules/numlib -
ATLAS/3.10.2
                              Octave/4.0.3
Armadillo/7.500.1
                              OpenBLAS/0.2.19
CLHEP/2.2.0.4-intel-2016b
                              Ohull/2015.2
Eigen/3.2.9
                              ScaLAPACK/2.0.2
FFTW/3.3.5-gompi-5.2.01
                              SuiteSparse/4.5.3
FIAT/1.6.0-intel-2016b
                              cuDNN/5.1-CUDA-8.0.44
GMP/6.1.1 (D)
                              cvx/2.1
GSL/2.1
                              imkl/11.3.3.210
Hypre/2.11.1
                              leda/6.3
LinBox/1.4.0
                              maple/18
MATLAB/2016b
                              maple/2016
                                                     (D)
MPFR/3.1.4
                              stata/13
NTL/9.8.1
```


Example: Matrix-Matrix Multiplication

- basic linear algebra is available in many different numerical libraries
 - OpenBLAS, Lapack, MKL, ...
 - Basic Linear Algebra Subprograms (BLAS) contain e.g. a General Matrix Multiplication (gemm) of the form:

$$C = \alpha A \cdot B + \beta C$$

- original version written in Fortran
- used in the mm.cpp example (cblas_dgemm is the C-interface for double precision gemm)

Toolchains

http://easybuild.readthedocs.io/en/latest/eb_list_toolchains.html

- some modules are called toolchains
 - provide a collection of compiler, MPI, and/or numerical libraries

foss/2016b	gompi/5.2.01	iimpi/2013b	intel/2016b (D)
gimpi/6.2016	gompi/6.2.01 (D)	iimpi/2016b	(D)
gompi/4.1.10	goolf/5.2.01	intel/2013b	

- examples:
 - goolf: GCC, OpenMPI, OpenBLAS, ScaLAPACK, FFTW
 - gompi: GCC, OpenMPI
 - intel: Intel compilers, MPI, MKL

Example: Matrix-Matrix Multiplication

• the code mm.cp uses OpenBLAS which is included in the goolf-toolchain

```
$ ml restore
Resetting modules to system default
$ make clean
rm mm mm.o
$ make
g++ -02 -c mm.cpp
mm.cpp:7:19: fatal error: cblas.h: No such file or directory
 #include "cblas.h"
                   \sim
compilation terminated.
make: *** [mm.o] Error 1
$ ml goolf
$ make
q++-02 -c mm.cpp
g++ -O2 -o mm mm.o -lopenblas
```


Example: Matrix-Matrix Multiplication

- alternatively the code can be compiled with Intel MKL
 - requires some code change (different header file)
 - requires changes to Makefile (different libraries to link)
 - result: code runs faster by 25%

<pre>\$ sacct -j 2591679 -o JobID,JobName,Partition,Elapsed,MaxRSS,State,ExitCode</pre>						
JobID	JobName	Partition	Elapsed	MaxRSS	State	ExitCode
2591679	run_mm.job	carl.p	00:06:21		COMPLETED	0:0
2591679.bat+	batch		00:06:21	7336K	COMPLETED	0:0
2591679.0	mm		00:00:33	37600K	COMPLETED	0:0
2591679.1	mm		00:00:32	113412K	COMPLETED	0:0
2591679.2	mm		00:00:33	412420K	COMPLETED	0:0
2591679.3	mm		00:00:32	1592064K	COMPLETED	0:0
2591679.4	mm		00:04:09	6310656K	COMPLETED	0:0

Exercises

Exercise: ORCA Job

- examples for using installed software on the cluster can be found in the HPC wiki
 - e.g. ORCA (chemistry) <u>http://wiki.hpcuser.uni-oldenburg.de/index.php?title=ORCA_2016</u>
 - download the files for serial runs and submit job
 - use ORCA 3.0.3
 - the job script is rather complex
 - module is loaded
 - files are copied to \$TMPDIR
 - application is started from \$TMPDIR
 - output is copied to \$WORK

Exercise: RandomWalk

- task: run RandomWalk several (M=10) times to get the average distance after N steps from multiple runs
 - different seed every time
 - each run as SLURM job
 - write job script based on the example from the lecture
 - think how to analyse after jobs are completed
 - how to combine the output of M different jobs