
Introduction to
High-Performance Computing

Session 06

Introduction to OpenMP (II)



OpenMP

• OpenMP is a parallel programming model

‒ based on shared memory with workload distribution among threads

‒ uses mainly compiler directives and a few additional library routines

so far we have seen:

‒ how to compile OpenMP programs

‒ how to run OpenMP programs in a job script

‒ how to create parallel regions

next topic is how to distribute the workload among the threads

Introduction to HPC - Session 062



Work Sharing Directives

• parallel region to create a team of threads

‒ every thread executes the same code

‒ example

‒ every thread does the same work (and there is a race condition)

const int N=1000000;
double x[N];
#pragma omp parallel
{

int threadID = omp_get_thread_num();

for(int i=0; i<N; i++)
x[i] = 1./double(threadID+1);

}

Introduction to HPC - Session 063



Work Sharing Directives

• parallel region to create a team of threads

‒ every thread executes the same code

‒ example

‒ now every thread does a chunk of the work 

(and there is no race condition)

const int N=1000000;
double x[N];
#pragma omp parallel
{

int threadID = omp_get_thread_num();
#pragma omp for
for(int i=0; i<N; i++)

x[i] = 1./double(threadID+1);
}

Introduction to HPC - Session 064



Work Sharing Directives

• parallel region to create a team of threads

‒ every thread executes the same code

‒ example

‒ directive can be separated or combined as needed

Introduction to HPC - Session 065

const int N=1000000;
double x[N];
#pragma omp parallel for
{

for(int i=0; i<N; i++)
x[i] = 1./(i+1.);

}



Work Sharing Directives

• usable in parallel regions

• directives to specify how the work is distributed

• no synchronization at entry, only at exit (disabled with nowait)

• directives

‒ for split a loop into parallel tasks

‒ sections/section defines a task for one thread

‒ single/master one/master thread only, no synchronization

‒ critical executed by one thread at a time

‒ …

• additional clauses e.g. to further specify distribution of work

Introduction to HPC - Session 066



Example: Mean of Random Numbers

// calculate mean value
double mean=0;
for (int i=0; i<NSIZE; i++)

mean += vec[i];
mean /= NSIZE;

Introduction to HPC - Session 067

• how to parallelize the program Random.cpp with 

OpenMP?

‒ e.g. the calculation of the mean value



Example: Mean of Random Numbers

• how to parallelize the program Random.cpp with 

OpenMP?

‒ e.g. the calculation of the mean value

// calculate mean value
double mean=0;
#pragma omp parallel shared(mean)
{

double mean_loc=0;
#pragma omp for
for (int i=0; i<NSIZE; i++)

mean_loc += vec[i];
#pragma omp critical
mean += mean_loc;

}
mean /= NSIZE;

Introduction to HPC - Session 068



OpenMP Directive critical

• only one thread at a time can execute critical code block

‒ in the example 

this ensures mean is calculated without race condition

‒ overhead for synchronization and serialization of code block

‒ a faster alternative is provided by the atomic directive

‒ has limitation on the expressions (critical is more general) 

#pragma omp critical
mean += mean_loc;

#pragma omp atomic
mean += mean_loc;

Introduction to HPC - Session 069



OpenMP reduction Clause

• an alternative (optimal?) solution can be obtained with the 

reduction clause

‒ no need of critical section and private variable mean_loc

// calculate mean value
double mean=0;
#pragma omp parallel reduction(+:mean)
{

#pragma omp for
for (int i=0; i<NSIZE; i++)

mean += vec[i];
}
mean /= NSIZE;

Introduction to HPC - Session 0610



OpenMP Clauses

• the behavior of OpenMP directives can be adjusted using clauses

‒ e.g. the following clauses can be used with the for directive: 

private(list)
firstprivate(list)
lastprivate(list)

reduction(reduction-identifier:list)

schedule([modifier [,modifier]:]kind[, chunk_size])
collapse(n)
ordered[(n)]

nowait no implicit barrier at the end of loop construct

how work of loop

is distributed among

threads

compiler creates reduction operation

how data is treated

Introduction to HPC - Session 0611



Code Portability

• it is often desirable to have the same code file being used for serial 

and OpenMP parallel code

‒ use conditional compilation, e.g.

‒ pragmas only have effect when OpenMP option is used at compile time

‒ code becomes more difficult to read

#ifdef _OPENMP
double wt1 = omp_get_wtime();

#endif

Introduction to HPC - Session 0612



OpenMP Summary

• standard for easy shared memory parallelization

• uses compiler directives and some library functions

• based on threads and a fork-join model

• incremental parallelization

• serial and parallel code in one source file

• difference between shared and private data is important

• be careful about race conditions

Introduction to HPC - Session 0613



Exercise

Introduction to HPC - Session 0614



Calculate Pi in Parallel

• modify the program Pi.cpp so that it parallelizes the computation 

of p with OpenMP

‒ add a parallel region to the code

‒ parallelize the loop so that each thread computes a part of sum (integral)

‒ combine the partial sums for the final answer

‒ also add a wall clock timer (omp_get_wtime()) and compare the change in 

CPU and wall clock time for different number of threads

Introduction to HPC - Session 0615


