
Introduction to
High-Performance Computing

Session 08

Matlab Distributed Compute Server

(MDCS)

Introduction to MDCS
(MDCS was renamed Matlab Parallel Server in 2019a)

Introduction to HPC - Session 082

What is MDCS?

Matlab on your desktop computer:

• you are limited by the compute power

of your local machine

• memory

• CPU speed

• you can only run one job at a time

• your machine may become unusable

while your Matlab job is running

Introduction to HPC - Session 083

What is MDCS?

Introduction to HPC - Session 084

Parallel Computing with Matlab

• easily experiment with

explicit parallelism on

multicore machines

• rapidly develop parallel

applications on local

computer

• take full advantage of

desktop power, incl. GPUs

• separate compute cluster

not required
(taken from MathWorks marketing)

Introduction to HPC - Session 085

MATLAB Workers (max 512)

Parallel Computing with Matlab

Introduction to HPC - Session 086

(taken from MathWorks marketing)

What is MDCS

• MDCS allows you to off-load Matlab programs to a compute server

• simplified workflow

‒ you can develop and test your application locally before submitting jobs, also

in parallel

‒ results are automatically returned to your local machine for post-processing

• the Parallel Computing Toolbox provides utilities for parallelization

‒ task-parallel

‒ data-parallel

Introduction to HPC - Session 087

Why to use MDCS on the Cluster?

• easy to use

‒ work on your local computer within known Matlab environment

‒ files (scripts, data, results) are automatically transfered

‒ no need to learn about job scripts (but it helps to know a little)

• parallelization across multiple nodes

‒ make use of distributed memory

‒ use parallel threads (CPU cores) for each worker

Introduction to HPC - Session 088

MDCS Licenses

• MDCS on the HPC cluster includes 272 worker licenses

‒ Matlab used to be limited to 200 licenses, now Campus license

‒ for fair sharing not more than 36 MDCS licenses should be used per job and

at most two jobs per user (hard limit)

‒ check license use on the cluster:

Introduction to HPC - Session 089

Parallel Computing with Matlab

Introduction to HPC - Session 0810

Parallel Computing with Matlab

Three levels of Integration:

Introduction to HPC - Session 0811

Parallel Computing Support in Toolboxes

• Optimization Toolbox

• Global Optimization Toolbox

• Statistics Toolbox

• Simulink Design Optimization

• Bioinformatics Toolbox

• Communications Toolbox

• Model-Based Calibration Toolbox

• ... and more

see
http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.html

Introduction to HPC - Session 0812

http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.html

Configuration of MDCS

Introduction to HPC - Session 0813

Using Matlab on CARL/EDDY

• there are three ways of running Matlab on the compute nodes:

1. interactively with srun (or with srun.x11 if you need GUI)

$ module load MATLAB
$ srun -p carl.p --ntasks 1 --cpus-per-task 24 matlab -nodisplay -nojvm
>> a=rand(4096); b=rand(4096);
>> …

2. as a job with sbatch

o job script contains: matlab -nodisplay -nojvm -batch myprogam

o Matlab program provided as myprogram.m

o use -r instead of -batch for older Matlab versions (before 2019a) and terminate

program with quit()

3. using MDCS

o most convenient and recommended way

o only option to use more than one compute node

o requires configuration of local computer

Introduction to HPC - Session 0814

https://wiki.hpcuser.uni-oldenburg.de/index.php?title=MATLAB_2016

https://wiki.hpcuser.uni-oldenburg.de/index.php?title=Interactive_Jobs
https://wiki.hpcuser.uni-oldenburg.de/index.php?title=MATLAB_2016

Using MDCS on CARL/EDDY

• before you can use MDCS a few preparations are needed (only needed to be

done once)

‒ Matlab needs to be installed (see local web page) on your local machine, version

must match to version on cluster (e.g. R2019b)

‒ your local machine must be able to login to CARL/EDDY via ssh

o Linux/Mac have ssh per default, for Windows you can use PuTTY

o if you are not in the university network you also need to connect to a VPN (see HPC-Wiki

for details)

‒ a number of files (from a zipped archive from the HPC-Wiki) have to copied to a local

directory (for older versions of Matlab you may need root/admin access for this step)

‒ a parallel configuration has to be setup with Matlab

see https://wiki.hpcuser.uni-oldenburg.de/index.php?title=Configuration_MDCS_2016

Introduction to HPC - Session 0815

https://wiki.hpcuser.uni-oldenburg.de/index.php?title=Configuration_MDCS_2016

Configuration of MDCS Cluster Profile

• the remote system is described in the cluster profile

JobStorageLocation: local directory for job data, e.g.

C:\Users\name\Documents\MATLAB\2019b\JobData

RemoteJobStorageLocation: local directory for job data, e.g. on $WORK

/gss/work/abcd1234/MATLAB/2019b/JobData

‒ directories are sync‘d at job submission and after the job has completed

‒ existing workspace is copied at job submission (can affect submission time)

‒ workspace of main process is copied back (can affect job load time), use e.g.

clear bigvar1 bigvar2; (and save in separate files if needed)

Introduction to HPC - Session 0816

Configuration of MDCS Cluster Profile

• the remote system is described in the cluster profile

JobStorageLocation: local directory for job data, e.g.

C:\Users\name\Documents\MATLAB\2019b\JobData

RemoteJobStorageLocation: local directory for job data, e.g. on $WORK

/gss/work/abcd1234/MATLAB/2019b/JobData

NumWorkers: set to 36 for fair sharing

NumThreads: set to 1 (default), can be changed when useful

‒ change with e.g.: sched.NumThreads=4;

‒ maximum number of threads is the number of CPU cores in a node

‒ total number of cores allocated is (worker+1)*NumThreads

‒ benchmark your code to determine a good number of threads per worker.

Introduction to HPC - Session 0817

Configuration of MDCS Cluster Profile

• the remote system is described in the cluster profile

JobStorageLocation: local directory for job data, e.g.

C:\Users\name\Documents\MATLAB\2019b\JobData

RemoteJobStorageLocation: remote directory for job data, e.g. on $WORK

/gss/work/abcd1234/MATLAB/2019b/JobData

NumWorkers: set to 36 for fair sharing

NumThreads: set to 1 (default), can be changed when useful

AdditionalProperties: set at least ClusterHost and

RemoteJobStorageLocation (see above),

addtional options for password-free login are

described in HPC wiki

Introduction to HPC - Session 0818

Validation of MDCS Cluster Profile

recommended number of workers 4

last test fails but that is not a

problem (it can be skipped)

Introduction to HPC - Session 0819

Basic Example for Using MDCS

Introduction to HPC - Session 0820

Using MDCS on CARL/EDDY

• once you have completed the setup you can submit jobs to the

cluster

‒ example parameter sweep for 2nd-order ODE

(taken from the HPC-Wiki)

‒ dampened oscillator

‒ simulate with different values for b and k

‒ record peak value for each run

Introduction to HPC - Session 0821

https://wiki.hpcuser.uni-oldenburg.de/index.php?title=Basic_Examples_MDCS_2016

2nd-order ODE for example

function dy = odesystem(t, y, m, b, k)
% 2nd-order ODE
%
% m*X'' + b*X' + k*X = 0
%
% --> system of 1st-order ODEs
%
% y = X'
% y' = -1/m * (k*y + b*y')
% Copyright 2009 The MathWorks, Inc.

dy(1) = y(2);
dy(2) = -1/m * (k * y(1) + b * y(2));

dy = dy(:); % convert to column vector

odesystem.m

Introduction to HPC - Session 0822

Parameter Sweep: serial Matlab code

%% Initialize Problem
m = 5; % mass
bVals = 0.1:.1:15; % damping values (step .1)
kVals = 1.5:.1:15; % stiffness values (step .1) damping
[kGrid, bGrid] = meshgrid(bVals, kVals);
peakVals = nan(size(kGrid));

%% Parameter Sweep
tic;

for idx = 1:numel(kGrid)
% Solve ODE
[T,Y] = ode45(@(t,y) odesystem(t, y, m, bGrid(idx), kGrid(idx)), ...

[0, 25], ... % simulate for 25 seconds
[0, 1]); % initial conditions

% Determine peak value
peakVals(idx) = max(Y(:,1));

end

t1 = toc;

paramSweep_batch.m

Introduction to HPC - Session 0823

Parameter Sweep: parallel Matlab code

%% Initialize Problem
m = 5; % mass
bVals = 0.1:.1:15; % damping values (step .1)
kVals = 1.5:.1:15; % stiffness values (step .1) damping
[kGrid, bGrid] = meshgrid(bVals, kVals);
peakVals = nan(size(kGrid));

%% Parameter Sweep
tic;

parfor idx = 1:numel(kGrid)
% Solve ODE
[T,Y] = ode45(@(t,y) odesystem(t, y, m, bGrid(idx), kGrid(idx)), ...

[0, 25], ... % simulate for 25 seconds
[0, 1]); % initial conditions

% Determine peak value
peakVals(idx) = max(Y(:,1));

end

t1 = toc;

paramSweep_batch.m

Introduction to HPC - Session 0824

Using MDCS on CARL/EDDY

• submitting jobs to the cluster

‒ first command creates a handle sched for the cluster using the available

configuration

‒ second command creates a job and sends it to the cluster

o Matlab script is executed on the cluster

o requests a pool of workers (number of processes is +1 for master)

o uses default resources unless modified

o files can be attached explicitly but Matlab also automatically attaches needed

files (if it can find them and if not disabled)

o job handle job contains additional information

>> sched = parcluster('CARL');
>> job = batch(sched, 'paramSweep_batch', 'Pool', 7, ...

'AttachedFiles', {'odesystem.m'});

Introduction to HPC - Session 0825

Using MDCS on CARL/EDDY

• checking the status of a job

>> job.State

‒ answer can be e.g. 'queued', 'running', or 'finished'

‒ alternatively, use the job monitor

• retrieving the results from a completed job

>> jobData = load(job);

‒ the structure jobData holds the workspace from the main process

‒ further processing can be done locally, e.g. creating a plot

>>

>>

>>

>>

>>

>>

Introduction to HPC - Session 0826

figure;

f=surf(jobData.bVals, jobData.kVals, jobData.peakVals);

set(f,'LineStyle','none');

set(f,'FaceAlpha',0.5);

xlabel('Damping'); ylabel('Stiffness'); zlabel('Peak Displacement');

view(50, 30);

Using MDCS on CARL/EDDY

• changing resource allocation

‒ changes maximum runtime and memory per worker

‒ remove previous setting to get default

‒ older Matlab versions use a different format (see HPC wiki)

• path-dependency as alternative to attaching files

‒ use addpath within script (.m-files)

‒ use AdditionalPath property of scheduler object

‒ use absolute path names

‒ copy files to the cluster before submitting job

> sched.AdditionalProperties.runtime=‘0:30:00’;
> sched.AdditionalProperties.memory=‘4G’;
> remove(sched.AdditionalProperties, 'memory’);

Introduction to HPC - Session 0827

Using MDCS on CARL/EDDY

• recovering jobs

‒ it is possible to terminate the local Matlab session while jobs are running (or

waiting on the cluster)

‒ to reconnect

• deleting jobs permanently

‒ careful, this removes files from your local computer and cannot be undone

‒ you can also use the Job Monitor for this

>> sched = parcluster('CARL');
>> sched.Jobs % to list available jobs
>> job = sched.Jobs(1) % to get job information
>> jobData = load(job);

Introduction to HPC - Session 0828

>> delete(sched.Jobs(1)); % delete first job in list
>> delete(sched.Jobs); % delete all jobs in list

Monitoring Jobs and Error Tracking

• Matlab Job Monitor for basic information

‒ may show warnings and/or errors

‒ in the basic example a warning is shown: "<Dir>" not found in path,

can be avoided by adding 'AutoAddClientPath', false

to the batch-command

• use squeue and sacct for additional information from SLURM

• job handle can be used to get information about errors

• Matlab diary for additional log output

• files in the job directory

Introduction to HPC - Session 0829

	Folie 1: Introduction to High-Performance Computing
	Folie 2: Introduction to MDCS
	Folie 3: What is MDCS?
	Folie 4: What is MDCS?
	Folie 5: Parallel Computing with Matlab
	Folie 6: Parallel Computing with Matlab
	Folie 7: What is MDCS
	Folie 8: Why to use MDCS on the Cluster?
	Folie 9: MDCS Licenses
	Folie 10: Parallel Computing with Matlab
	Folie 11: Parallel Computing with Matlab
	Folie 12: Parallel Computing Support in Toolboxes
	Folie 13: Configuration of MDCS
	Folie 14: Using Matlab on CARL/EDDY
	Folie 15: Using MDCS on CARL/EDDY
	Folie 16: Configuration of MDCS Cluster Profile
	Folie 17: Configuration of MDCS Cluster Profile
	Folie 18: Configuration of MDCS Cluster Profile
	Folie 19: Validation of MDCS Cluster Profile
	Folie 20: Basic Example for Using MDCS
	Folie 21: Using MDCS on CARL/EDDY
	Folie 22: 2nd-order ODE for example
	Folie 23: Parameter Sweep: serial Matlab code
	Folie 24: Parameter Sweep: parallel Matlab code
	Folie 25: Using MDCS on CARL/EDDY
	Folie 26: Using MDCS on CARL/EDDY
	Folie 27: Using MDCS on CARL/EDDY
	Folie 28: Using MDCS on CARL/EDDY
	Folie 29: Monitoring Jobs and Error Tracking

