
Introduction to OpenMP

Dr. Stefan Albensoeder

Contact: Stefan.Albensoeder@uni-oldenburg.de

INTRODUCTION

PARALLELIZATION

Why parallelization?

• Moore‘s law

• The number of transistors on a chip will double every ~18 month

• Frequency of todays CPUs

→ constant or decreasing

(→ power consumption)

• Increase only

→ more cores per CPU

• Problem too complex

→ time consuming

• Problem size

→ high memory needs

(source www.wikipedia.org)

Limit of parallelization - Scaling

• Speedup of the program when increasing number of

processes / used cores

• Dependencies

• Fraction of parallelization code P

• Amount of communication /

synchronization C~O(N)

• Size / complexity of problem

(e.g. number of unknown of

an equation system)

• Load balance

(distribution of load on

processors)

• Hardware

(latency/speed of network/memory access,

 cache coherence,…)

Limit of parallelization - Scaling

• Strong scaling

• Problem size constant

• Speedup S(N) in time

• Amdahl‘s law:

𝑆 𝑁 =
1

1 − 𝑃 + 𝐶 + 𝑃
𝑁

• Weak scaling

• Constant time frame

• Speedup S(N) by increasing

problem size/

number of solved problems

• Gustavson‘s law:

𝑆 𝑁 = 1 − 𝑃 + 𝑁 ∙ 𝑃

PARALLEL PROGRAMMING

MODELS

Parallel programming models

• Distributed memory

• MPI (Message Passing Interface)

• PVM (Parallel Virtual Machine)

• Distributed shared memory

• PGAS (Partitioned Global Address Space)

• Shared memory

• PThread (POSIX Threads)

• OpenMP (Open Multi-Processing)

• Accelerator device

• Nvidia’s CUDA (Compute Unified Device Architecture)

• OpenCL (Open Computing Language)

→ most common: MPI, PThread and OpenMP

• One process with multiple threads

• Use same memory segment

→ variables are accessible from every thread

→ can lead to race-conditions (need synchronization)

Shared memory models - PThreads and OpenMP

time

process

end

sequential part

sequential part

sequential part

parallel part

parallel part

Shared memory models - PThreads and OpenMP

• OpenMP

• C/C++:

Pragma compiler statements

• Fortran:

Directives within comments

• Minimal change of code

• PThreads

• Library interface

• Mutexes to avoid data collisions

• Code has to be changed

• Note

• Thread creation can be time consuming

• Only usable on shared memory architectures!

OPENMP

OpenMP code structure

C/C++

#pragma omp parallel

{

 code block

}

process

end

Fortran

!$OMP PARALLEL

 code block

!$OMP END PARALLEL

Extension
#pragma omp [directive] [clause] [clause] …

!$OMP PARALLEL [directive] [clause] …

C$OMP PARALLEL [directive] [clause] …

OpenMP overview

from www.wikipedia.org

OpenMP runtime library

• additional routines by

• C/C++: #include <omp.h>

• Fortran: use omp_lib or !$ INCLUDE ‘omp_lib.h’

• feaures

• setting and querying the number of threads
(omp_set_num_threads()and omp_get_num_threads())

• querying the thread ID (omp_get_thread_num())

• querying if in a parallel region (omp_in_parallel())

• wall clock timers (omp_get_wtime(), omp_get_wtick())

• …

• environment variables enable control of runtime

• setting the number of threads , e.g.
export OMP_NUM_THREADS=12

• setting the maximal number of threads, e.g.
export OMP_THREAD_LIMIT=24

OpenMP “hello world”

C:

Fortran:

#include <omp.h>

int main(int argc,char *argv[])

{

#pragma omp parallel

 {

 printf(„Hello World! (%d)“, omp_get_thread_num());

 }

 return 0

}

 PROGRAM HELLOWORLD

!$ INCLUDE 'omp_lib.h'

!$OMP PARALLEL

 PRINT *, 'Hello World!’, OMP_GET_THREAD_NUM()

!$OMP END PARALLEL

 END

flow01> make

gcc -fopenmp -c helloWorld.c

gcc -fopenmp helloWorld.o -o helloWorld

flow01> ./helloWorld

Hello World! (1)

Hello World! (2)

Hello World! (3)

Hello World! (0)

flow01> ./helloWorld

Hello World! (0)

Hello World! (3)

Hello World! (1)

Hello World! (2)

OpenMP “hello world”

→ Threads run in arbitrary order

OpenMP “hello world” 2

What happens here?

int main(int argc,char *argv[])

{

 int threadID, nThreads;

 #pragma omp parallel

 {

 threadID = omp_get_thread_num();

 printf("Hello World (%d)!\n", threadID);

 #pragma omp barrier

 if (threadID == 0) {

 nThreads = omp_get_num_threads();

 printf("Using %d threads\n",nThreads);

 }

 }

 return 0;

}

flow01> ./helloWorld

Hello World (0)!

Hello World (3)!

Hello World (1)!

Hello World (2)!

flow01> ./helloWorld

Hello World (1)!

Hello World (2)!

Hello World (3)!

Hello World (0)!

Using 4 threads

Using 4 threads

Using 4 threads

Using 4 threads

OpenMP “hello world”

OpenMP “hello world” 2

Problem: Race conditions

→ variable threadID is shared with all threads

int main(int argc,char *argv[])

{

 int threadID, nThreads;

 #pragma omp parallel

 {

 threadID = omp_get_thread_num();

 printf("Hello World (%d)!\n", threadID);

 #pragma omp barrier

 if (threadID == 0) {

 nThreads = omp_get_num_threads();

 printf("Using %d threads\n",nThreads);

 }

 }

 return 0;

}

OpenMP “hello world” 2

Correct way:

→ variable threadID is now private for each thread

int main(int argc,char *argv[])

{

 int threadID, nThreads;

 #pragma omp parallel private(threadID)

 {

 threadID = omp_get_thread_num();

 printf("Hello World (%d)!\n", threadID);

 #pragma omp barrier

 if (threadID == 0) {

 nThreads = omp_get_num_threads();

 printf("Using %d threads\n",nThreads);

 }

 }

 return 0;

}

Clauses for parallel regions

• private(variable list)

• definition of private variables in parallel region

• variable are not initialized

• variable have same name but different values in different threads

• shared(variable list)

• define varaiable which are shared over threads

• default(type)

• default for variables (shared or private)

• reduction(operator:list)

• reduce values in a save way after joining threads

• firstprivate(variable list)

• private variable will be initialized by the initial value

• threadprivate(variable list)

• variables are replicated, each thread has its own copy

• loop execute in parallel

• per default the range [0,N[is divided in Nthreads parts,

e.g. Nthreads=2: ithread 0=0,…,N/2-1, ithread 1=N/2,…,N-1

WORK SHARING DIRECTIVES

Work sharing directives

• usable in parallel regions

• directives specify how to work to threads

• no synchronization (barrier) at entry

• directives

• for or do : (Fortran/C) split loops into parallel tasks

• sections / section : definition of tasks for one thread

• single : code block will executed only in one thread

(synchronization at the end)

• master : code block will executed only in master thread

(no synchronization at the end)

• workshare : Fortran directive for statements like FORALL,

WHERE and array/scalar assignment

• task : definition of a specific task

WORK SHARING DIRECTIVES

FOR/DO

For/Do directive

• loop execute in parallel

• per default the range [0,N[is divided in Nthreads parts,

e.g. Nthreads=2: ithread 0=0,…,N/2-1, ithread 1=N/2,…,N-1

int main(int argc,char *argv[])

{

 int i;

 const N=1000000;

 double x[N];

 #pragma omp parallel for

 for(i=0; i<N; i++)

 {

 x[i] = 1./(i+1.);

 }

 return 0;

}

Clauses

• lastprivate(variable list)

• variables get the last value of parallelized loop

• collapse(n)

• collapse n loops to one loop (to get a better load balance)

• ordered

• loop will run in the same order as in a serial code

• schedule(type, [chunk size])

• specify how the loop will split up (optionally the chunk size)

• static – fixed chunks, like in demo before

• dynamic – waiting threads will get the next task

• guided – decrease the chunk size to get a better load balance

• auto – compiler decide best scheduling

• nowait

• no implicit barrier at the end

Scheduling

Example on 3 threads

Distribution of i on thread IDs 0,1,2

#pragma omp for

for(i=0; i<N; i++)

{

}

i= 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

static 0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 2

dynamic 0 1 2 0 2 1 0 2 1 2 0 1 2 0 1 2

guided 0 0 0 1 1 1 2 2 2 0 0 1 1 2 2 0

auto decided at runtime or from compiler

For/Do directive – 2nd example

int main(int argc,char *argv[])

{

 int i;

 const int N=1000000;

 double x[N];

 double nrm = 0.;

 #pragma omp parallel reduction(+:nrm)

 {

 /* init variables */

 #pragma omp for

 for(i=0; i<N; i++)

 {

 x[i] = 1./(i+1.);

 }

 /* calculate the norm */

 #pragma omp for

 for(i=0; i<N; i++)

 {

 nrm += x[i]*x[i];

 }

 }

 printf("Nrm = %g\n", sqrt(nrm));

...

Synchronization clauses

• critical

• the code block will executed by only one thread per time

• atomic

• memory updates within the block will be make atomically

• ordered

• structured block (e.g. loops) will run in the same order as in a

serial code

• barrier

• each thread waits until all threads of a team reaches this point

• nowait

• no implicit barrier at the end of a work share

For/Do directive – 2nd example alterantive

…

 double nrm = 0.;

 #pragma omp parallel shared(nrm)

 {

 double private_nrm = 0.;

 /* init variables */

 #pragma omp for

 for(i=0; i<N; i++)

 {

 x[i] = 1./(i+1.);

 }

 /* calculate the norm */

 #pragma omp for

 for(i=0; i<N; i++)

 {

 private_nrm += x[i]*x[i];

 }

 #pragma omp critical

 nrm += private_nrm;

 }

 printf("Nrm = %g\n", sqrt(nrm));

…

WORK SHARING DIRECTIVES

SECTION

 Sections directive

sections / section : definition of tasks for one thread

…

 #pragma omp parallel sections private(i)

 {

 {

 printf("Task %d has to do init x\n", omp_get_thread_num());

 for(i=0; i<N; i++)

 x[i] = 0.;

 }

 #pragma omp section

 {

 printf("Task %d has to do init y\n", omp_get_thread_num());

 for(i=0; i<N; i++)

 y[i] = 0.;

 }

 #pragma omp section

 {

 printf("Task %d has to do init z\n", omp_get_thread_num());

 for(i=0; i<N; i++)

 z[i] = 0.;

 }

 }

Output:

→ each section will assigned to a thread

flow01> ./section

Task 7 has to do init x

Task 3 has to do init y

Task 1 has to do init z

flow01> export OMP_NUM_THREADS=2

flow02> ./section

Task 1 has to do init y

Task 0 has to do init x

Task 0 has to do init z

OpenMP “hello world”

COMPILING

OpenMP Compililation

OpenMP compiler flags

• GNU compiler: -fopenmp

• Intel compiler: -openmp

• PGI compiler: -mp

PITFALLS

Implied flush

• consistent view on data in memory

• data from cache will flushed implicitly only some points:

• end of do/for/sections/single/workshare

• at begin and end of parallel/critical/ordered blocks

• barrier

• on other points the shared variables may have temporarily

different values

• of need a consistent view use flush(varlist) directive

• nowait directives

Race conditions, Dead locks and I/O

• race conditions

• two or more threads access the same variable and at least one

thread modify the variable and no synchronization is applied

• lead to unpredictable results

• use hellgrind of Intel Inspector for detecting race conditions

• deadlocks

• two or more threads blocked and wait on each other

→ program run (wait) forever

• I/O

• I/O within parallel regions from multiple threads can be

unpredictable

Overhead

Overhead

• synchronization/barriers

→ avoid unnecessary synchronization

• fork and join of parallel regions

→ try to build large parallel blocks

• so called false-sharing

• two threads modify same memory block which is loaded in 2

different caches due to cache lines

• e.g. by modification of an vector with dynamic scheduling

Optimization

• for multi-socket systems thinks about ccNUMA

→ variables attached to the socked where the first

access happens (array allocated typically in 4Kb blocks,

blocks can be assigned to memory at different sockets)

• pin threads to cores/cpus, e.g. by numactl

Summary

• usable by standardized compiler directives

• using threads within parallel regions

• simplify step by step parallelization

• can increase performance significatly

• disadvantages

• limited to shared memory machines

• race-conditions sometimes not easy to detect and to understand

Thanks a lot for your attention!

For further information please visit the HPC Wiki

http://wiki.hpcuser.uni-oldenburg.de

http://wiki.hpcuser.uni-oldenburg.de/
http://wiki.hpcuser.uni-oldenburg.de/
http://wiki.hpcuser.uni-oldenburg.de/

Exercises

• Login to FLOW/HERO
ssh –XY abcd1234@flow.hpc.uni-oldenburg.de

ssh –XY abcd1234@hero.hpc.uni-oldenburg.de

• Try to parallelize optimize sample code from yesterday

• Write submission script to test the program

• How does the code scale?

mailto:abcd1234@flow.hpc.uni-oldenburg.de
mailto:abcd1234@flow.hpc.uni-oldenburg.de
mailto:abcd1234@flow.hpc.uni-oldenburg.de
mailto:abcd1234@hero.hpc.uni-oldenburg.de
mailto:abcd1234@hero.hpc.uni-oldenburg.de
mailto:abcd1234@hero.hpc.uni-oldenburg.de

