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1 Getting Started

Product Overview
Parallel Computing Toolbox™ lets you solve computationally and
data-intensive problems using multicore processors, GPUs, and computer
clusters. High-level constructs—parallel for-loops, special array types, and
parallelized numerical algorithms—let you parallelize MATLAB® applications
without CUDA or MPI programming. You can use the toolbox with Simulink®

to run multiple simulations of a model in parallel.

The toolbox provides twelve workers (MATLAB computational engines)
to execute applications locally on a multicore desktop. Without changing
the code, you can run the same application on a computer cluster or a grid
computing service (using MATLAB® Distributed Computing Server™). You
can run parallel applications interactively or in batch.

MATLAB Distributed Computing Server software allows you to run as many
MATLAB workers on a remote cluster of computers as your licensing allows.
You can also use MATLAB Distributed Computing Server to run workers on
your client machine if you want to run more than twelve local workers.

Most MathWorks products let you code in such a way as to run applications in
parallel. For example, Simulink models can run simultaneously in parallel, as
described in “Running Parallel Simulations”. MATLAB® Compiler™ software
lets you build and deploy parallel applications, as shown in “Deploying
Applications Created Using Parallel Computing Toolbox”.

Several MathWorks products now offer built-in support for the parallel
computing products, without requiring extra coding. For the current list of
these products and their parallel functionality, see:

http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.html
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Key Problems Addressed by Parallel Computing

In this section...

“Running Parallel for-Loops (parfor)” on page 1-3

“Executing Batch Jobs in Parallel” on page 1-4

“Partitioning Large Data Sets” on page 1-4

Running Parallel for-Loops (parfor)
Many applications involve multiple segments of code, some of which are
repetitive. Often you can use for-loops to solve these cases. The ability to
execute code in parallel, on one computer or on a cluster of computers, can
significantly improve performance in many cases:

• Parameter sweep applications

- Many iterations — A sweep might take a long time because it comprises
many iterations. Each iteration by itself might not take long to execute,
but to complete thousands or millions of iterations in serial could take
a long time.

- Long iterations — A sweep might not have a lot of iterations, but each
iteration could take a long time to run.

Typically, the only difference between iterations is defined by different
input data. In these cases, the ability to run separate sweep iterations
simultaneously can improve performance. Evaluating such iterations in
parallel is an ideal way to sweep through large or multiple data sets. The
only restriction on parallel loops is that no iterations be allowed to depend
on any other iterations.

• Test suites with independent segments — For applications that run a
series of unrelated tasks, you can run these tasks simultaneously on
separate resources. You might not have used a for-loop for a case such as
this comprising distinctly different tasks, but a parfor-loop could offer an
appropriate solution.

Parallel Computing Toolbox software improves the performance of such loop
execution by allowing several MATLAB workers to execute individual loop
iterations simultaneously. For example, a loop of 100 iterations could run on
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a cluster of 20 MATLAB workers, so that simultaneously, the workers each
execute only five iterations of the loop. You might not get quite 20 times
improvement in speed because of communications overhead and network
traffic, but the speedup should be significant. Even running local workers all
on the same machine as the client, you might see significant performance
improvement on a multicore/multiprocessor machine. So whether your loop
takes a long time to run because it has many iterations or because each
iteration takes a long time, you can improve your loop speed by distributing
iterations to MATLAB workers.

Executing Batch Jobs in Parallel
When working interactively in a MATLAB session, you can offload work to
a MATLAB worker session to run as a batch job. The command to perform
this job is asynchronous, which means that your client MATLAB session is
not blocked, and you can continue your own interactive session while the
MATLAB worker is busy evaluating your code. The MATLAB worker can run
either on the same machine as the client, or if using MATLAB Distributed
Computing Server, on a remote cluster machine.

Partitioning Large Data Sets
If you have an array that is too large for your computer’s memory, it cannot
be easily handled in a single MATLAB session. Parallel Computing Toolbox
software allows you to distribute that array among multiple MATLAB
workers, so that each worker contains only a part of the array. Yet you can
operate on the entire array as a single entity. Each worker operates only
on its part of the array, and workers automatically transfer data between
themselves when necessary, as, for example, in matrix multiplication. A
large number of matrix operations and functions have been enhanced to work
directly with these arrays without further modification; see “Using MATLAB
Functions on Codistributed Arrays” on page 5-25 and “Using MATLAB
Constructor Functions” on page 5-10.
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Introduction to Parallel Solutions

In this section...

“Interactively Run a Loop in Parallel” on page 1-5

“Run a Batch Job” on page 1-7

“Run a Batch Parallel Loop” on page 1-8

“Run Scripts as Batch Jobs from the Current Folder Browser” on page 1-10

“Distributing Arrays and Running SPMD” on page 1-11

Interactively Run a Loop in Parallel
This section shows how to modify a simple for-loop so that it runs in parallel.
This loop does not have a lot of iterations, and it does not take long to execute,
but you can apply the principles to larger loops. For these simple examples,
you might not notice an increase in execution speed.

1 Suppose your code includes a loop to create a sine wave and plot the
waveform:

for i=1:1024
A(i) = sin(i*2*pi/1024);

end
plot(A)

2 To interactively run code that contains a parallel loop, you first open a
MATLAB pool. This reserves a collection of MATLAB worker sessions
to run your loop iterations. The MATLAB pool can consist of MATLAB
sessions running on your local machine or on a remote cluster:

matlabpool open local 3

3 With the MATLAB pool reserved, you can modify your code to run your loop
in parallel by using a parfor statement:

parfor i=1:1024
A(i) = sin(i*2*pi/1024);

end
plot(A)
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The only difference in this loop is the keyword parfor instead of for.
After the loop runs, the results look the same as those generated from
the previous for-loop.
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Because the iterations run in parallel in other MATLAB sessions, each
iteration must be completely independent of all other iterations. The
worker calculating the value for A(100) might not be the same worker
calculating A(500). There is no guarantee of sequence, so A(900) might
be calculated before A(400). (The MATLAB Editor can help identify
some problems with parfor code that might not contain independent
iterations.) The only place where the values of all the elements of the array
A are available is in the MATLAB client, after the data returns from the
MATLAB workers and the loop completes.

4 When you are finished with your code, close the MATLAB pool and release
the workers:

matlabpool close

For more information on parfor-loops, see Chapter 2, “Parallel for-Loops
(parfor)”.

The examples in this section run on three local workers. With parallel
configurations, you can control how many workers run your loops, and
whether the workers are local or remote. For more information on parallel
configurations, see “Parallel Configurations for Cluster Access” on page 6-14.

1-6



Introduction to Parallel Solutions

You can run Simulink models in parallel loop iterations with the sim command
inside your loop. For more information and examples of using Simulink with
parfor, see “Running Parallel Simulations” in the Simulink documentation.

Run a Batch Job
To offload work from your MATLAB session to another session, you can use
the batch command. This example uses the for-loop from the last section
inside a script.

1 To create the script, type:

edit mywave

2 In the MATLAB Editor, enter the text of the for-loop:

for i=1:1024
A(i) = sin(i*2*pi/1024);

end

3 Save the file and close the Editor.

4 Use the batch command in the MATLAB Command Window to run your
script on a separate MATLAB worker:

job = batch('mywave')
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5 The batch command does not block MATLAB, so you must wait for the job
to finish before you can retrieve and view its results:

wait(job)

6 The load command transfers variables from the workspace of the worker to
the workspace of the client, where you can view the results:

load(job, 'A')
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plot(A)

7 When the job is complete, permanently remove its data:

destroy(job)

Run a Batch Parallel Loop
You can combine the abilities to offload a job and run a parallel loop. In the
previous two examples, you modified a for-loop to make a parfor-loop, and
you submitted a script with a for-loop as a batch job. This example combines
the two to create a batch parfor-loop.

1 Open your script in the MATLAB Editor:

edit mywave

2 Modify the script so that the for statement is a parfor statement:

parfor i=1:1024
A(i) = sin(i*2*pi/1024);

end

3 Save the file and close the Editor.

4 Run the script in MATLAB with the batch command as before, but indicate
that the script should use a MATLAB pool for the parallel loop:

job = batch('mywave', 'matlabpool', 3)

This command specifies that three workers (in addition to the one running
the batch script) are to evaluate the loop iterations. Therefore, this example
uses a total of four local workers, including the one worker running the
batch script.
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5 To view the results:

wait(job)
load(job, 'A')
plot(A)

The results look the same as before, however, there are two important
differences in execution:

• The work of defining the parfor-loop and accumulating its results are
offloaded to another MATLAB session (batch).

• The loop iterations are distributed from one MATLAB worker to another
set of workers running simultaneously (matlabpool and parfor), so the
loop might run faster than having only one worker execute it.

6 When the job is complete, permanently remove its data:

destroy(job)
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Run Scripts as Batch Jobs from the Current Folder
Browser
From the Current Folder browser, you can run a MATLAB script as a batch
job by browsing to the file’s folder, right-clicking the file, and selecting Run
Script as Batch Job. The batch job runs on the cluster identified by the
current default parallel configuration. The following figure shows the menu
option to run the script file script1.m:

When you run a batch job from the browser, this also opens the Job Monitor.
The Job Monitor is a tool that lets you track your job in the scheduler queue.
For more information about the Job Monitor and its capabilities, see “Job
Monitor” on page 6-27.
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Distributing Arrays and Running SPMD

Distributed Arrays
The workers in a MATLAB pool communicate with each other, so you can
distribute an array among the labs. Each lab contains part of the array, and
all the labs are aware of which portion of the array each lab has.

First, open the MATLAB pool:

matlabpool open % Use default parallel configuration

Use the distributed function to distribute an array among the labs:

M = magic(4) % a 4-by-4 magic square in the client workspace
MM = distributed(M)

Now MM is a distributed array, equivalent to M, and you can manipulate or
access its elements in the same way as any other array.

M2 = 2*MM; % M2 is also distributed, calculation performed on workers
x = M2(1,1) % x on the client is set to first element of M2

When you are finished and have no further need of data from the labs, you can
close the MATLAB pool. Data on the labs does not persist from one instance
of a MATLAB pool to another.

matlabpool close

Single Program Multiple Data
The single program multiple data (spmd) construct lets you define a block of
code that runs in parallel on all the labs (workers) in the MATLAB pool. The
spmd block can run on some or all the labs in the pool.

matlabpool % Use default parallel configuration
spmd % By default uses all labs in the pool

R = rand(4);
end

This code creates an individual 4-by-4 matrix, R, of random numbers on
each lab in the pool.
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Composites
Following an spmd statement, in the client context, the values from the
block are accessible, even though the data is actually stored on the labs. On
the client, these variables are called Composite objects. Each element of a
composite is a symbol referencing the value (data) on a lab in the pool. Note
that because a variable might not be defined on every lab, a Composite might
have undefined elements.

Continuing with the example from above, on the client, the Composite R has
one element for each lab:

X = R{3}; % Set X to the value of R from lab 3.

The line above retrieves the data from lab 3 to assign the value of X. The
following code sends data to lab 3:

X = X + 2;
R{3} = X; % Send the value of X from the client to lab 3.

If the MATLAB pool remains open between spmd statements and the same
labs are used, the data on each lab persists from one spmd statement to
another.

spmd
R = R + labindex % Use values of R from previous spmd.

end

A typical use for spmd is to run the same code on a number of labs, each of
which accesses a different set of data. For example:

spmd
INP = load(['somedatafile' num2str(labindex) '.mat']);
RES = somefun(INP)

end

Then the values of RES on the labs are accessible from the client as RES{1}
from lab 1, RES{2} from lab 2, etc.

There are two forms of indexing a Composite, comparable to indexing a cell
array:
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• AA{n} returns the values of AA from lab n.

• AA(n) returns a cell array of the content of AA from lab n.

When you are finished with all spmd execution and have no further need of
data from the labs, you can close the MATLAB pool.

matlabpool close

Although data persists on the labs from one spmd block to another as long as
the MATLAB pool remains open, data does not persist from one instance of
a MATLAB pool to another.

For more information about using distributed arrays, spmd, and Composites,
see Chapter 3, “Single Program Multiple Data (spmd)”.

Determining Product Installation and Versions
To determine if Parallel Computing Toolbox software is installed on your
system, type this command at the MATLAB prompt.

ver

When you enter this command, MATLAB displays information about the
version of MATLAB you are running, including a list of all toolboxes installed
on your system and their version numbers.

If you want to run your applications on a cluster, see your system
administrator to verify that the version of Parallel Computing Toolbox you
are using is the same as the version of MATLAB Distributed Computing
Server installed on your cluster.
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Getting Started with parfor

In this section...

“parfor-Loops in MATLAB” on page 2-2

“Deciding When to Use parfor” on page 2-3

“Creating a parfor-Loop” on page 2-4

“Differences Between for-Loops and parfor-Loops” on page 2-6

“Reduction Assignments: Values Updated by Each Iteration” on page 2-7

“Displaying Output” on page 2-8

parfor-Loops in MATLAB
The basic concept of a parfor-loop in MATLAB software is the same as the
standard MATLAB for-loop: MATLAB executes a series of statements (the
loop body) over a range of values. Part of the parfor body is executed on the
MATLAB client (where the parfor is issued) and part is executed in parallel
on MATLAB workers. The necessary data on which parfor operates is sent
from the client to workers, where most of the computation happens, and the
results are sent back to the client and pieced together.

Because several MATLAB workers can be computing concurrently on the
same loop, a parfor-loop can provide significantly better performance than
its analogous for-loop.

Each execution of the body of a parfor-loop is an iteration. MATLAB
workers evaluate iterations in no particular order, and independently of each
other. Because each iteration is independent, there is no guarantee that the
iterations are synchronized in any way, nor is there any need for this. If the
number of workers is equal to the number of loop iterations, each worker
performs one iteration of the loop. If there are more iterations than workers,
some workers perform more than one loop iteration; in this case, a worker
might receive multiple iterations at once to reduce communication time.
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Deciding When to Use parfor
A parfor-loop is useful in situations where you need many loop iterations of
a simple calculation, such as a Monte Carlo simulation. parfor divides the
loop iterations into groups so that each worker executes some portion of the
total number of iterations. parfor-loops are also useful when you have loop
iterations that take a long time to execute, because the workers can execute
iterations simultaneously.

You cannot use a parfor-loop when an iteration in your loop depends on the
results of other iterations. Each iteration must be independent of all others.
Since there is a communications cost involved in a parfor-loop, there might
be no advantage to using one when you have only a small number of simple
calculations. The example of this section are only to illustrate the behavior
of parfor-loops, not necessarily to demonstrate the applications best suited
to them.
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Creating a parfor-Loop

Set Up MATLAB Resources Using matlabpool
You use the function matlabpool to reserve a number of MATLAB workers
for executing a subsequent parfor-loop. Depending on your scheduler, the
workers might be running remotely on a cluster, or they might run locally
on your MATLAB client machine. You identify a scheduler and cluster by
selecting a parallel configuration. For a description of how to manage and use
configurations, see “Parallel Configurations for Cluster Access” on page 6-14.

To begin the examples of this section, allocate local MATLAB workers for
the evaluation of your loop iterations:

matlabpool

This command starts the number of MATLAB worker sessions defined by
the default parallel configuration. If the local configuration is your default
and does not specify the number of workers, this starts one worker per core
(maximum of twelve) on your local MATLAB client machine.

Note If matlabpool is not running, a parfor-loop runs serially on the client
without regard for iteration sequence.

2-4



Getting Started with parfor

Program the Loop
The safest assumption about a parfor-loop is that each iteration of the
loop is evaluated by a different MATLAB worker. If you have a for-loop in
which all iterations are completely independent of each other, this loop is a
good candidate for a parfor-loop. Basically, if one iteration depends on the
results of another iteration, these iterations are not independent and cannot
be evaluated in parallel, so the loop does not lend itself easily to conversion
to a parfor-loop.

The following examples produce equivalent results, with a for-loop on the
left, and a parfor-loop on the right. Try typing each in your MATLAB
Command Window:

clear A
for i = 1:8

A(i) = i;
end
A

clear A
parfor i = 1:8

A(i) = i;
end
A

Notice that each element of A is equal to its index. The parfor-loop works
because each element depends only upon its iteration of the loop, and upon
no other iterations. for-loops that merely repeat such independent tasks are
ideally suited candidates for parfor-loops.
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Differences Between for-Loops and parfor-Loops
Because parfor-loops are not quite the same as for-loops, there are special
behaviors to be aware of. As seen from the preceding example, when you
assign to an array variable (such as A in that example) inside the loop by
indexing with the loop variable, the elements of that array are available to
you after the loop, much the same as with a for-loop.

However, suppose you use a nonindexed variable inside the loop, or a variable
whose indexing does not depend on the loop variable i. Try these examples
and notice the values of d and i afterward:

clear A
d = 0; i = 0;
for i = 1:4

d = i*2;
A(i) = d;

end
A
d
i

clear A
d = 0; i = 0;
parfor i = 1:4

d = i*2;
A(i) = d;

end
A
d
i

Although the elements of A come out the same in both of these examples, the
value of d does not. In the for-loop above on the left, the iterations execute
in sequence, so afterward d has the value it held in the last iteration of the
loop. In the parfor-loop on the right, the iterations execute in parallel, not in
sequence, so it would be impossible to assign d a definitive value at the end
of the loop. This also applies to the loop variable, i. Therefore, parfor-loop
behavior is defined so that it does not affect the values d and i outside the
loop at all, and their values remain the same before and after the loop.
So, a parfor-loop requires that each iteration be independent of the other
iterations, and that all code that follows the parfor-loop not depend on the
loop iteration sequence.
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Reduction Assignments: Values Updated by Each
Iteration
The next two examples show parfor-loops using reduction assignments. A
reduction is an accumulation across iterations of a loop. The example on the
left uses x to accumulate a sum across 10 iterations of the loop. The example
on the right generates a concatenated array, 1:10. In both of these examples,
the execution order of the iterations on the workers does not matter: while
the workers calculate individual results, the client properly accumulates or
assembles the final loop result.

x = 0;
parfor i = 1:10

x = x + i;
end
x

x2 = [];
n = 10;
parfor i = 1:n

x2 = [x2, i];
end
x2

If the loop iterations operate in random sequence, you might expect the
concatenation sequence in the example on the right to be nonconsecutive.
However, MATLAB recognizes the concatenation operation and yields
deterministic results.

The next example, which attempts to compute Fibonacci numbers, is not
a valid parfor-loop because the value of an element of f in one iteration
depends on the values of other elements of f calculated in other iterations.

f = zeros(1,50);
f(1) = 1;
f(2) = 2;
parfor n = 3:50

f(n) = f(n-1) + f(n-2);
end

When you are finished with your loop examples, clear your workspace and
close or release your pool of workers:

clear
matlabpool close

The following sections provide further information regarding programming
considerations and limitations for parfor-loops.
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Displaying Output
When running a parfor-loop on a MATLAB pool, all command-line output
from the workers displays in the client Command Window, except output from
variable assignments. Because the workers are MATLAB sessions without
displays, any graphical output (for example, figure windows) from the pool
does not display at all.
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Programming Considerations

In this section...

“MATLAB Path” on page 2-9

“Error Handling” on page 2-9

“Limitations” on page 2-10

“Using Objects in parfor Loops” on page 2-15

“Performance Considerations” on page 2-15

“Compatibility with Earlier Versions of MATLAB Software” on page 2-16

MATLAB Path
All workers executing a parfor-loop must have the same MATLAB path
configuration as the client, so that they can execute any functions called in the
body of the loop. Therefore, whenever you use cd, addpath, or rmpath on the
client, it also executes on all the workers, if possible. For more information,
see the matlabpool reference page. When the workers are running on a
different platform than the client, use the function pctRunOnAll to properly
set the MATLAB path on all workers.

Error Handling
When an error occurs during the execution of a parfor-loop, all iterations
that are in progress are terminated, new ones are not initiated, and the loop
terminates.

Errors and warnings produced on workers are annotated with the worker ID
and displayed in the client’s Command Window in the order in which they
are received by the client MATLAB.

The behavior of lastwarn is unspecified at the end of the parfor if used
within the loop body.

2-9



2 Parallel for-Loops (parfor)

Limitations

Unambiguous Variable Names
If you use a name that MATLAB cannot unambiguously distinguish as a
variable inside a parfor-loop, at parse time MATLAB assumes you are
referencing a function. Then at run-time, if the function cannot be found,
MATLAB generates an error. (See “Naming Variables” in the MATLAB
documentation.) For example, in the following code f(5) could refer either
to the fifth element of an array named f, or to a function named f with an
argument of 5. If f is not clearly defined as a variable in the code, MATLAB
looks for the function f on the path when the code runs.

parfor i=1:n
...
a = f(5);
...

end

Transparency
The body of a parfor-loop must be transparent, meaning that all references to
variables must be “visible” (i.e., they occur in the text of the program).

In the following example, because X is not visible as an input variable in the
parfor body (only the string 'X' is passed to eval), it does not get transferred
to the workers. As a result, MATLAB issues an error at run time:

X = 5;
parfor ii = 1:4

eval('X');
end

Similarly, you cannot clear variables from a worker’s workspace by executing
clear inside a parfor statement:

parfor ii= 1:4
<statements...>
clear('X') % cannot clear: transparency violation
<statements...>

end
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As a workaround, you can free up most of the memory used by a variable by
setting its value to empty, presumably when it is no longer needed in your
parfor statement:

parfor ii= 1:4
<statements...>
X = [];
<statements...>

end

Examples of some other functions that violate transparency are evalc,
evalin, and assignin with the workspace argument specified as 'caller';
save and load, unless the output of load is assigned.

MATLAB does successfully execute eval and evalc statements that appear in
functions called from the parfor body.

Sliced Variables Referencing Function Handles
Because of the way sliced input variables are segmented and distributed to
the workers in the pool, you cannot use a sliced input variable to reference a
function handle. If you need to call a function handle with the parfor index
variable as an argument, use feval.

For example, suppose you had a for-loop that performs:

B = @sin;
for ii = 1:100

A(ii) = B(ii);
end

A corresponding parfor-loop does not allow B to reference a function handle.
So you can work around the problem with feval:

B = @sin;
parfor ii = 1:100

A(ii) = feval(B, ii);
end
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Nondistributable Functions
If you use a function that is not strictly computational in nature (e.g., input,
plot, keyboard) in a parfor-loop or in any function called by a parfor-loop,
the behavior of that function occurs on the worker. The results might include
hanging the worker process or having no visible effect at all.

Nested Functions
The body of a parfor-loop cannot make reference to a nested function.
However, it can call a nested function by means of a function handle.

Nested Loops
The body of a parfor-loop cannot contain another parfor-loop. But it can call
a function that contains another parfor-loop.

However, because a worker cannot open a MATLAB pool, a worker cannot
run the inner nested parfor-loop in parallel. This means that only one level
of nested parfor-loops can run in parallel. If the outer loop runs in parallel
on a MATLAB pool, the inner loop runs serially on each worker. If the outer
loop runs serially in the client (e.g., parfor specifying zero workers), the
function that contains the inner loop can run the inner loop in parallel on
workers in a pool.

The body of a parfor-loop can contain for-loops. You can use the inner loop
variable for indexing the sliced array, but only if you use the variable in plain
form, not part of an expression. For example:

A = zeros(4,5);
parfor j = 1:4

for k = 1:5
A(j,k) = j + k;

end
end
A

Further nesting of for-loops with a parfor is also allowed.
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Limitations of Nested for-Loops. For proper variable classification, the
range of a for-loop nested in a parfor must be defined by constant numbers
or variables. In the following example, the code on the left does not work
because the for-loop upper limit is defined by a function call. The code on the
right works around this by defining a broadcast or constant variable outside
the parfor first:

A = zeros(100, 200);
parfor i = 1:size(A, 1)

for j = 1:size(A, 2)
A(i, j) = plus(i, j);

end
end

A = zeros(100, 200);
n = size(A, 2);
parfor i = 1:size(A,1)

for j = 1:n
A(i, j) = plus(i, j);

end
end

When using the nested for-loop variable for indexing the sliced array, you
must use the variable in plain form, not as part of an expression. For example,
the following code on the left does not work, but the code on the right does:

A = zeros(4, 11);
parfor i = 1:4

for j = 1:10
A(i, j + 1) = i + j;

end
end

A = zeros(4, 11);
parfor i = 1:4

for j = 2:11
A(i, j) = i + j + 1;

end
end

If you use a nested for-loop to index into a sliced array, you cannot use that
array elsewhere in the parfor-loop. For example, in the following example,
the code on the left does not work because A is sliced and indexed inside the
nested for-loop; the code on the right works because v is assigned to A outside
the nested loop:
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A = zeros(4, 10);
parfor i = 1:4

for j = 1:10
A(i, j) = i + j;

end
disp(A(i, 1))

end

A = zeros(4, 10);
parfor i = 1:4

v = zeros(1, 10);
for j = 1:10

v(j) = i + j;
end
disp(v(1))
A(i, :) = v;

end

Inside a parfor, if you use multiple for-loops (not nested inside each other) to
index into a single sliced array, they must loop over the same range of values.
In the following example, the code on the left does not work because j and
k loop over different values; the code on the right works to index different
portions of the sliced array A:

A = zeros(4, 10);
parfor i = 1:4

for j = 1:5
A(i, j) = i + j;

end
for k = 6:10

A(i, k) = pi;
end

end

A = zeros(4, 10);
parfor i = 1:4

for j = 1:10
if j < 6

A(i, j) = i + j;
else

A(i, j) = pi;
end

end
end

Nested spmd Statements
The body of a parfor-loop cannot contain an spmd statement, and an spmd
statement cannot contain a parfor-loop.

Break and Return Statements
The body of a parfor-loop cannot contain break or return statements.
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Global and Persistent Variables
The body of a parfor-loop cannot contain global or persistent variable
declarations.

Handle Classes
Changes made to handle classes on the workers during loop iterations are not
automatically propagated to the client.

P-Code Scripts
You can call P-code script files from within a parfor-loop, but P-code script
cannot contain a parfor-loop.

Using Objects in parfor Loops
If you are passing objects into or out of a parfor-loop, the objects must
properly facilitate being saved and loaded. For more information, see “Saving
and Loading Objects”.

Performance Considerations

Slicing Arrays
If a variable is initialized before a parfor-loop, then used inside the
parfor-loop, it has to be passed to each MATLAB worker evaluating the loop
iterations. Only those variables used inside the loop are passed from the
client workspace. However, if all occurrences of the variable are indexed by
the loop variable, each worker receives only the part of the array it needs. For
more information, see “Where to Create Arrays” on page 2-32.

Local vs. Cluster Workers
Running your code on local workers might offer the convenience of testing
your application without requiring the use of cluster resources. However,
there are certain drawbacks or limitations with using local workers. Because
the transfer of data does not occur over the network, transfer behavior on local
workers might not be indicative of how it will typically occur over a network.
For more details, see “Optimizing on Local vs. Cluster Workers” on page 2-33.
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Compatibility with Earlier Versions of MATLAB
Software
In versions of MATLAB prior to 7.5 (R2007b), the keyword parfor designated
a more limited style of parfor-loop than what is available in MATLAB 7.5
and later. This old style was intended for use with codistributed arrays (such
as inside an spmd statement or a parallel job), and has been replaced by a
for-loop that uses drange to define its range; see “Using a for-Loop Over a
Distributed Range (for-drange)” on page 5-21.

The past and current functionality of the parfor keyword is outlined in the
following table:

Functionality Syntax Prior to
MATLAB 7.5

Current Syntax

Parallel loop for
codistributed
arrays

parfor i = range
loop body

.

.
end

for i = drange(range)
loop body

.

.
end

Parallel loop
for implicit
distribution of
work

Not Implemented
parfor i = range

loop body
.
.

end
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Advanced Topics

In this section...

“About Programming Notes” on page 2-17

“Classification of Variables” on page 2-17

“Improving Performance” on page 2-32

About Programming Notes
This section presents guidelines and restrictions in shaded boxes like the one
shown below. Those labeled as Required result in an error if your parfor
code does not adhere to them. MATLAB software catches some of these errors
at the time it reads the code, and others when it executes the code. These are
referred to here as static and dynamic errors, respectively, and are labeled as
Required (static) or Required (dynamic). Guidelines that do not cause
errors are labeled as Recommended. You can use MATLAB Code Analyzer
to help make your parfor-loops comply with these guidelines.

Required (static): Description of the guideline or restriction

Classification of Variables

• “Overview” on page 2-17

• “Loop Variable” on page 2-18

• “Sliced Variables” on page 2-19

• “Broadcast Variables” on page 2-23

• “Reduction Variables” on page 2-23

• “Temporary Variables” on page 2-30

Overview
When a name in a parfor-loop is recognized as referring to a variable, it is
classified into one of the following categories. A parfor-loop generates an
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error if it contains any variables that cannot be uniquely categorized or if any
variables violate their category restrictions.

Classification Description

Loop Serves as a loop index for arrays

Sliced An array whose segments are operated on by different
iterations of the loop

Broadcast A variable defined before the loop whose value is used
inside the loop, but never assigned inside the loop

Reduction Accumulates a value across iterations of the loop,
regardless of iteration order

Temporary Variable created inside the loop, but unlike sliced or
reduction variables, not available outside the loop

Each of these variable classifications appears in this code fragment:

��������	�
��

��	�������������	�
�� 
�����������	�
��

�������������	�
��

�����	������	�
�� ��	���	��������	�
��

Loop Variable
The following restriction is required, because changing i in the parfor body
invalidates the assumptions MATLAB makes about communication between
the client and workers.
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Required (static): Assignments to the loop variable are not allowed.

This example attempts to modify the value of the loop variable i in the body
of the loop, and thus is invalid:

parfor i = 1:n
i = i + 1;
a(i) = i;

end

Sliced Variables
A sliced variable is one whose value can be broken up into segments, or slices,
which are then operated on separately by workers and by the MATLAB client.
Each iteration of the loop works on a different slice of the array. Using sliced
variables is important because this type of variable can reduce communication
between the client and workers. Only those slices needed by a worker are sent
to it, and only when it starts working on a particular range of indices.

In the next example, a slice of A consists of a single element of that array:

parfor i = 1:length(A)
B(i) = f(A(i));

end

Characteristics of a Sliced Variable. A variable in a parfor-loop is sliced if
it has all of the following characteristics. A description of each characteristic
follows the list:

• Type of First-Level Indexing — The first level of indexing is either
parentheses, (), or braces, {}.

• Fixed Index Listing — Within the first-level parenthesis or braces, the list
of indices is the same for all occurrences of a given variable.

• Form of Indexing — Within the list of indices for the variable, exactly one
index involves the loop variable.

• Shape of Array — In assigning to a sliced variable, the right-hand side
of the assignment is not [] or '' (these operators indicate deletion of
elements).
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Type of First-Level Indexing. For a sliced variable, the first level of indexing is
enclosed in either parentheses, (), or braces, {}.

This table lists the forms for the first level of indexing for arrays sliced and
not sliced.

Reference for Variable Not
Sliced

Reference for Sliced Variable

A.x A(...)

A.(...) A{...}

After the first level, you can use any type of valid MATLAB indexing in the
second and further levels.

The variable A shown here on the left is not sliced; that shown on the right
is sliced:

A.q{i,12} A{i,12}.q

Fixed Index Listing. Within the first-level parentheses or braces of a sliced
variable’s indexing, the list of indices is the same for all occurrences of a
given variable.

The variable A shown here on the left is not sliced because A is indexed by i
and i+1 in different places; that shown on the right is sliced:

parfor i = 1:k
B(:) = h(A(i), A(i+1));

end

parfor i = 1:k
B(:) = f(A(i));
C(:) = g(A{i});

end

The example above on the right shows some occurrences of a sliced variable
with first-level parenthesis indexing and with first-level brace indexing in the
same loop. This is acceptable.

Form of Indexing. Within the list of indices for a sliced variable, one of these
indices is of the form i, i+k, i-k, k+i, or k-i, where i is the loop variable and
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k is a constant or a simple (nonindexed) broadcast variable; and every other
index is a constant, a simple broadcast variable, colon, or end.

With i as the loop variable, the A variables shown here on the left are not
sliced; those on the right are sliced:

A(i+f(k),j,:,3)
A(i,20:30,end)
A(i,:,s.field1)

A(i+k,j,:,3)
A(i,:,end)
A(i,:,k)

When you use other variables along with the loop variable to index an array,
you cannot set these variables inside the loop. In effect, such variables are
constant over the execution of the entire parfor statement. You cannot
combine the loop variable with itself to form an index expression.

Shape of Array. A sliced variable must maintain a constant shape. The
variable A shown here on either line is not sliced:

A(i,:) = [];
A(end + 1) = i;

The reason A is not sliced in either case is because changing the shape of a
sliced array would violate assumptions governing communication between
the client and workers.

Sliced Input and Output Variables. All sliced variables have the
characteristics of being input or output. A sliced variable can sometimes have
both characteristics. MATLAB transmits sliced input variables from the client
to the workers, and sliced output variables from workers back to the client. If
a variable is both input and output, it is transmitted in both directions.
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In this parfor-loop, r is a sliced input variable and b is a sliced output
variable:

a = 0;
z = 0;
r = rand(1,10);
parfor ii = 1:10

a = ii;
z = z + ii;
b(ii) = r(ii);

end

However, if it is clear that in every iteration, every reference to an array
element is set before it is used, the variable is not a sliced input variable. In
this example, all the elements of A are set, and then only those fixed values
are used:

parfor ii = 1:n
if someCondition

A(ii) = 32;
else

A(ii) = 17;
end
loop code that uses A(ii)

end

Even if a sliced variable is not explicitly referenced as an input, implicit
usage might make it so. In the following example, not all elements of A are
necessarily set inside the parfor-loop, so the original values of the array
are received, held, and then returned from the loop, making A both a sliced
input and output variable.

A = 1:10;
parfor ii = 1:10

if rand < 0.5
A(ii) = 0;

end
end
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Broadcast Variables
A broadcast variable is any variable other than the loop variable or a sliced
variable that is not affected by an assignment inside the loop. At the start of
a parfor-loop, the values of any broadcast variables are sent to all workers.
Although this type of variable can be useful or even essential, broadcast
variables that are large can cause a lot of communication between client and
workers. In some cases it might be more efficient to use temporary variables
for this purpose, creating and assigning them inside the loop.

Reduction Variables
MATLAB supports an important exception, called reductions, to the rule that
loop iterations must be independent. A reduction variable accumulates a
value that depends on all the iterations together, but is independent of the
iteration order. MATLAB allows reduction variables in parfor-loops.

Reduction variables appear on both side of an assignment statement, such as
any of the following, where expr is a MATLAB expression.

X = X + expr X = expr + X

X = X - expr See Associativity in Reduction
Assignments in “Further
Considerations with Reduction
Variables” on page 2-25

X = X .* expr X = expr .* X

X = X * expr X = expr * X

X = X & expr X = expr & X

X = X | expr X = expr | X

X = [X, expr] X = [expr, X]

X = [X; expr] X = [expr; X]

X = {X, expr} X = {expr, X}

X = {X; expr} X = {expr; X}

X = min(X, expr) X = min(expr, X)

X = max(X, expr) X = max(expr, X)
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X = union(X, expr) X = union(expr, X)

X = intersect(X, expr) X = intersect(expr, X)

Each of the allowed statements listed in this table is referred to as a reduction
assignment, and, by definition, a reduction variable can appear only in
assignments of this type.

The following example shows a typical usage of a reduction variable X:

X = ...; % Do some initialization of X
parfor i = 1:n

X = X + d(i);
end

This loop is equivalent to the following, where each d(i) is calculated by
a different iteration:

X = X + d(1) + ... + d(n)

If the loop were a regular for-loop, the variable X in each iteration would get
its value either before entering the loop or from the previous iteration of the
loop. However, this concept does not apply to parfor-loops:

In a parfor-loop, the value of X is never transmitted from client to workers or
from worker to worker. Rather, additions of d(i) are done in each worker,
with i ranging over the subset of 1:n being performed on that worker. The
results are then transmitted back to the client, which adds the workers’
partial sums into X. Thus, workers do some of the additions, and the client
does the rest.

Basic Rules for Reduction Variables. The following requirements further
define the reduction assignments associated with a given variable.

Required (static): For any reduction variable, the same reduction function
or operation must be used in all reduction assignments for that variable.

The parfor-loop on the left is not valid because the reduction assignment uses
+ in one instance, and [,] in another. The parfor-loop on the right is valid:
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parfor i = 1:n
if testLevel(k)

A = A + i;
else

A = [A, 4+i];
end
% loop body continued

end

parfor i = 1:n
if testLevel(k)

A = A + i;
else

A = A + i + 5*k;
end
% loop body continued

end

Required (static): If the reduction assignment uses * or [,], then in
every reduction assignment for X, X must be consistently specified as the
first argument or consistently specified as the second.

The parfor-loop on the left below is not valid because the order of items in
the concatenation is not consistent throughout the loop. The parfor-loop
on the right is valid:

parfor i = 1:n
if testLevel(k)

A = [A, 4+i];
else

A = [r(i), A];
end
% loop body continued

end

parfor i = 1:n
if testLevel(k)

A = [A, 4+i];
else

A = [A, r(i)];
end
% loop body continued

end

Further Considerations with Reduction Variables. This section provide
more detail about reduction assignments, associativity, commutativity, and
overloading of reduction functions.

Reduction Assignments. In addition to the specific forms of reduction
assignment listed in the table in “Reduction Variables” on page 2-23, the only
other (and more general) form of a reduction assignment is

X = f(X, expr) X = f(expr, X)
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Required (static): f can be a function or a variable. If it is a variable, it
must not be affected by the parfor body (in other words, it is a broadcast
variable).

If f is a variable, then for all practical purposes its value at run time is
a function handle. However, this is not strictly required; as long as the
right-hand side can be evaluated, the resulting value is stored in X.

The parfor-loop below on the left will not execute correctly because the
statement f = @times causes f to be classified as a temporary variable and
therefore is cleared at the beginning of each iteration. The parfor on the
right is correct, because it does not assign to f inside the loop:

f = @(x,k)x * k;
parfor i = 1:n

a = f(a,i);
% loop body continued
f = @times; % Affects f

end

f = @(x,k)x * k;
parfor i = 1:n

a = f(a,i);
% loop body continued

end

Note that the operators && and || are not listed in the table in “Reduction
Variables” on page 2-23. Except for && and ||, all the matrix operations of
MATLAB have a corresponding function f, such that u op v is equivalent
to f(u,v). For && and ||, such a function cannot be written because u&&v
and u||v might or might not evaluate v, but f(u,v) always evaluates v
before calling f. This is why && and || are excluded from the table of allowed
reduction assignments for a parfor-loop.

Every reduction assignment has an associated function f. The properties of
f that ensure deterministic behavior of a parfor statement are discussed in
the following sections.

Associativity in Reduction Assignments. Concerning the function f as used in
the definition of a reduction variable, the following practice is recommended,
but does not generate an error if not adhered to. Therefore, it is up to you to
ensure that your code meets this recommendation.
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Recommended: To get deterministic behavior of parfor-loops, the
reduction function f must be associative.

To be associative, the function f must satisfy the following for all a, b, and c:

f(a,f(b,c)) = f(f(a,b),c)

The classification rules for variables, including reduction variables, are purely
syntactic. They cannot determine whether the f you have supplied is truly
associative or not. Associativity is assumed, but if you violate this, different
executions of the loop might result in different answers.

Note While the addition of mathematical real numbers is associative,
addition of floating-point numbers is only approximately associative, and
different executions of this parfor statement might produce values of X with
different round-off errors. This is an unavoidable cost of parallelism.

For example, the statement on the left yields 1, while the statement on the
right returns 1 + eps:

(1 + eps/2) + eps/2 1 + (eps/2 + eps/2)

With the exception of the minus operator (-), all the special cases listed in the
table in “Reduction Variables” on page 2-23 have a corresponding (perhaps
approximately) associative function. MATLAB calculates the assignment
X = X - expr by using X = X + (-expr). (So, technically, the function for
calculating this reduction assignment is plus, not minus.) However, the
assignment X = expr - X cannot be written using an associative function,
which explains its exclusion from the table.

Commutativity in Reduction Assignments. Some associative functions,
including +, .*, min, and max, intersect, and union, are also commutative.
That is, they satisfy the following for all a and b:

f(a,b) = f(b,a)

Examples of noncommutative functions are * (because matrix multiplication is
not commutative for matrices in which both dimensions have size greater than
one), [,], [;], {,}, and {;}. Noncommutativity is the reason that consistency
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in the order of arguments to these functions is required. As a practical matter,
a more efficient algorithm is possible when a function is commutative as well
as associative, and parfor is optimized to exploit commutativity.

Recommended: Except in the cases of *, [,], [;], {,}, and {;}, the
function f of a reduction assignment should be commutative. If f is not
commutative, different executions of the loop might result in different
answers.

Unless f is a known noncommutative built-in, it is assumed to be
commutative. There is currently no way to specify a user-defined,
noncommutative function in parfor.

Overloading in Reduction Assignments. Most associative functions f have an
identity element e, so that for any a, the following holds true:

f(e,a) = a = f(a,e)

Examples of identity elements for some functions are listed in this table.

Function Identity Element

+ 0

* and .* 1

min Inf

max -Inf

[,], [;], and union []

MATLAB uses the identity elements of reduction functions when it knows
them. So, in addition to associativity and commutativity, you should also keep
identity elements in mind when overloading these functions.

Recommended: An overload of +, *, .*, min, max, union, [,], or [;]
should be associative if it is used in a reduction assignment in a parfor.
The overload must treat the respective identity element given above (all
with class double) as an identity element.
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Recommended: An overload of +, .*, min, max, union, or intersect
should be commutative.

There is no way to specify the identity element for a function. In these cases,
the behavior of parfor is a little less efficient than it is for functions with a
known identity element, but the results are correct.

Similarly, because of the special treatment of X = X - expr, the following
is recommended.

Recommended: An overload of the minus operator (-) should obey the
mathematical law that X - (y + z) is equivalent to (X - y) - z.

Example: Using a Custom Reduction Function. Suppose each iteration
of a loop performs some calculation, and you are interested in finding which
iteration of a loop produces the maximum value. This is a reduction exercise
that makes an accumulation across multiple iterations of a loop. Your
reduction function must compare iteration results, until finally the maximum
value can be determined after all iterations are compared.

First consider the reduction function itself. To compare an iteration’s result
against another’s, the function requires as input the current iteration’s result
and the known maximum result from other iterations so far. Each of the two
inputs is a vector containing an iteration’s result data and iteration number.

function mc = comparemax(A, B)
% Custom reduction function for 2-element vector input

if A(1) >= B(1) % Compare the two input data values
mc = A; % Return the vector with the larger result

else
mc = B;

end

Inside the loop, each iteration calls the reduction function (comparemax),
passing in a pair of 2-element vectors:

• The accumulated maximum and its iteration index (this is the reduction
variable, cummax)
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• The iteration’s own calculation value and index

If the data value of the current iteration is greater than the maximum in
cummmax, the function returns a vector of the new value and its iteration
number. Otherwise, the function returns the existing maximum and its
iteration number.

The code for the loop looks like the following, with each iteration calling the
reduction function comparemax to compare its own data [dat i] to that
already accumulated in cummax.

% First element of cummax is maximum data value
% Second element of cummax is where (iteration) maximum occurs
cummax = [0 0]; % Initialize reduction variable
parfor ii = 1:100

dat = rand(); % Simulate some actual computation
cummax = comparemax(cummax, [dat ii]);

end
disp(cummax);

Temporary Variables
A temporary variable is any variable that is the target of a direct, nonindexed
assignment, but is not a reduction variable. In the following parfor-loop, a
and d are temporary variables:

a = 0;
z = 0;
r = rand(1,10);
parfor i = 1:10

a = i; % Variable a is temporary
z = z + i;
if i <= 5

d = 2*a; % Variable d is temporary
end

end

In contrast to the behavior of a for-loop, MATLAB effectively clears any
temporary variables before each iteration of a parfor-loop. To help ensure
the independence of iterations, the values of temporary variables cannot
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be passed from one iteration of the loop to another. Therefore, temporary
variables must be set inside the body of a parfor-loop, so that their values are
defined separately for each iteration.

MATLAB does not send temporary variables back to the client. A temporary
variable in the context of the parfor statement has no effect on a variable
with the same name that exists outside the loop, again in contrast to ordinary
for-loops.

Uninitialized Temporaries. Because temporary variables are cleared at
the beginning of every iteration, MATLAB can detect certain cases in which
any iteration through the loop uses the temporary variable before it is set
in that iteration. In this case, MATLAB issues a static error rather than a
run-time error, because there is little point in allowing execution to proceed
if a run-time error is guaranteed to occur. This kind of error often arises
because of confusion between for and parfor, especially regarding the rules
of classification of variables. For example, suppose you write

b = true;
parfor i = 1:n

if b && some_condition(i)
do_something(i);
b = false;

end
...

end

This loop is acceptable as an ordinary for-loop, but as a parfor-loop, b is a
temporary variable because it occurs directly as the target of an assignment
inside the loop. Therefore it is cleared at the start of each iteration, so its use
in the condition of the if is guaranteed to be uninitialized. (If you change
parfor to for, the value of b assumes sequential execution of the loop, so that
do_something(i) is executed for only the lower values of i until b is set
false.)

Temporary Variables Intended as Reduction Variables. Another
common cause of uninitialized temporaries can arise when you have a
variable that you intended to be a reduction variable, but you use it elsewhere
in the loop, causing it technically to be classified as a temporary variable.
For example:
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s = 0;
parfor i = 1:n

s = s + f(i);
...
if (s > whatever)

...
end

end

If the only occurrences of s were the two in the first statement of the body, it
would be classified as a reduction variable. But in this example, s is not a
reduction variable because it has a use outside of reduction assignments in
the line s > whatever. Because s is the target of an assignment (in the first
statement), it is a temporary, so MATLAB issues an error about this fact, but
points out the possible connection with reduction.

Note that if you change parfor to for, the use of s outside the reduction
assignment relies on the iterations being performed in a particular order. The
point here is that in a parfor-loop, it matters that the loop “does not care”
about the value of a reduction variable as it goes along. It is only after the
loop that the reduction value becomes usable.

Improving Performance

Where to Create Arrays
With a parfor-loop, it might be faster to have each MATLAB worker create
its own arrays or portions of them in parallel, rather than to create a large
array in the client before the loop and send it out to all the workers separately.
Having each worker create its own copy of these arrays inside the loop saves
the time of transferring the data from client to workers, because all the
workers can be creating it at the same time. This might challenge your usual
practice to do as much variable initialization before a for-loop as possible, so
that you do not needlessly repeat it inside the loop.

Whether to create arrays before the parfor-loop or inside the parfor-loop
depends on the size of the arrays, the time needed to create them, whether
the workers need all or part of the arrays, the number of loop iterations
that each worker performs, and other factors. While many for-loops can be
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directly converted to parfor-loops, even in these cases there might be other
issues involved in optimizing your code.

Optimizing on Local vs. Cluster Workers
With local workers, because all the MATLAB worker sessions are running
on the same machine, you might not see any performance improvement from
a parfor-loop regarding execution time. This can depend on many factors,
including how many processors and cores your machine has. You might
experiment to see if it is faster to create the arrays before the loop (as shown
on the left below), rather than have each worker create its own arrays inside
the loop (as shown on the right).

Try the following examples running a matlabpool locally, and notice the
difference in time execution for each loop. First open a local matlabpool:

matlabpool

Then enter the following examples. (If you are viewing this documentation in
the MATLAB help browser, highlight each segment of code below, right-click,
and select Evaluate Selection in the context menu to execute the block in
MATLAB. That way the time measurement will not include the time required
to paste or type.)

tic;

n = 200;

M = magic(n);

R = rand(n);

parfor i = 1:n

A(i) = sum(M(i,:).*R(n+1-i,:));

end

toc

tic;

n = 200;

parfor i = 1:n

M = magic(n);

R = rand(n);

A(i) = sum(M(i,:).*R(n+1-i,:));

end

toc

Running on a remote cluster, you might find different behavior as workers
can simultaneously create their arrays, saving transfer time. Therefore, code
that is optimized for local workers might not be optimized for cluster workers,
and vice versa.
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3 Single Program Multiple Data (spmd)

Executing Simultaneously on Multiple Data Sets

In this section...

“Introduction” on page 3-2

“When to Use spmd” on page 3-2

“Setting Up MATLAB Resources Using matlabpool” on page 3-3

“Defining an spmd Statement” on page 3-4

“Displaying Output” on page 3-6

Introduction
The single program multiple data (spmd) language construct allows seamless
interleaving of serial and parallel programming. The spmd statement lets
you define a block of code to run simultaneously on multiple labs. Variables
assigned inside the spmd statement on the labs allow direct access to their
values from the client by reference via Composite objects.

This chapter explains some of the characteristics of spmd statements and
Composite objects.

When to Use spmd
The “single program” aspect of spmd means that the identical code runs on
multiple labs. You run one program in the MATLAB client, and those parts of
it labeled as spmd blocks run on the labs. When the spmd block is complete,
your program continues running in the client.

The “multiple data” aspect means that even though the spmd statement runs
identical code on all labs, each lab can have different, unique data for that
code. So multiple data sets can be accommodated by multiple labs.

Typical applications appropriate for spmd are those that require running
simultaneous execution of a program on multiple data sets, when
communication or synchronization is required between the labs. Some
common cases are:
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• Programs that take a long time to execute — spmd lets several labs compute
solutions simultaneously.

• Programs operating on large data sets — spmd lets the data be distributed
to multiple labs.

Setting Up MATLAB Resources Using matlabpool
You use the function matlabpool to reserve a number of MATLAB labs
(workers) for executing a subsequent spmd statement or parfor-loop.
Depending on your scheduler, the labs might be running remotely on a cluster,
or they might run locally on your MATLAB client machine. You identify a
scheduler and cluster by selecting a parallel configuration. For a description
of how to manage and use configurations, see “Parallel Configurations for
Cluster Access” on page 6-14.

To begin the examples of this section, allocate local MATLAB labs for the
evaluation of your spmd statement:

matlabpool

This command starts the number of MATLAB worker sessions defined by
the default parallel configuration. If the local configuration is your default
and does not specify the number of workers, this starts one worker per core
(maximum of twelve) on your local MATLAB client machine.

If you do not want to use default settings, you can specify in the matlabpool
statement which configuration or how many labs to use. For example, to use
only three labs with your default configuration, type:

matlabpool 3

To use a different configuration, type:

matlabpool MyConfigName

To inquire whether you currently have a MATLAB pool open, type:

matlabpool size

This command returns a value indicating the number of labs in the current
pool. If the command returns 0, there is currently no pool open.
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Note If there is no MATLAB pool open, an spmd statement runs locally in the
MATLAB client without any parallel execution, provided you have Parallel
Computing Toolbox software installed. In other words, it runs in your client
session as though it were a single lab.

When you are finished using a MATLAB pool, close it with the command:

matlabpool close

Defining an spmd Statement
The general form of an spmd statement is:

spmd
<statements>

end

The block of code represented by <statements> executes in parallel
simultaneously on all labs in the MATLAB pool. If you want to limit the
execution to only a portion of these labs, specify exactly how many labs to
run on:

spmd (n)
<statements>

end

This statement requires that n labs run the spmd code. n must be less than
or equal to the number of labs in the open MATLAB pool. If the pool is large
enough, but n labs are not available, the statement waits until enough labs
are available. If n is 0, the spmd statement uses no labs, and runs locally on
the client, the same as if there were not a pool currently open.

You can specify a range for the number of labs:

spmd (m, n)
<statements>

end

In this case, the spmd statement requires a minimum of m labs, and it uses
a maximum of n labs.
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If it is important to control the number of labs that execute your spmd
statement, set the exact number in the configuration or with the spmd
statement, rather than using a range.

For example, create a random matrix on three labs:

matlabpool
spmd (3)

R = rand(4,4);
end
matlabpool close

Note All subsequent examples in this chapter assume that a MATLAB pool is
open and remains open between sequences of spmd statements.

Unlike a parfor-loop, the labs used for an spmd statement each have a unique
value for labindex. This lets you specify code to be run on only certain labs,
or to customize execution, usually for the purpose of accessing unique data.

For example, create different sized arrays depending on labindex:

spmd (3)
if labindex==1

R = rand(9,9);
else

R = rand(4,4);
end

end

Load unique data on each lab according to labindex, and use the same
function on each lab to compute a result from the data:

spmd (3)
labdata = load(['datafile_' num2str(labindex) '.ascii'])
result = MyFunction(labdata)

end

The labs executing an spmd statement operate simultaneously and are
aware of each other. As with a parallel job, you are allowed to directly
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control communications between the labs, transfer data between them, and
use codistributed arrays among them. For a list of toolbox functions that
facilitate these capabilities, see the Function Reference sections “Interlab
Communication Within a Parallel Job” on page 13-9 and “Distributed and
Codistributed Arrays” on page 13-3.

For example, use a codistributed array in an spmd statement:

spmd (3)
RR = rand(30, codistributor());

end

Each lab has a 30-by-10 segment of the codistributed array RR. For
more information about codistributed arrays, see Chapter 5, “Math with
Codistributed Arrays”.

Displaying Output
When running an spmd statement on a MATLAB pool, all command-line
output from the workers displays in the client Command Window. Because
the workers are MATLAB sessions without displays, any graphical output (for
example, figure windows) from the pool does not display at all.
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Accessing Data with Composites

In this section...

“Introduction” on page 3-7

“Creating Composites in spmd Statements” on page 3-7

“Variable Persistence and Sequences of spmd” on page 3-9

“Creating Composites Outside spmd Statements” on page 3-10

Introduction
Composite objects in the MATLAB client session let you directly access data
values on the labs. Most often you assigned these variables within spmd
statements. In their display and usage, Composites resemble cell arrays.
There are two ways to create Composites:

• Using the Composite function on the client. Values assigned to the
Composite elements are stored on the labs.

• Defining variables on labs inside an spmd statement. After the spmd
statement, the stored values are accessible on the client as Composites.

Creating Composites in spmd Statements
When you define or assign values to variables inside an spmd statement, the
data values are stored on the labs.

After the spmd statement, those data values are accessible on the client as
Composites. Composite objects resemble cell arrays, and behave similarly.
On the client, a Composite has one element per lab. For example, suppose
you open a MATLAB pool of three local workers and run an spmd statement
on that pool:

matlabpool open local 3

spmd % Uses all 3 workers
MM = magic(labindex+2); % MM is a variable on each lab

end
MM{1} % In the client, MM is a Composite with one element per lab

8 1 6
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3 5 7
4 9 2

MM{2}
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

A variable might not be defined on every lab. For the labs on which a variable
is not defined, the corresponding Composite element has no value. Trying to
read that element throws an error.

spmd
if labindex > 1

HH = rand(4);
end

end
HH

Lab 1: No data
Lab 2: class = double, size = [4 4]
Lab 3: class = double, size = [4 4]

You can also set values of Composite elements from the client. This causes a
transfer of data, storing the value on the appropriate lab even though it is not
executed within an spmd statement:

MM{3} = eye(4);

In this case, MM must already exist as a Composite, otherwise MATLAB
interprets it as a cell array.

Now when you do enter an spmd statement, the value of the variable MM on
lab 3 is as set:

spmd
if labindex == 3, MM, end

end
Lab 3:

MM =
1 0 0 0
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0 1 0 0
0 0 1 0
0 0 0 1

Data transfers from lab to client when you explicitly assign a variable in the
client workspace using a Composite element:

M = MM{1} % Transfer data from lab 1 to variable M on the client

8 1 6
3 5 7
4 9 2

Assigning an entire Composite to another Composite does not cause a data
transfer. Instead, the client merely duplicates the Composite as a reference to
the appropriate data stored on the labs:

NN = MM % Set entire Composite equal to another, without transfer

However, accessing a Composite’s elements to assign values to other
Composites does result in a transfer of data from the labs to the client, even
if the assignment then goes to the same lab. In this case, NN must already
exist as a Composite:

NN{1} = MM{1} % Transfer data to the client and then to lab

When finished, you can close the pool:

matlabpool close

Variable Persistence and Sequences of spmd
The values stored on the labs are retained between spmd statements. This
allows you to use multiple spmd statements in sequence, and continue to use
the same variables defined in previous spmd blocks.

The values are retained on the labs until the corresponding Composites are
cleared on the client, or until the MATLAB pool is closed. The following
example illustrates data value lifespan with spmd blocks, using a pool of four
workers:
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matlabpool open local 4

spmd
AA = labindex; % Initial setting

end
AA(:) % Composite

[1]
[2]
[3]
[4]

spmd
AA = AA * 2; % Multiply existing value

end
AA(:) % Composite

[2]
[4]
[6]
[8]

clear AA % Clearing in client also clears on labs

spmd; AA = AA * 2; end % Generates error

matlabpool close

Creating Composites Outside spmd Statements
The Composite function creates Composite objects without using an spmd
statement. This might be useful to prepopulate values of variables on labs
before an spmd statement begins executing on those labs. Assume a MATLAB
pool is already open:

PP = Composite()

By default, this creates a Composite with an element for each lab in the
MATLAB pool. You can also create Composites on only a subset of the labs in
the pool. See the Composite reference page for more details. The elements of
the Composite can now be set as usual on the client, or as variables inside
an spmd statement. When you set an element of a Composite, the data is
immediately transferred to the appropriate lab:

for ii = 1:numel(PP)
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PP{ii} = ii;
end
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Distributing Arrays

In this section...

“Distributed Versus Codistributed Arrays” on page 3-12

“Creating Distributed Arrays” on page 3-12

“Creating Codistributed Arrays” on page 3-13

Distributed Versus Codistributed Arrays
You can create a distributed array in the MATLAB client, and its data
is stored on the labs of the open MATLAB pool. A distributed array is
distributed in one dimension, along the last nonsingleton dimension, and as
evenly as possible along that dimension among the labs. You cannot control
the details of distribution when creating a distributed array.

You can create a codistributed array by executing on the labs themselves,
either inside an spmd statement, in pmode, or inside a parallel job. When
creating a codistributed array, you can control all aspects of distribution,
including dimensions and partitions.

The relationship between distributed and codistributed arrays is one of
perspective. Codistributed arrays are partitioned among the labs from which
you execute code to create or manipulate them. Distributed arrays are
partitioned among labs from the client with the open MATLAB pool. When
you create a distributed array in the client, you can access it as a codistributed
array inside an spmd statement. When you create a codistributed array in
an spmd statement, you can access is as a distributed array in the client.
Only spmd statements let you access the same array data from two different
perspectives.

Creating Distributed Arrays
You can create a distributed array in any of several ways:

• Use the distributed function to distribute an existing array from the
client workspace to the labs of an open MATLAB pool.
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• Use any of the overloaded distributed object methods to directly construct a
distributed array on the labs. This technique does not require that the array
already exists in the client, thereby reducing client workspace memory
requirements. These overloaded functions include distributed.eye,
distributed.rand, etc. For a full list, see the distributed object
reference page.

• Create a codistributed array inside an spmd statement, then access it as a
distributed array outside the spmd statement. This lets you use distribution
schemes other than the default.

The first two of these techniques do not involve spmd in creating the array,
but you can see how spmd might be used to manipulate arrays created this
way. For example:

Create an array in the client workspace, then make it a distributed array:

matlabpool open local 2
W = ones(6,6);
W = distributed(W); % Distribute to the labs
spmd

T = W*2; % Calculation performed on labs, in parallel.
% T and W are both codistributed arrays here.

end
T % View results in client.
whos % T and W are both distributed arrays here.
matlabpool close

Creating Codistributed Arrays
You can create a codistributed array in any of several ways:

• Use the codistributed function inside an spmd statement, a parallel job,
or pmode to codistribute data already existing on the labs running that job.

• Use any of the overloaded codistributed object methods to directly construct
a codistributed array on the labs. This technique does not require that
the array already exists in the labs. These overloaded functions include
codistributed.eye, codistributed.rand, etc. For a full list, see the
codistributed object reference page.
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• Create a distributed array outside an spmd statement, then access it as
a codistributed array inside the spmd statement running on the same
MATLAB pool.

In this example, you create a codistributed array inside an spmd statement,
using a nondefault distribution scheme. First, define 1-D distribution along
the third dimension, with 4 parts on lab 1, and 12 parts on lab 2. Then create
a 3-by-3-by-16 array of zeros.

matlabpool open local 2
spmd

codist = codistributor1d(3, [4, 12]);
Z = codistributed.zeros(3, 3, 16, codist);
Z = Z + labindex;

end
Z % View results in client.

% Z is a distributed array here.
matlabpool close

For more details on codistributed arrays, see Chapter 5, “Math with
Codistributed Arrays”, and Chapter 4, “Interactive Parallel Computation
with pmode”.
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Programming Tips

In this section...

“MATLAB Path” on page 3-15

“Error Handling” on page 3-15

“Limitations” on page 3-15

MATLAB Path
All labs executing an spmd statement must have the same MATLAB path
configuration as the client, so that they can execute any functions called in
their common block of code. Therefore, whenever you use cd, addpath, or
rmpath on the client, it also executes on all the labs, if possible. For more
information, see the matlabpool reference page. When the labs are running
on a different platform than the client, use the function pctRunOnAll to
properly set the MATLAB path on all labs.

Error Handling
When an error occurs on a lab during the execution of an spmd statement, the
error is reported to the client. The client tries to interrupt execution on all
labs, and throws an error to the user.

Errors and warnings produced on labs are annotated with the lab ID and
displayed in the client’s Command Window in the order in which they are
received by the MATLAB client.

The behavior of lastwarn is unspecified at the end of an spmd if used within
its body.

Limitations

Transparency
The body of an spmd statement must be transparent, meaning that all
references to variables must be “visible” (i.e., they occur in the text of the
program).
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In the following example, because X is not visible as an input variable in the
spmd body (only the string 'X' is passed to eval), it does not get transferred to
the labs. As a result, MATLAB issues an error at run time:

X = 5;
spmd

eval('X');
end

Similarly, you cannot clear variables from a worker’s workspace by executing
clear inside an spmd statement:

spmd; clear('X'); end

To clear a specific variable from a worker, clear its Composite from the client
workspace. Alternatively, you can free up most of the memory used by a
variable by setting its value to empty, presumably when it is no longer needed
in your spmd statement:

spmd
<statements....>
X = [];

end

Examples of some other functions that violate transparency are evalc,
evalin, and assignin with the workspace argument specified as 'caller';
save and load, unless the output of load is assigned.

MATLAB does successfully execute eval and evalc statements that appear in
functions called from the spmd body.

Nested Functions
Inside a function, the body of an spmd statement cannot make any direct
reference to a nested function. However, it can call a nested function by
means of a variable defined as a function handle to the nested function.

Because the spmd body executes on workers, variables that are updated by
nested functions called inside an spmd statement do not get updated in the
workspace of the outer function.
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Anonymous Functions
The body of an spmd statement cannot define an anonymous function.
However, it can reference an anonymous function by means of a function
handle.

Nested spmd Statements
The body of an spmd statement cannot contain another spmd. However, it
can call a function that contains another spmd statement. Be sure that your
MATLAB pool has enough labs to accommodate such expansion.

Nested parfor-Loops
The body of a parfor-loop cannot contain an spmd statement, and an spmd
statement cannot contain a parfor-loop.

Break and Return Statements
The body of an spmd statement cannot contain break or return statements.

Global and Persistent Variables
The body of an spmd statement cannot contain global or persistent variable
declarations.

3-17



3 Single Program Multiple Data (spmd)

3-18



4

Interactive Parallel
Computation with pmode

This chapter describes interactive pmode in the following sections:

• “pmode Versus spmd” on page 4-2

• “Run Parallel Jobs Interactively Using pmode” on page 4-3

• “Parallel Command Window” on page 4-10

• “Running pmode Interactive Jobs on a Cluster” on page 4-15

• “Plotting Distributed Data Using pmode” on page 4-16

• “pmode Limitations and Unexpected Results” on page 4-18

• “pmode Troubleshooting” on page 4-19
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pmode Versus spmd
pmode lets you work interactively with a parallel job running simultaneously
on several labs. Commands you type at the pmode prompt in the Parallel
Command Window are executed on all labs at the same time. Each lab
executes the commands in its own workspace on its own variables.

The way the labs remain synchronized is that each lab becomes idle when it
completes a command or statement, waiting until all the labs working on this
job have completed the same statement. Only when all the labs are idle, do
they then proceed together to the next pmode command.

In contrast to spmd, pmode provides a desktop with a display for each lab
running the job, where you can enter commands, see results, access each lab’s
workspace, etc. What pmode does not let you do is to freely interleave serial
and parallel work, like spmd does. When you exit your pmode session, its
job is effectively destroyed, and all information and data on the labs is lost.
Starting another pmode session always begins from a clean state.
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Run Parallel Jobs Interactively Using pmode
This example uses a local scheduler and runs the labs on your local MATLAB
client machine. It does not require an external cluster or scheduler. The
steps include the pmode prompt (P>>) for commands that you type in the
Parallel Command Window.

1 Start the pmode with the pmode command.

pmode start local 4

This starts four local labs, creates a parallel job to run on those labs, and
opens the Parallel Command Window.

You can control where the command history appears. For this exercise, the
position is set by clickingWindow > History Position > Above Prompt,
but you can set it according to your own preference.

2 To illustrate that commands at the pmode prompt are executed on all labs,
ask for help on a function.

P>> help magic
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3 Set a variable at the pmode prompt. Notice that the value is set on all
the labs.

P>> x = pi

4 A variable does not necessarily have the same value on every lab. The
labindex function returns the ID particular to each lab working on this
parallel job. In this example, the variable x exists with a different value in
the workspace of each lab.

P>> x = labindex

5 Return the total number of labs working on the current parallel job with
the numlabs function.

P>> all = numlabs
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6 Create a replicated array on all the labs.

P>> segment = [1 2; 3 4; 5 6]
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7 Assign a unique value to the array on each lab, dependent on the lab
number. With a different value on each lab, this is a variant array.

P>> segment = segment + 10*labindex

8 Until this point in the example, the variant arrays are independent, other
than having the same name. Use the codistributed.build function to
aggregate the array segments into a coherent array, distributed among
the labs.

P>> codist = codistributor1d(2, [2 2 2 2], [3 8])
P>> whole = codistributed.build(segment, codist)

This combines four separate 3-by-2 arrays into one 3-by-8 codistributed
array. The codistributor1d object indicates that the array is distributed
along its second dimension (columns), with 2 columns on each of the four
labs. On each lab, segment provided the data for the local portion of the
whole array.

9 Now, when you operate on the codistributed array whole, each lab handles
the calculations on only its portion, or segment, of the array, not the whole
array.

P>> whole = whole + 1000
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10 Although the codistributed array allows for operations on its entirety, you
can use the getLocalPart function to access the portion of a codistributed
array on a particular lab.

P>> section = getLocalPart(whole)

Thus, section is now a variant array because it is different on each lab.

11 If you need the entire array in one workspace, use the gather function.

P>> combined = gather(whole)

Notice, however, that this gathers the entire array into the workspaces of
all the labs. See the gather reference page for the syntax to gather the
array into the workspace of only one lab.

12 Because the labs ordinarily do not have displays, if you want to perform
any graphical tasks involving your data, such as plotting, you must do this
from the client workspace. Copy the array to the client workspace by typing
the following commands in the MATLAB (client) Command Window.

pmode lab2client combined 1
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Notice that combined is now a 3-by-8 array in the client workspace.

whos combined

To see the array, type its name.

combined

13 Many matrix functions that might be familiar can operate on codistributed
arrays. For example, the eye function creates an identity matrix. Now you
can create a codistributed identity matrix with the following commands
in the Parallel Command Window.

P>> distobj = codistributor1d();
P>> I = eye(6, distobj)
P>> getLocalPart(I)

Calling the codistributor1d function without arguments specifies the
default distribution, which is by columns in this case, distributed as evenly
as possible.
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14 If you require distribution along a different dimension, you can use
the redistribute function. In this example, the argument 1 to
codistributor1d specifies distribution of the array along the first
dimension (rows).

P>> distobj = codistributor1d(1);
P>> I = redistribute(I, distobj)
P>> getLocalPart(I)

15 Exit pmode and return to the regular MATLAB desktop.

P>> pmode exit
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Parallel Command Window
When you start pmode on your local client machine with the command

pmode start local 4

four labs start on your local machine and a parallel job is created to run on
them. The first time you run pmode with this configuration, you get a tiled
display of the four labs.
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The Parallel Command Window offers much of the same functionality as the
MATLAB desktop, including command line, output, and command history.

When you select one or more lines in the command history and right-click,
you see the following context menu.

You have several options for how to arrange the tiles showing your lab
outputs. Usually, you will choose an arrangement that depends on the format
of your data. For example, the data displayed until this point in this section,
as in the previous figure, is distributed by columns. It might be convenient to
arrange the tiles side by side.
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This arrangement results in the following figure, which might be more
convenient for viewing data distributed by columns.

Alternatively, if the data is distributed by rows, you might want to stack the
lab tiles vertically. For the following figure, the data is reformatted with
the command

P>> distobj = codistributor('1d',1);
P>> I = redistribute(I, distobj)

When you rearrange the tiles, you see the following.
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You can control the relative positions of the command window and the lab
output. The following figure shows how to set the output to display beside the
input, rather than above it.

You can choose to view the lab outputs by tabs.
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You can have multiple labs send their output to the same tile or tab. This
allows you to have fewer tiles or tabs than labs.
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In this case, the window provides shading to help distinguish the outputs
from the various labs.
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Running pmode Interactive Jobs on a Cluster
When you run pmode on a cluster of labs, you are running a job that is
much like any other parallel job, except it is interactive. The cluster
can be heterogeneous, but with certain limitations described at
http://www.mathworks.com/products/parallel-computing/requirements.html;
carefully locate your scheduler on that page and note that pmode
sessions run as jobs described as “parallel applications that use
inter-worker communication.”

Many of the job’s properties are determined by a configuration. For more
details about creating and using configurations, see “Parallel Configurations
for Cluster Access” on page 6-14.

The general form of the command to start a pmode session is

pmode start <config-name> <num-labs>

where <config-name> is the name of the configuration you want to use,
and <num-labs> is the number of labs you want to run the pmode job
on. If <num-labs> is omitted, the number of labs is determined by the
configuration. Coordinate with your system administrator when creating or
using a configuration.

If you omit <config-name>, pmode uses the default configuration (see the
defaultParallelConfig reference page).

For details on all the command options, see the pmode reference page.
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Plotting Distributed Data Using pmode
Because the labs running a job in pmode are MATLAB sessions without
displays, they cannot create plots or other graphic outputs on your desktop.

When working in pmode with codistributed arrays, one way to plot a
codistributed array is to follow these basic steps:

1 Use the gather function to collect the entire array into the workspace of
one lab.

2 Transfer the whole array from any lab to the MATLAB client with pmode
lab2client.

3 Plot the data from the client workspace.

The following example illustrates this technique.

Create a 1-by-100 codistributed array of 0s. With four labs, each lab has a
1-by-25 segment of the whole array.

P>> D = zeros(1,100,codistributor1d())

Lab 1: This lab stores D(1:25).
Lab 2: This lab stores D(26:50).
Lab 3: This lab stores D(51:75).
Lab 4: This lab stores D(76:100).

Use a for-loop over the distributed range to populate the array so that it
contains a sine wave. Each lab does one-fourth of the array.

P>> for i = drange(1:100)
D(i) = sin(i*2*pi/100);
end;

Gather the array so that the whole array is contained in the workspace of
lab 1.

P>> P = gather(D, 1);
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Transfer the array from the workspace of lab 1 to the MATLAB client
workspace, then plot the array from the client. Note that both commands are
entered in the MATLAB (client) Command Window.

pmode lab2client P 1
plot(P)

This is not the only way to plot codistributed data. One alternative method,
especially useful when running noninteractive parallel jobs, is to plot the data
to a file, then view it from a later MATLAB session.
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pmode Limitations and Unexpected Results

Using Graphics in pmode

Displaying a GUI
The labs that run the tasks of a parallel job are MATLAB sessions without
displays. As a result, these labs cannot display graphical tools and so you
cannot do things like plotting from within pmode. The general approach to
accomplish something graphical is to transfer the data into the workspace
of the MATLAB client using

pmode lab2client var lab

Then use the graphical tool on the MATLAB client.

Using Simulink Software
Because the labs running a pmode job do not have displays, you cannot use
Simulink software to edit diagrams or to perform interactive simulation from
within pmode. If you type simulink at the pmode prompt, the Simulink
Library Browser opens in the background on the labs and is not visible.

You can use the sim command to perform noninteractive simulations in
parallel. If you edit your model in the MATLAB client outside of pmode, you
must save the model before accessing it in the labs via pmode; also, if the
labs had accessed the model previously, they must close and open the model
again to see the latest saved changes.
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pmode Troubleshooting

In this section...

“Connectivity Testing” on page 4-19

“Hostname Resolution” on page 4-19

“Socket Connections” on page 4-19

Connectivity Testing
For testing connectivity between the client machine and the machines of
your compute cluster, you can use Admin Center. For more information
about Admin Center, including how to start it and how to test connectivity,
see “Admin Center” in the MATLAB Distributed Computing Server
documentation.

Hostname Resolution
If a lab cannot resolve the hostname of the computer running the MATLAB
client, use pctconfig to change the hostname by which the client machine
advertises itself.

Socket Connections
If a lab cannot open a socket connection to the MATLAB client, try the
following:

• Use pctconfig to change the hostname by which the client machine
advertises itself.

• Make sure that firewalls are not preventing communication between the
lab and client machines.

• Use pctconfig to change the client’s pmodeport property. This determines
the port that the labs will use to contact the client in the next pmode
session.
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5

Math with Codistributed
Arrays

This chapter describes the distribution or partition of data across several labs,
and the functionality provided for operations on that data in spmd statements,
parallel jobs, and pmode. The sections are as follows.

• “Nondistributed Versus Distributed Arrays” on page 5-2

• “Working with Codistributed Arrays” on page 5-5

• “Using a for-Loop Over a Distributed Range (for-drange)” on page 5-21

• “Using MATLAB Functions on Codistributed Arrays” on page 5-25
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Nondistributed Versus Distributed Arrays

In this section...

“Introduction” on page 5-2

“Nondistributed Arrays” on page 5-2

“Codistributed Arrays” on page 5-4

Introduction
All built-in data types and data structures supported by MATLAB software
are also supported in the MATLAB parallel computing environment. This
includes arrays of any number of dimensions containing numeric, character,
logical values, cells, or structures; but not function handles or user-defined
objects. In addition to these basic building blocks, the MATLAB parallel
computing environment also offers different types of arrays.

Nondistributed Arrays
When you create a nondistributed array, MATLAB constructs a separate array
in the workspace of each lab and assigns a common variable to them. Any
operation performed on that variable affects all individual arrays assigned
to it. If you display from lab 1 the value assigned to this variable, all labs
respond by showing the array of that name that resides in their workspace.

The state of a nondistributed array depends on the value of that array in
the workspace of each lab:

• “Replicated Arrays” on page 5-2

• “Variant Arrays” on page 5-3

• “Private Arrays” on page 5-4

Replicated Arrays
A replicated array resides in the workspaces of all labs, and its size and
content are identical on all labs. When you create the array, MATLAB assigns
it to the same variable on all labs. If you display in spmd the value assigned
to this variable, all labs respond by showing the same array.
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spmd, A = magic(3), end

LAB 1 LAB 2 LAB 3 LAB 4
| | |

8 1 6 | 8 1 6 | 8 1 6 | 8 1 6
3 5 7 | 3 5 7 | 3 5 7 | 3 5 7
4 9 2 | 4 9 2 | 4 9 2 | 4 9 2

Variant Arrays
A variant array also resides in the workspaces of all labs, but its content
differs on one or more labs. When you create the array, MATLAB assigns
a different value to the same variable on all labs. If you display the value
assigned to this variable, all labs respond by showing their version of the
array.

spmd, A = magic(3) + labindex - 1, end

LAB 1 LAB 2 LAB 3 LAB 4
| | |

8 1 6 | 9 2 7 | 10 3 8 | 11 4 9
3 5 7 | 4 6 9 | 5 7 9 | 6 8 10
4 9 2 | 5 10 3 | 6 11 4 | 7 12 5

A replicated array can become a variant array when its value becomes unique
on each lab.

spmd
B = magic(3); %replicated on all labs
B = B + labindex; %now a variant array, different on each lab

end
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Private Arrays
A private array is defined on one or more, but not all labs. You could create
this array by using the lab index in a conditional statement, as shown here:

spmd
if labindex >= 3, A = magic(3) + labindex - 1, end

end
LAB 1 LAB 2 LAB 3 LAB 4

| | |
A is | A is | 10 3 8 | 11 4 9

undefined | undefined | 5 7 9 | 6 8 10
| 6 11 4 | 7 12 5

Codistributed Arrays
With replicated and variant arrays, the full content of the array is stored
in the workspace of each lab. Codistributed arrays, on the other hand, are
partitioned into segments, with each segment residing in the workspace of a
different lab. Each lab has its own array segment to work with. Reducing the
size of the array that each lab has to store and process means a more efficient
use of memory and faster processing, especially for large data sets.

This example distributes a 3-by-10 replicated array A over four labs. The
resulting array D is also 3-by-10 in size, but only a segment of the full array
resides on each lab.

spmd
A = [11:20; 21:30; 31:40];
D = codistributed(A);
getLocalPart(D)

end

LAB 1 LAB 2 LAB 3 LAB 4
| | |

11 12 13 | 14 15 16 | 17 18 | 19 20
21 22 23 | 24 25 26 | 27 28 | 29 30
31 32 33 | 34 35 36 | 37 38 | 39 40

For more details on using codistributed arrays, see “Working with
Codistributed Arrays” on page 5-5.
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Working with Codistributed Arrays

In this section...

“How MATLAB Software Distributes Arrays” on page 5-5

“Creating a Codistributed Array” on page 5-7

“Local Arrays” on page 5-11

“Obtaining information About the Array” on page 5-12

“Changing the Dimension of Distribution” on page 5-13

“Restoring the Full Array” on page 5-14

“Indexing into a Codistributed Array” on page 5-15

“2-Dimensional Distribution” on page 5-17

How MATLAB Software Distributes Arrays
When you distribute an array to a number of labs, MATLAB software
partitions the array into segments and assigns one segment of the array to
each lab. You can partition a two-dimensional array horizontally, assigning
columns of the original array to the different labs, or vertically, by assigning
rows. An array with N dimensions can be partitioned along any of its N
dimensions. You choose which dimension of the array is to be partitioned by
specifying it in the array constructor command.

For example, to distribute an 80-by-1000 array to four labs, you can partition
it either by columns, giving each lab an 80-by-250 segment, or by rows, with
each lab getting a 20-by-1000 segment. If the array dimension does not divide
evenly over the number of labs, MATLAB partitions it as evenly as possible.

The following example creates an 80-by-1000 replicated array and assigns
it to variable A. In doing so, each lab creates an identical array in its own
workspace and assigns it to variable A, where A is local to that lab. The second
command distributes A, creating a single 80-by-1000 array D that spans all
four labs. lab 1 stores columns 1 through 250, lab 2 stores columns 251
through 500, and so on. The default distribution is by the last nonsingleton
dimension, thus, columns in this case of a 2-dimensional array.
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spmd
A = zeros(80, 1000);
D = codistributed(A);

Lab 1: This lab stores D(:,1:250).
Lab 2: This lab stores D(:,251:500).
Lab 3: This lab stores D(:,501:750).
Lab 4: This lab stores D(:,751:1000).

end

Each lab has access to all segments of the array. Access to the local segment
is faster than to a remote segment, because the latter requires sending and
receiving data between labs and thus takes more time.

How MATLAB Displays a Codistributed Array
For each lab, the MATLAB Parallel Command Window displays information
about the codistributed array, the local portion, and the codistributor. For
example, an 8-by-8 identity matrix codistributed among four labs, with two
columns on each lab, displays like this:

>> spmd
II = codistributed.eye(8)
end
Lab 1:

This lab stores II(:,1:2).
LocalPart: [8x2 double]

Codistributor: [1x1 codistributor1d]
Lab 2:

This lab stores II(:,3:4).
LocalPart: [8x2 double]

Codistributor: [1x1 codistributor1d]
Lab 3:

This lab stores II(:,5:6).
LocalPart: [8x2 double]

Codistributor: [1x1 codistributor1d]
Lab 4:

This lab stores II(:,7:8).
LocalPart: [8x2 double]

Codistributor: [1x1 codistributor1d]
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To see the actual data in the local segment of the array, use the getLocalPart
function.

How Much Is Distributed to Each Lab
In distributing an array of N rows, if N is evenly divisible by the number of
labs, MATLAB stores the same number of rows (N/numlabs) on each lab.
When this number is not evenly divisible by the number of labs, MATLAB
partitions the array as evenly as possible.

MATLAB provides a codistributor object properties called Dimension and
Partition that you can use to determine the exact distribution of an array.
See “Indexing into a Codistributed Array” on page 5-15 for more information
on indexing with codistributed arrays.

Distribution of Other Data Types
You can distribute arrays of any MATLAB built-in data type, and also
numeric arrays that are complex or sparse, but not arrays of function handles
or object types.

Creating a Codistributed Array
You can create a codistributed array in any of the following ways:

• “Using MATLAB Constructor Functions” on page 5-10 — Use any of the
MATLAB constructor functions like rand or zeros with the a codistributor
object argument. These functions offer a quick means of constructing a
codistributed array of any size in just one step.

• “Partitioning a Larger Array” on page 5-8 — Start with a large array that
is replicated on all labs, and partition it so that the pieces are distributed
across the labs. This is most useful when you have sufficient memory to
store the initial replicated array.

• “Building from Smaller Arrays” on page 5-9 — Start with smaller variant
or replicated arrays stored on each lab, and combine them so that each
array becomes a segment of a larger codistributed array. This method
reduces memory requiremenets as it lets you build a codistributed array
from smaller pieces.
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Partitioning a Larger Array
If you have a large array already in memory that you want MATLAB
to process more quickly, you can partition it into smaller segments and
distribute these segments to all of the labs using the codistributed function.
Each lab then has an array that is a fraction the size of the original, thus
reducing the time required to access the data that is local to each lab.

As a simple example, the following line of code creates a 4-by-8 replicated
matrix on each lab assigned to the variable A:

spmd, A = [11:18; 21:28; 31:38; 41:48], end
A =

11 12 13 14 15 16 17 18
21 22 23 24 25 26 27 28
31 32 33 34 35 36 37 38
41 42 43 44 45 46 47 48

The next line uses the codistributed function to construct a single 4-by-8
matrix D that is distributed along the second dimension of the array:

spmd
D = codistributed(A);
getLocalPart(D)

end

1: Local Part | 2: Local Part | 3: Local Part | 4: Local Part
11 12 | 13 14 | 15 16 | 17 18
21 22 | 23 24 | 25 26 | 27 28
31 32 | 33 34 | 35 36 | 37 38
41 42 | 43 44 | 45 46 | 47 48

Arrays A and D are the same size (4-by-8). Array A exists in its full size on
each lab, while only a segment of array D exists on each lab.

spmd, size(A), size(D), end

Examining the variables in the client workspace, an array that is codistributed
among the labs inside an spmd statement, is a distributed array from the
perspective of the client outside the spmd statement. Variables that are not
codistributed inside the spmd, are Composites in the client outside the spmd.
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whos
Name Size Bytes Class

A 1x4 613 Composite
D 4x8 649 distributed

See the codistributed function reference page for syntax and usage
information.

Building from Smaller Arrays
The codistributed function is less useful for reducing the amount of memory
required to store data when you first construct the full array in one workspace
and then partition it into distributed segments. To save on memory, you can
construct the smaller pieces (local part) on each lab first, and then combine
them into a single array that is distributed across the labs.

This example creates a 4-by-250 variant array A on each of four labs and then
uses codistributor to distribute these segments across four labs, creating a
4-by-1000 codistributed array. Here is the variant array, A:

spmd

A = [1:250; 251:500; 501:750; 751:1000] + 250 * (labindex - 1);

end

LAB 1 | LAB 2 LAB 3

1 2 ... 250 | 251 252 ... 500 | 501 502 ... 750 | etc.

251 252 ... 500 | 501 502 ... 750 | 751 752 ...1000 | etc.

501 502 ... 750 | 751 752 ...1000 | 1001 1002 ...1250 | etc.

751 752 ...1000 | 1001 1002 ...1250 | 1251 1252 ...1500 | etc.

| | |

Now combine these segments into an array that is distributed by the first
dimension (rows). The array is now 16-by-250, with a 4-by-250 segment
residing on each lab:

spmd
D = codistributed.build(A, codistributor1d(1,[4 4 4 4],[16 250]))

end
Lab 1:

This lab stores D(1:4,:).

5-9



5 Math with Codistributed Arrays

LocalPart: [4x250 double]
Codistributor: [1x1 codistributor1d]

whos
Name Size Bytes Class

A 1x4 613 Composite
D 16x250 649 distributed

You could also use replicated arrays in the same fashion, if you wanted
to create a codistributed array whose segments were all identical to start
with. See the codistributed function reference page for syntax and usage
information.

Using MATLAB Constructor Functions
MATLAB provides several array constructor functions that you can use
to build codistributed arrays of specific values, sizes, and classes. These
functions operate in the same way as their nondistributed counterparts in the
MATLAB language, except that they distribute the resultant array across the
labs using the specified codistributor object, codist.

Constructor Functions. The codistributed constructor functions are listed
here. Use the codist argument (created by the codistributor function:
codist=codistributor()) to specify over which dimension to distribute the
array. See the individual reference pages for these functions for further
syntax and usage information.

codistributed.cell(m, n, ..., codist)
codistributed.colon(a, d, b)
codistributed.eye(m, ..., classname, codist)
codistributed.false(m, n, ..., codist)
codistributed.Inf(m, n, ..., classname, codist)
codistributed.linspace(m, n, ..., codist)
codistributed.logspace(m, n, ..., codist)
codistributed.NaN(m, n, ..., classname, codist)
codistributed.ones(m, n, ..., classname, codist)
codistributed.rand(m, n, ..., codist)
codistributed.randn(m, n, ..., codist)
sparse(m, n, codist)
codistributed.speye(m, ..., codist)
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codistributed.sprand(m, n, density, codist)
codistributed.sprandn(m, n, density, codist)
codistributed.true(m, n, ..., codist)
codistributed.zeros(m, n, ..., classname, codist)

Local Arrays
That part of a codistributed array that resides on each lab is a piece of a
larger array. Each lab can work on its own segment of the common array, or
it can make a copy of that segment in a variant or private array of its own.
This local copy of a codistributed array segment is called a local array.

Creating Local Arrays from a Codistributed Array
The getLocalPart function copies the segments of a codistributed array to a
separate variant array. This example makes a local copy L of each segment of
codistributed array D. The size of L shows that it contains only the local part
of D for each lab. Suppose you distribute an array across four labs:

spmd(4)
A = [1:80; 81:160; 161:240];
D = codistributed(A);
size(D)

L = getLocalPart(D);
size(L)

end

returns on each lab:

3 80
3 20

Each lab recognizes that the codistributed array D is 3-by-80. However, notice
that the size of the local part, L, is 3-by-20 on each lab, because the 80 columns
of D are distributed over four labs.

Creating a Codistributed from Local Arrays
Use the codistributed function to perform the reverse operation. This
function, described in “Building from Smaller Arrays” on page 5-9, combines
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the local variant arrays into a single array distributed along the specified
dimension.

Continuing the previous example, take the local variant arrays L and put
them together as segments to build a new codistributed array X.

spmd
codist = codistributor1d(2,[20 20 20 20],[3 80]);
X = codistributed.build(L, codist);
size(X)

end

returns on each lab:

3 80

Obtaining information About the Array
MATLAB offers several functions that provide information on any particular
array. In addition to these standard functions, there are also two functions
that are useful solely with codistributed arrays.

Determining Whether an Array Is Codistributed
The iscodistributed function returns a logical 1 (true) if the input array is
codistributed, and logical 0 (false) otherwise. The syntax is

spmd, TF = iscodistributed(D), end

where D is any MATLAB array.

Determining the Dimension of Distribution
The codistributor object determines how an array is partitioned and its
dimension of distribution. To access the codistributor of an array, use the
getCodistributor function. This returns two properties, Dimension and
Partition:

spmd, getCodistributor(X), end

Dimension: 2
Partition: [20 20 20 20]
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The Dimension value of 2 means the array X is distributed by columns
(dimension 2); and the Partition value of [20 20 20 20] means that twenty
columns reside on each of the four labs.

To get these properties programmatically, return the output of
getCodistributor to a variable, then use dot notation to access each
property:

spmd
C = getCodistributor(X);
part = C.Partition
dim = C.Dimension

end

Other Array Functions
Other functions that provide information about standard arrays also work
on codistributed arrays and use the same syntax.

• length— Returns the length of a specific dimension.

• ndims — Returns the number of dimensions.

• numel— Returns the number of elements in the array.

• size — Returns the size of each dimension.

• is* — Many functions that have names beginning with 'is', such as
ischar and issparse.

Changing the Dimension of Distribution
When constructing an array, you distribute the parts of the array along one
of the array’s dimensions. You can change the direction of this distribution
on an existing array using the redistribute function with a different
codistributor object.

Construct an 8-by-16 codistributed array D of random values distributed by
columns on four labs:

spmd
D = rand(8, 16, codistributor());
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size(getLocalPart(D))
end

returns on each lab:

8 4

Create a new codistributed array distributed by rows from an existing one
already distributed by columns:

spmd
X = redistribute(D, codistributor1d(1));
size(getLocalPart(X))

end

returns on each lab:

2 16

Restoring the Full Array
You can restore a codistributed array to its undistributed form using the
gather function. gather takes the segments of an array that reside on
different labs and combines them into a replicated array on all labs, or into a
single array on one lab.

Distribute a 4-by-10 array to four labs along the second dimension:

spmd, A = [11:20; 21:30; 31:40; 41:50], end
A =

11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50

spmd, D = codistributed(A), end
Lab 1 | Lab 2 | Lab 3 | Lab 4

11 12 13 | 14 15 16 | 17 18 | 19 20
21 22 23 | 24 25 26 | 27 28 | 29 30
31 32 33 | 34 35 36 | 37 38 | 39 40
41 42 43 | 44 45 46 | 47 48 | 49 50

| | |

5-14



Working with Codistributed Arrays

spmd, size(getLocalPart(D)), end
Lab 1:

4 3
Lab 2:

4 3
Lab 3:

4 2
Lab 4:

4 2

Restore the undistributed segments to the full array form by gathering the
segments:

spmd, X = gather(D), end
X =

11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50

spmd, size(X), end
4 10

Indexing into a Codistributed Array
While indexing into a nondistributed array is fairly straightforward,
codistributed arrays require additional considerations. Each dimension of a
nondistributed array is indexed within a range of 1 to the final subscript,
which is represented in MATLAB by the end keyword. The length of any
dimension can be easily determined using either the size or length function.

With codistributed arrays, these values are not so easily obtained. For
example, the second segment of an array (that which resides in the workspace
of lab 2) has a starting index that depends on the array distribution. For a
200-by-1000 array with a default distribution by columns over four labs, the
starting index on lab 2 is 251. For a 1000-by-200 array also distributed by
columns, that same index would be 51. As for the ending index, this is not
given by using the end keyword, as end in this case refers to the end of the
entire array; that is, the last subscript of the final segment. The length of
each segment is also not given by using the length or size functions, as they
only return the length of the entire array.
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The MATLAB colon operator and end keyword are two of the basic tools
for indexing into nondistributed arrays. For codistributed arrays, MATLAB
provides a version of the colon operator, called codistributed.colon. This
actually is a function, not a symbolic operator like colon.

Note When using arrays to index into codistributed arrays, you can use
only replicated or codistributed arrays for indexing. The toolbox does not
check to ensure that the index is replicated, as that would require global
communications. Therefore, the use of unsupported variants (such as
labindex) to index into codistributed arrays might create unexpected results.

Example: Find a Particular Element in a Codistributed Array
Suppose you have a row vector of 1 million elements, distributed among
several labs, and you want to locate its element number 225,000. That is, you
want to know what lab contains this element, and in what position in the
local part of the vector on that lab. The globalIndices function provides a
correlation between the local and global indexing of the codistributed array.

D = distributed.rand(1,1e6); %Distributed by columns
spmd

globalInd = globalIndices(D,2);
pos = find(globalInd == 225e3);
if ~isempty(pos)

fprintf(...
'Element is in position %d on lab %d.\n', pos, labindex);

end
end

If you run this code on a pool of four workers you get this result:

Lab 1:
Element is in position 225000 on lab 1.

If you run this code on a pool of five workers you get this result:

Lab 2:
Element is in position 25000 on lab 2.
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Notice if you use a pool of a different size, the element ends up in a different
location on a different lab, but the same code can be used to locate the element.

2-Dimensional Distribution
As an alternative to distributing by a single dimension of rows or columns,
you can distribute a matrix by blocks using '2dbc' or two-dimensional
block-cyclic distribution. Instead of segments that comprise a number of
complete rows or columns of the matrix, the segments of the codistributed
array are 2-dimensional square blocks.

For example, consider a simple 8-by-8 matrix with ascending element values.
You can create this array in an spmd statement, parallel job, or pmode. This
example uses pmode for a visual display.

P>> A = reshape(1:64, 8, 8)

The result is the replicated array:

1 9 17 25 33 41 49 57

2 10 18 26 34 42 50 58

3 11 19 27 35 43 51 59

4 12 20 28 36 44 52 60

5 13 21 29 37 45 53 61

6 14 22 30 38 46 54 62

7 15 23 31 39 47 55 63

8 16 24 32 40 48 56 64

Suppose you want to distribute this array among four labs, with a 4-by-4
block as the local part on each lab. In this case, the lab grid is a 2-by-2
arrangement of the labs, and the block size is a square of four elements on
a side (i.e., each block is a 4-by-4 square). With this information, you can
define the codistributor object:
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P>> DIST = codistributor2dbc([2 2], 4)

Now you can use this codistributor object to distribute the original matrix:

P>> AA = codistributed(A, DIST)

This distributes the array among the labs according to this scheme:
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If the lab grid does not perfectly overlay the dimensions of the codistributed
array, you can still use '2dbc' distribution, which is block cyclic. In this case,
you can imagine the lab grid being repeatedly overlaid in both dimensions
until all the original matrix elements are included.

Using the same original 8-by-8 matrix and 2-by-2 lab grid, consider a block
size of 3 instead of 4, so that 3-by-3 square blocks are distributed among the
labs. The code looks like this:

P>> DIST = codistributor2dbc([2 2], 3)
P>> AA = codistributed(A, DIST)

The first “row” of the lab grid is distributed to lab 1 and lab 2, but that contains
only six of the eight columns of the original matrix. Therefore, the next two
columns are distributed to lab 1. This process continues until all columns in
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the first rows are distributed. Then a similar process applies to the rows as
you proceed down the matrix, as shown in the following distribution scheme:
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The diagram above shows a scheme that requires four overlays of the lab
grid to accommodate the entire original matrix. The following pmode session
shows the code and resulting distribution of data to each of the labs:
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The following points are worth noting:

• '2dbc' distribution might not offer any performance enhancement unless
the block size is at least a few dozen. The default block size is 64.

• The lab grid should be as close to a square as possible.

• Not all functions that are enhanced to work on '1d' codistributed arrays
work on '2dbc' codistributed arrays.
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Using a for-Loop Over a Distributed Range (for-drange)

In this section...

“Parallelizing a for-Loop” on page 5-21

“Codistributed Arrays in a for-drange Loop” on page 5-22

Note Using a for-loop over a distributed range (drange) is intended for
explicit indexing of the distributed dimension of codistributed arrays (such as
inside an spmd statement or a parallel job). For most applications involving
parallel for-loops you should first try using parfor loops. See Chapter 2,
“Parallel for-Loops (parfor)”.

Parallelizing a for-Loop
If you already have a coarse-grained application to perform, but you do
not want to bother with the overhead of defining jobs and tasks, you can
take advantage of the ease-of-use that pmode provides. Where an existing
program might take hours or days to process all its independent data sets,
you can shorten that time by distributing these independent computations
over your cluster.

For example, suppose you have the following serial code:

results = zeros(1, numDataSets);
for i = 1:numDataSets

load(['\\central\myData\dataSet' int2str(i) '.mat'])
results(i) = processDataSet(i);

end
plot(1:numDataSets, results);
save \\central\myResults\today.mat results

The following changes make this code operate in parallel, either interactively
in spmd or pmode, or in a parallel job:

results = zeros(1, numDataSets, codistributor());
for i = drange(1:numDataSets)

load(['\\central\myData\dataSet' int2str(i) '.mat'])
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results(i) = processDataSet(i);
end
res = gather(results, 1);
if labindex == 1

plot(1:numDataSets, res);
print -dtiff -r300 fig.tiff;
save \\central\myResults\today.mat res

end

Note that the length of the for iteration and the length of the codistributed
array results need to match in order to index into results within a for
drange loop. This way, no communication is required between the labs. If
results was simply a replicated array, as it would have been when running
the original code in parallel, each lab would have assigned into its part of
results, leaving the remaining parts of results 0. At the end, results would
have been a variant, and without explicitly calling labSend and labReceive
or gcat, there would be no way to get the total results back to one (or all) labs.

When using the load function, you need to be careful that the data files are
accessible to all labs if necessary. The best practice is to use explicit paths to
files on a shared file system.

Correspondingly, when using the save function, you should be careful to only
have one lab save to a particular file (on a shared file system) at a time. Thus,
wrapping the code in if labindex == 1 is recommended.

Because results is distributed across the labs, this example uses gather to
collect the data onto lab 1.

A lab cannot plot a visible figure, so the print function creates a viewable
file of the plot.

Codistributed Arrays in a for-drange Loop
When a for-loop over a distributed range is executed in a parallel job,
each lab performs its portion of the loop, so that the labs are all working
simultaneously. Because of this, no communication is allowed between the
labs while executing a for-drange loop. In particular, a lab has access only
to its partition of a codistributed array. Any calculations in such a loop that
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require a lab to access portions of a codistributed array from another lab
will generate an error.

To illustrate this characteristic, you can try the following example, in which
one for loop works, but the other does not.

At the pmode prompt, create two codistributed arrays, one an identity matrix,
the other set to zeros, distributed across four labs.

D = eye(8, 8, codistributor())
E = zeros(8, 8, codistributor())

By default, these arrays are distributed by columns; that is, each of the
four labs contains two columns of each array. If you use these arrays in a
for-drange loop, any calculations must be self-contained within each lab. In
other words, you can only perform calculations that are limited within each
lab to the two columns of the arrays that the labs contain.

For example, suppose you want to set each column of array E to some multiple
of the corresponding column of array D:

for j = drange(1:size(D,2)); E(:,j) = j*D(:,j); end

This statement sets the j-th column of E to j times the j-th column of D. In
effect, while D is an identity matrix with 1s down the main diagonal, E has
the sequence 1, 2, 3, etc., down its main diagonal.

This works because each lab has access to the entire column of D and the
entire column of E necessary to perform the calculation, as each lab works
independently and simultaneously on two of the eight columns.

Suppose, however, that you attempt to set the values of the columns of E
according to different columns of D:

for j = drange(1:size(D,2)); E(:,j) = j*D(:,j+1); end

This method fails, because when j is 2, you are trying to set the second
column of E using the third column of D. These columns are stored in different
labs, so an error occurs, indicating that communication between the labs is
not allowed.
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Restrictions
To use for-drange on a codistributed array, the following conditions must
exist:

• The codistributed array uses a 1-dimensional distribution scheme (not
2dbc).

• The distribution complies with the default partition scheme.

• The variable over which the for-drange loop is indexing provides the array
subscript for the distribution dimension.

• All other subscripts can be chosen freely (and can be taken from for-loops
over the full range of each dimension).

To loop over all elements in the array, you can use for-drange on the
dimension of distribution, and regular for-loops on all other dimensions. The
following example executes in an spmd statement running on a MATLAB
pool of 4 labs:

spmd
PP = codistributed.zeros(6,8,12);
RR = rand(6,8,12,codistributor())
% Default distribution:
% by third dimension, evenly across 4 labs.

for ii = 1:6
for jj = 1:8

for kk = drange(1:12)
PP(ii,jj,kk) = RR(ii,jj,kk) + labindex;

end
end

end
end

To view the contents of the array, type:

PP
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Using MATLAB Functions on Codistributed Arrays
Many functions in MATLAB software are enhanced or overloaded so that they
operate on codistributed arrays in much the same way that they operate on
arrays contained in a single workspace.

A few of these functions might exhibit certain limitations when operating on
a codistributed array. To see if any function has different behavior when
used with a codistributed array, type

help codistributed/functionname

For example,

help codistributed/normest

The following table lists the enhanced MATLAB functions that operate on
codistributed arrays.

Type of Function Function Names

Data functions cumprod, cumsum, fft, max, min, prod, sum

Data type functions arrayfun, cast, cell2mat, cell2struct, celldisp,
cellfun, char, double, fieldnames, int16, int32,
int64, int8, logical, num2cell, rmfield, single,
struct2cell, swapbytes, typecast, uint16,
uint32, uint64, uint8

Elementary and
trigonometric
functions

abs, acos, acosd, acosh, acot, acotd, acoth,
acsc, acscd, acsch, angle, asec, asecd, asech,
asin, asind, asinh, atan, atan2, atand, atanh,
ceil, complex, conj, cos, cosd, cosh, cot, cotd,
coth, csc, cscd, csch, exp, expm1, fix, floor,
hypot, imag, isreal, log, log10, log1p, log2, mod,
nextpow2, nthroot, pow2, real, reallog, realpow,
realsqrt, rem, round, sec, secd, sech, sign, sin,
sind, sinh, sqrt, tan, tand, tanh
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Type of Function Function Names

Elementary matrices cat, diag, eps, find, isempty, isequal,
isequalwithequalnans, isfinite, isinf, isnan,
length, meshgrid, ndgrid, ndims, numel, reshape,
size, sort, tril, triu

Matrix functions chol, eig, inv, lu, norm, normest, qr, svd

Array operations all, and (&), any, bitand, bitor, bitxor,
ctranspose ('), end, eq (==), ge (>=), gt (>),
horzcat ([]), ldivide (.\), le (<=), lt (<),
minus (-), mldivide (\), mrdivide (/), mtimes (*),
ne (~=), not (~), or (|), plus (+), power (.^),
rdivide (./), subsasgn, subsindex, subsref,
times (.*), transpose (.'), uminus (-), uplus (+),
vertcat ([;]), xor

Sparse matrix
functions

full, issparse, nnz, nonzeros, nzmax, sparse,
spfun, spones

Special functions dot
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Programming Overview

This chapter provides information you need for programming with Parallel
Computing Toolbox software. Further details of evaluating functions in
a cluster, programming distributed jobs, and programming parallel jobs
are covered in later chapters. This chapter describes features common to
programming all kinds of jobs. The sections are as follows.

• “How Parallel Computing Products Run a Job” on page 6-2

• “Create Simple Distributed Jobs” on page 6-10

• “Parallel Configurations for Cluster Access” on page 6-14

• “Job Monitor” on page 6-27

• “Programming Tips” on page 6-30

• “Profiling Parallel Code” on page 6-35

• “Benchmarking Performance” on page 6-47

• “Troubleshooting and Debugging” on page 6-48
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How Parallel Computing Products Run a Job

In this section...

“Overview” on page 6-2

“Toolbox and Server Components” on page 6-3

“Life Cycle of a Job” on page 6-8

Overview
Parallel Computing Toolbox and MATLAB Distributed Computing Server
software let you solve computationally and data-intensive problems using
MATLAB and Simulink on multicore and multiprocessor computers. Parallel
processing constructs such as parallel for-loops and code blocks, distributed
arrays, parallel numerical algorithms, and message-passing functions let
you implement task-parallel and data-parallel algorithms at a high level
in MATLAB without programming for specific hardware and network
architectures.

A job is some large operation that you need to perform in your MATLAB
session. A job is broken down into segments called tasks. You decide how best
to divide your job into tasks. You could divide your job into identical tasks,
but tasks do not have to be identical.

The MATLAB session in which the job and its tasks are defined is called the
client session. Often, this is on the machine where you program MATLAB.
The client uses Parallel Computing Toolbox software to perform the definition
of jobs and tasks. MATLAB Distributed Computing Server software is the
product that performs the execution of your job by evaluating each of its tasks
and returning the result to your client session.

The job manager is the part of the engine that coordinates the execution of
jobs and the evaluation of their tasks. The job manager distributes the tasks
for evaluation to the server’s individual MATLAB sessions called workers.
Use of the MathWorks® job manager is optional; the distribution of tasks to
workers can also be performed by a third-party scheduler, such as Microsoft®

Windows HPC Server (including CCS) or Platform LSF® schedulers.
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See the “Glossary” on page Glossary-1 for definitions of the parallel computing
terms used in this manual.
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Basic Parallel Computing Configuration

Toolbox and Server Components

• “Job Managers, Workers, and Clients” on page 6-3

• “Local Scheduler” on page 6-5

• “Third-Party Schedulers” on page 6-5

• “Components on Mixed Platforms or Heterogeneous Clusters” on page 6-7

• “mdce Service” on page 6-7

• “Components Represented in the Client” on page 6-7

Job Managers, Workers, and Clients
The job manager can be run on any machine on the network. The job manager
runs jobs in the order in which they are submitted, unless any jobs in its
queue are promoted, demoted, canceled, or destroyed.
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Each worker is given a task from the running job by the job manager, executes
the task, returns the result to the job manager, and then is given another
task. When all tasks for a running job have been assigned to workers, the job
manager starts running the next job with the next available worker.

A MATLAB Distributed Computing Server software setup usually includes
many workers that can all execute tasks simultaneously, speeding up
execution of large MATLAB jobs. It is generally not important which worker
executes a specific task. The workers evaluate tasks one at a time, returning
the results to the job manager. The job manager then returns the results of
all the tasks in the job to the client session.

Note For testing your application locally or other purposes, you can configure
a single computer as client, worker, and job manager. You can also have more
than one worker session or more than one job manager session on a machine.
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Interactions of Parallel Computing Sessions

A large network might include several job managers as well as several
client sessions. Any client session can create, run, and access jobs on any
job manager, but a worker session is registered with and dedicated to only
one job manager at a time. The following figure shows a configuration with
multiple job managers.

6-4



How Parallel Computing Products Run a Job

������

�	
��


�	
��


�	
��


������

�������

	


�	��������


�	
��


�	
��


�	
��


������

������

�������

	


�	��������


Configuration with Multiple Clients and Job Managers

Local Scheduler
A feature of Parallel Computing Toolbox software is the ability to run a local
scheduler and up to twelve workers on the client machine, so that you can run
distributed and parallel jobs without requiring a remote cluster or MATLAB
Distributed Computing Server software. In this case, all the processing
required for the client, scheduling, and task evaluation is performed on the
same computer. This gives you the opportunity to develop, test, and debug
your distributed or parallel application before running it on your cluster.

Third-Party Schedulers
As an alternative to using the MathWorks job manager, you can use a
third-party scheduler. This could be a Microsoft Windows HPC Server
(including CCS), Platform LSF scheduler, PBS Pro® scheduler, TORQUE
scheduler, mpiexec, or a generic scheduler.

Choosing Between a Third-Party Scheduler and Job Manager.
You should consider the following when deciding to use a scheduler or the
MathWorks job manager for distributing your tasks:

• Does your cluster already have a scheduler?
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If you already have a scheduler, you may be required to use it as a means
of controlling access to the cluster. Your existing scheduler might be just
as easy to use as a job manager, so there might be no need for the extra
administration involved.

• Is the handling of parallel computing jobs the only cluster scheduling
management you need?

The MathWorks job manager is designed specifically for MathWorks
parallel computing applications. If other scheduling tasks are not needed, a
third-party scheduler might not offer any advantages.

• Is there a file sharing configuration on your cluster already?

The MathWorks job manager can handle all file and data sharing
necessary for your parallel computing applications. This might be helpful
in configurations where shared access is limited.

• Are you interested in batch mode or managed interactive processing?

When you use a job manager, worker processes usually remain running at
all times, dedicated to their job manager. With a third-party scheduler,
workers are run as applications that are started for the evaluation of tasks,
and stopped when their tasks are complete. If tasks are small or take little
time, starting a worker for each one might involve too much overhead time.

• Are there security concerns?

Your own scheduler may be configured to accommodate your particular
security requirements.

• How many nodes are on your cluster?

If you have a large cluster, you probably already have a scheduler. Consult
your MathWorks representative if you have questions about cluster size
and the job manager.

• Who administers your cluster?

The person administering your cluster might have a preference for how
jobs are scheduled.

• Do you need to monitor your job’s progress or access intermediate data?

A job run by the job manager supports events and callbacks, so that
particular functions can run as each job and task progresses from one state
to another.
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Components on Mixed Platforms or Heterogeneous Clusters
Parallel Computing Toolbox software and MATLAB Distributed
Computing Server software are supported on Windows®, UNIX®, and
Macintosh® operating systems. Mixed platforms are supported, so that
the clients, job managers, and workers do not have to be on the
same platform. The cluster can also be comprised of both 32-bit and
64-bit machines, so long as your data does not exceed the limitations
posed by the 32-bit systems. Other limitations are described at
http://www.mathworks.com/products/parallel-computing/requirements.html.

In a mixed-platform environment, system administrators should be sure to
follow the proper installation instructions for the local machine on which you
are installing the software.

mdce Service
If you are using the MathWorks job manager, every machine that hosts a
worker or job manager session must also run the mdce service.

The mdce service controls the worker and job manager sessions and recovers
them when their host machines crash. If a worker or job manager machine
crashes, when the mdce service starts up again (usually configured to start
at machine boot time), it automatically restarts the job manager and worker
sessions to resume their sessions from before the system crash. These
processes are covered more fully in the MATLAB Distributed Computing
Server System Administrator’s Guide.

Components Represented in the Client
A client session communicates with the job manager by calling methods and
configuring properties of a job manager object. Though not often necessary,
the client session can also access information about a worker session through
a worker object.

When you create a job in the client session, the job actually exists in the job
manager or in the scheduler’s data location. The client session has access to
the job through a job object. Likewise, tasks that you define for a job in the
client session exist in the job manager or in the scheduler’s data location, and
you access them through task objects.
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Life Cycle of a Job
When you create and run a job, it progresses through a number of stages.
Each stage of a job is reflected in the value of the job object’s State property,
which can be pending, queued, running, or finished. Each of these stages
is briefly described in this section.

The figure below illustrated the stages in the life cycle of a job. In the
job manager, the jobs are shown categorized by their state. Some of
the functions you use for managing a job are createJob, submit, and
getAllOutputArguments.
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Stages of a Job

The following table describes each stage in the life cycle of a job.

Job Stage Description

Pending You create a job on the scheduler with the createJob
function in your client session of Parallel Computing
Toolbox software. The job’s first state is pending. This
is when you define the job by adding tasks to it.

Queued When you execute the submit function on a job, the
scheduler places the job in the queue, and the job’s
state is queued. The scheduler executes jobs in the
queue in the sequence in which they are submitted, all
jobs moving up the queue as the jobs before them are
finished. You can change the order of the jobs in the
queue with the promote and demote functions.
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Job Stage Description

Running When a job reaches the top of the queue, the scheduler
distributes the job’s tasks to worker sessions for
evaluation. The job’s state is running. If more workers
are available than necessary for a job’s tasks, the
scheduler begins executing the next job. In this way,
there can be more than one job running at a time.

Finished When all of a job’s tasks have been evaluated, a job is
moved to the finished state. At this time, you can
retrieve the results from all the tasks in the job with the
function getAllOutputArguments.

Failed When using a third-party scheduler, a job might fail if
the scheduler encounters an error when attempting to
execute its commands or access necessary files.

Destroyed When a job’s data has been removed from its data
location or from the job manager, the state of the job in
the client is destroyed. This state is available only as
long as the job object remains in the client.

Note that when a job is finished, it remains in the job manager or
DataLocation directory, even if you clear all the objects from the client
session. The job manager or scheduler keeps all the jobs it has executed, until
you restart the job manager in a clean state. Therefore, you can retrieve
information from a job at a later time or in another client session, so long as
the job manager has not been restarted with the -clean option.

To permanently remove completed jobs from the job manager or scheduler’s
data location, use the destroy function.
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Create Simple Distributed Jobs

In this section...

“Evaluate a Basic Function” on page 6-10

“Program a Basic Job with a Local Scheduler” on page 6-10

“Getting Help” on page 6-12

Evaluate a Basic Function
The dfeval function allows you to evaluate a function in a cluster of workers
without having to individually define jobs and tasks yourself. When you can
divide your job into similar tasks, using dfeval might be an appropriate
way to run your job. The following code uses a local scheduler on your client
computer for dfeval.

results = dfeval(@sum, {[1 1] [2 2] [3 3]}, 'Configuration', 'local')

results =

[2]

[4]

[6]

This example runs the job as three tasks in three separate MATLAB worker
sessions, reporting the results back to the session from which you ran dfeval.

For more information about dfeval and in what circumstances you can use it,
see Chapter 7, “Evaluate Functions in a Cluster”.

Program a Basic Job with a Local Scheduler
In some situations, you might need to define the individual tasks of a job,
perhaps because they might evaluate different functions or have uniquely
structured arguments. To program a job like this, the typical Parallel
Computing Toolbox client session includes the steps shown in the following
example.

This example illustrates the basic steps in creating and running a job that
contains a few simple tasks. Each task evaluates the sum function for an
input array.
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1 Identify a scheduler. Use findResource to indicate that you are using the
local scheduler and create the object sched, which represents the scheduler.
(For more information, see “Find a Job Manager” on page 8-8 or “Create
and Run Jobs” on page 8-21.)

sched = findResource('scheduler', 'type', 'local')

2 Create a job. Create job j on the scheduler. (For more information, see
“Create a Job” on page 8-10.)

j = createJob(sched)

3 Create three tasks within the job j. Each task evaluates the sum of the
array that is passed as an input argument. (For more information, see
“Create Tasks” on page 8-12.)

createTask(j, @sum, 1, {[1 1]})
createTask(j, @sum, 1, {[2 2]})
createTask(j, @sum, 1, {[3 3]})

4 Submit the job to the scheduler queue for evaluation. The scheduler then
distributes the job’s tasks to MATLAB workers that are available for
evaluating. The local scheduler actually starts a MATLAB worker session
for each task, up to twelve at one time. (For more information, see “Submit
a Job to the Job Queue” on page 8-13.)

submit(j);

5 Wait for the job to complete, then get the results from all the tasks of the
job. (For more information, see “Retrieve the Job’s Results” on page 8-14.)

waitForState(j)
results = getAllOutputArguments(j)
results =

[2]
[4]
[6]

6 Destroy the job. When you have the results, you can permanently remove
the job from the scheduler’s data location.

destroy(j)

6-11



6 Programming Overview

Getting Help

• “Command-Line Help” on page 6-12

• “Help Browser” on page 6-13

Command-Line Help
You can get command-line help on the toolbox object functions by using the
syntax

help distcomp.objectType/functionName

For example, to get command-line help on the createTask function, type

help distcomp.job/createTask

The available choices for objectType are listed in the Chapter 11, “Object
Reference”.

List Available Functions. To find the functions available for each type of
object, type

methods(obj)

where obj is an object of one of the available types.

For example, to see the functions available for job manager objects, type

jm = findResource('scheduler','type','jobmanager');
methods(jm)

To see the functions available for job objects, type

job1 = createJob(jm)
methods(job1)

To see the functions available for task objects, type

task1 = createTask(job1,1,@rand,{3})
methods(task1)
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Help Browser
You can open the Help browser with the doc command. To open the browser
on a specific reference page for a function or property, type

doc distcomp/RefName

where RefName is the name of the function or property whose reference page
you want to read.

For example, to open the Help browser on the reference page for the
createJob function, type

doc distcomp/createJob

To open the Help browser on the reference page for the UserData property,
type

doc distcomp/UserData
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Parallel Configurations for Cluster Access

In this section...

“Defining Configurations” on page 6-14

“Exporting and Importing Configurations” on page 6-21

“Validate Configurations” on page 6-22

“Applying Configurations in Client Code” on page 6-25

Defining Configurations
Configurations allow you to define certain parameters and properties, then
have your settings applied when creating objects in the MATLAB client. The
functions that support the use of configurations are

• batch (also supports default configuration)

• createJob (also supports default configuration)

• createMatlabPoolJob (also supports default configuration)

• createParallelJob (also supports default configuration)

• createTask

• dfeval

• dfevalasync

• findResource

• matlabpool (also supports default configuration)

• pmode (also supports default configuration)

• set
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You create and modify configurations through the Configurations Manager.
You access the Configurations Manager using the Parallel pull-down menu
on the MATLAB desktop. Select Parallel > Manage Configurations to
open the Configurations Manger.

The first time you open the Configurations Manager, it lists only one
configuration called local, which at first is the default configuration and has
only default settings.

The following example provides instructions on how to create and modify
configurations using the Configurations Manager and its menus and dialog
boxes.

Example — Creating and Modifying User Configurations
Suppose you want to create a configuration to set several properties for some
jobs being run by a job manager.
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1 In the Configurations Manager, select New > jobmanager. This specifies
that you want a new configuration whose type of scheduler is a job manager.

This opens a new Job Manager Configuration Properties dialog box.
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2 Enter a configuration name MyJMconfig1 and a description as shown in
the following figure. In the Scheduler tab, enter the host name for the
machine on which the job manager is running and the name of the job
manager. If you are entering information for an actual job manager already
running on your network, enter the appropriate text. If you are unsure
about job manager names and locations on your network, ask your system
administrator for help.

Note Fields that indicate “Unset” or that you leave empty, have no effect
on their property values. For those properties, the configuration does not
alter the values that you had set programmatically before applying the
configuration.
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3 In the Jobs tab, enter 4 and 4 for the maximum and minimum number of
workers. This specifies that for jobs using this configuration, they require
at least four workers and use no more than four workers. Therefore, the
job runs on exactly four workers, even if it has to wait until four workers
are available before starting.

4 Click OK to save the configuration and close the dialog box. Your new
configuration now appears in the Configurations Manager listing.
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5 To create a similar configuration with just a few differences, you can
duplicate an existing configuration and modify only the parts you need to
change:

a In the Configurations Manager, right-click the configuration
MyJMconfig1 in the list and select Duplicate.

The duplicate configuration is created with a default name using the
original name along with the extension .copy1.

b Double-click the new configuration to open its properties dialog.

c Change the name of the new configuration to MyJMconfig2.

d Edit the description field to change its text to My job manager and any
workers.
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6 Select the Jobs tab. Remove the 4 from each of the fields for minimum and
maximum workers.

7 Click OK to save the configuration and close the properties dialog.

You now have two configurations that differ only in the number of workers
required for running a job.

6-20



Parallel Configurations for Cluster Access

After creating a job, you can apply either configuration to that job as a way
of specifying how many workers it should run on.

Exporting and Importing Configurations
Parallel configurations are stored as part of your MATLAB preferences, so
they are generally available on an individual user basis. To make a parallel
configuration available to someone else, you can export it to a separate .mat
file. In this way, a repository of configurations can be created so that all users
of a computing cluster can share common configurations.

To export a parallel configuration:

1 In the Configurations Manager, select (highlight) the configuration you
want to export.

2 Click File > Export. (Alternatively, you can right-click the configuration
in the listing and select Export.)

3 In the Export Configuration dialog box, specify a location and name for the
file. The default file name is the same as the name of the configuration it
contains, with a .mat extension appended; these do not need to be the
same, so you can alter the names if you want to.
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Configurations saved in this way can then be imported by other MATLAB
software users:

1 In the Configuration Manager, click File > Import.

2 In the Import Configuration dialog box, browse to find the .mat file for the
configuration you want to import. Select the file and click Import.

The imported configuration appears in your Configurations Manager list.
Note that the list contains the configuration name, which is not necessarily
the file name. If you already have a configuration with the same name as
the one you are importing, the imported configuration gets an extension
added to its name so you can distinguish it.

You can also import configurations programmatically with the
importParallelConfig function. For details and examples, see the
importParallelConfig reference page.

Export Configurations for MATLAB Compiler
You can use an exported configuration with MATLAB Compiler to identify
cluster setup information for running compiled applications on a cluster. For
example, the setmcruserdata function can use the exported configuration
file name to set the value for the key ParallelConfigurationFile. For more
information and examples of deploying parallel applications, see “Deploying
Applications Created Using Parallel Computing Toolbox” in the MATLAB
Compiler documentation.

A compiled application has the same default configuration and the same list of
alternative configurations that the compiling user had when the application
was compiled. This means that in many cases the configuration file is not
needed, as might be the case when using the local configuration for local
workers. If an exported file is used, the configuration in the file becomes the
default, and overwrites any existing configuration with the same name. The
other alternative configurations are still available.

Validate Configurations
The Configurations Manager includes a tool for validating configurations.
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To validate a configuration, follow these steps:

1 Open the Configurations Manager by selecting on the desktop
Parallel > Manage Configurations.

2 In the Configurations Manager, click the name of the configuration you
want to test in the list of those available. Note that you can highlight a
configuration this way without changing the selected default configuration.
So a configuration selected for validation does not need to be your default
configuration.

3 Click Start Validation.

The Configuration Validation tool attempts four operations to validate the
chosen configuration:

• Uses findResource to locate the scheduler

• Runs a distributed job using the configuration

• Runs a parallel job using the configuration

• Runs a MATLAB pool job using the configuration

While the tests are running, the Configurations Manager displays their
progress as shown here.
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You can adjust the timeout allowed for each stage of the testing. If your
cluster does not have enough workers available to perform the validation, the
test times out and returns a failure.

Note You cannot run a configuration validation if you have a MATLAB pool
open.

The configuration listing displays the overall validation result for each
configuration. The following figure shows overall validation results for one
configuration that passed and one that failed. The selected configuration
is the one that failed.

Note When using an mpiexec scheduler, a failure is expected for the
Distributed Job stage. It is normal for the test then to proceed to the
Parallel Job and Matlabpool stages.

For each stage of the validation testing, you can click Details to get more
information about that stage. This information includes any error messages,
debug logs, and other data that might be useful in diagnosing problems or
helping to determine proper configuration or network settings.

The Configuration Validation tool keeps the test results available until the
current MATLAB session closes.
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Applying Configurations in Client Code
In the MATLAB client where you create and define your parallel computing
objects, you can use configurations when creating the objects, or you can
apply configurations to objects that already exist.

Selecting a Default Configuration
Some functions support default configurations, so that if you do not specify a
configuration for them to use, they automatically apply the default. There
are several ways to specify which of your configurations should be used as the
default configuration:

• In the MATLAB desktop, click Parallel > Select Configuration, and
from there, all your configurations are available. The current default
configuration appears with a dot next to it. You can select any configuration
on the list as the default.

• In the Configurations Manager, the Default column indicates with a radio
button which configuration is currently the default configuration. You can
click any other button in this column to change the default configuration.

• You can get or set the default configuration programmatically by using the
defaultParallelConfig function. The following sets of commands achieve
the same thing:

defaultParallelConfig('MyJMconfig1')
matlabpool open

matlabpool open MyJMconfig1

Finding Schedulers
When executing the findResource function, you can use configurations to
identify a particular scheduler and apply property values. For example,

jm = findResource('scheduler', 'Configuration', 'our_jobmanager')

This command finds the scheduler defined by the settings of the configuration
named our_jobmanager and sets property values on the scheduler object
based on settings in the configuration. The advantage of configurations is
that you can alter your scheduler choices without changing your MATLAB
application code, merely by changing the configuration settings
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For a third-party scheduler such as Platform LSF, the command might look
like

lsfsched = findResource('scheduler', 'Configuration', 'my_lsf_config');

Creating Jobs
Because the properties of scheduler, job, and task objects can be defined in a
configuration, you do not have to define them in your application. Therefore,
the code itself can accommodate any type of scheduler. For example,

job1 = createJob(sched, 'Configuration', 'MyConfig');

The configuration defined as MyConfig must define any and all properties
necessary and appropriate for your scheduler and configuration, and the
configuration must not include any parameters inconsistent with your setup.
All changes necessary to use a different scheduler can now be made in the
configuration, without any modification needed in the application.

Setting Job and Task Properties
You can set the properties of a job or task with configurations when you create
the objects, or you can apply a configuration after you create the object. The
following code creates and configures two jobs with the same property values.

job1 = createJob(jm, 'Configuration', 'our_jobmanager_config')
job2 = createJob(jm)
set(job2, 'Configuration', 'our_jobmanager_config')

Notice that the Configuration property of a job indicates the configuration
that was applied to the job.

get(job1, 'Configuration')
our_jobmanager_config

When you apply a configuration to an object, all the properties defined in
that configuration get applied to the object, and the object’s Configuration
property is set to reflect the name of the configuration that you applied. If
you later directly change any of the object’s individual properties, the object’s
Configuration property is cleared.
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Job Monitor

In this section...

“Job Monitor GUI” on page 6-27

“Manage Jobs Using the Job Monitor” on page 6-28

“Identify Task Errors Using the Job Monitor” on page 6-29

Job Monitor GUI
The Job Monitor displays the jobs in the queue for the scheduler determined
by your selection of a parallel configuration. Open the Job Monitor from the
MATLAB desktop by selecting Parallel > Job Monitor.

The job monitor lists all the jobs that exist for the scheduler specified in the
selected configuration. You can choose any one of your configurations (those
available in your current session Configurations Manager), and whether to
display jobs from all users or only your own jobs.
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Typical Use Cases
The Job Monitor lets you accomplish many different goals pertaining to job
tracking and queue management. Using the Job Monitor, you can:

• Discover and monitor all jobs submitted by a particular user

• Determine the status of a job

• Determine the cause of errors in a job

• Clean up old jobs you no longer need

• Create a job object for access to a job in the queue

Manage Jobs Using the Job Monitor
Using the Job Monitor you can manage the listed jobs for your scheduler.
Right-click on any job in the list, and select any of the following options from
the context menu:

• Cancel— Stops a running job and changes its state to 'finished'. If the
job is pending or queued, the state changes to 'finished' without its ever
running. This is the same as the command-line cancel function for the job.

• Destroy — Deletes the jobs data and removes it from the queue. This is
the same as the command-line destroy function for the job.

• Assign Job to Workspace — This creates a job object in the MATLAB
workspace so that you can access the job and its properties from the
command line. This is accomplished by the findJob command, which is
reflected in the command window.

• Show Errors — This displays all the tasks that generated an error in
that job, with their error properties.
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Identify Task Errors Using the Job Monitor
Because the Job Monitor indicates if a job had a run-time error, you can use it
to identify the tasks that generated the errors in that job. For example, the
following script generates an error because it attempts to perform a matrix
inverse on a vector:

A = [2 4 6 8];
B = inv(A);

If you save this script in a file named invert_me.m, you can try to run the
script as a batch job:

defaultParallelConfiguration('local')
batch('invert_me')

When updated after the job runs, the Job Monitor includes the job created by
the batch command, with an error icon ( ) for this job. Right-click the job
in the list, and select Show Errors. For all the tasks with an error in that
job, the task information, including properties related to the error, display
in the MATLAB command window:

Task ID 1 from Job ID 2 Information

===================================

State : finished

Function : @parallel.internal.cluster.executeScript

StartTime : Tue Jun 28 11:46:28 EDT 2011

Running Duration : 0 days 0h 0m 1s

- Task Result Properties

ErrorIdentifier : MATLAB:square

ErrorMessage : Matrix must be square.

Error Stack : invert_me.m at 2

: executeScript.m at 24
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Programming Tips

In this section...

“Program Development Guidelines” on page 6-30

“Current Working Directory of a MATLAB Worker” on page 6-31

“Writing to Files from Workers” on page 6-32

“Saving or Sending Objects” on page 6-32

“Using clear functions” on page 6-33

“Running Tasks That Call Simulink Software” on page 6-33

“Using the pause Function” on page 6-33

“Transmitting Large Amounts of Data” on page 6-33

“Interrupting a Job” on page 6-33

“Speeding Up a Job” on page 6-34

Program Development Guidelines
When writing code for Parallel Computing Toolbox software, you should
advance one step at a time in the complexity of your application. Verifying
your program at each step prevents your having to debug several potential
problems simultaneously. If you run into any problems at any step along the
way, back up to the previous step and reverify your code.

The recommended programming practice for distributed or parallel computing
applications is

1 Run code normally on your local machine. First verify all your
functions so that as you progress, you are not trying to debug the functions
and the distribution at the same time. Run your functions in a single
instance of MATLAB software on your local computer. For programming
suggestions, see “Techniques for Improving Performance” in the MATLAB
documentation.

2 Decide whether you need a distributed or parallel job. If your
application involves large data sets on which you need simultaneous
calculations performed, you might benefit from a parallel job with

6-30



Programming Tips

distributed arrays. If your application involves looped or repetitive
calculations that can be performed independently of each other, a
distributed job might be appropriate.

3 Modify your code for division. Decide how you want your code divided.
For a distributed job, determine how best to divide it into tasks; for
example, each iteration of a for-loop might define one task. For a parallel
job, determine how best to take advantage of parallel processing; for
example, a large array can be distributed across all your labs.

4 Use pmode to develop parallel functionality. Use pmode with the local
scheduler to develop your functions on several workers (labs) in parallel.
As you progress and use pmode on the remote cluster, that might be all you
need to complete your work.

5 Run the distributed or parallel job with a local scheduler. Create a
parallel or distributed job, and run the job using the local scheduler with
several local workers. This verifies that your code is correctly set up for
batch execution, and in the case of a distributed job, that its computations
are properly divided into tasks.

6 Run the distributed job on only one cluster node. Run your
distributed job with one task to verify that remote distribution is
working between your client and the cluster, and to verify file and path
dependencies.

7 Run the distributed or parallel job on multiple cluster nodes. Scale
up your job to include as many tasks as you need for a distributed job, or as
many workers (labs) as you need for a parallel job.

Note The client session of MATLAB must be running the Java™ Virtual
Machine (JVM™) to use Parallel Computing Toolbox software. Do not start
MATLAB with the -nojvm flag.

Current Working Directory of a MATLAB Worker
The current directory of a MATLAB worker at the beginning of its session is

CHECKPOINTBASE\HOSTNAME_WORKERNAME_mlworker_log\work
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where CHECKPOINTBASE is defined in the mdce_def file, HOSTNAME is the name
of the node on which the worker is running, and WORKERNAME is the name of
the MATLAB worker session.

For example, if the worker named worker22 is running on host nodeA52, and
its CHECKPOINTBASE value is C:\TEMP\MDCE\Checkpoint, the starting current
directory for that worker session is

C:\TEMP\MDCE\Checkpoint\nodeA52_worker22_mlworker_log\work

Writing to Files from Workers
When multiple workers attempt to write to the same file, you might end up
with a race condition, clash, or one worker might overwrite the data from
another worker. This might be likely to occur when:

• There is more than one worker per machine, and they attempt to write
to the same file.

• The workers have a shared file system, and use the same path to identify a
file for writing.

In some cases an error can result, but sometimes the overwriting can occur
without error. To avoid an issue, be sure that each worker or parfor iteration
has unique access to any files it writes or saves data to. There is no problem
when multiple workers read from the same file.

Saving or Sending Objects
Do not use the save or load function on Parallel Computing Toolbox objects.
Some of the information that these objects require is stored in the MATLAB
session persistent memory and would not be saved to a file.

Similarly, you cannot send a parallel computing object between parallel
computing processes by means of an object’s properties. For example, you
cannot pass a job manager, job, task, or worker object to MATLAB workers
as part of a job’s JobData property.

Also, system objects (e.g., Java classes, .NET classes, shared libraries, etc.)
that are loaded, imported, or added to the Java search path in the MATLAB
client, are not available on the workers unless explicitly loaded, imported, or

6-32



Programming Tips

added on the workers. Other than in the task function code, typical ways of
loading these objects might be in taskStartup, jobStartup, and in the case
of workers in a MATLAB pool, in poolStartup and using pctRunOnAll.

Using clear functions
Executing

clear functions

clears all Parallel Computing Toolbox objects from the current MATLAB
session. They still remain in the job manager. For information on recreating
these objects in the client session, see “Recover Objects” on page 8-18.

Running Tasks That Call Simulink Software
The first task that runs on a worker session that uses Simulink software
can take a long time to run, as Simulink is not automatically started at the
beginning of the worker session. Instead, Simulink starts up when first
called. Subsequent tasks on that worker session will run faster, unless the
worker is restarted between tasks.

Using the pause Function
On worker sessions running on Macintosh or UNIX operating systems,
pause(inf) returns immediately, rather than pausing. This is to prevent a
worker session from hanging when an interrupt is not possible.

Transmitting Large Amounts of Data
Operations that involve transmitting many objects or large amounts of data
over the network can take a long time. For example, getting a job’s Tasks
property or the results from all of a job’s tasks can take a long time if the job
contains many tasks. See also “Object Data Size Limitations” on page 6-48.

Interrupting a Job
Because jobs and tasks are run outside the client session, you cannot use
Ctrl+C (^C) in the client session to interrupt them. To control or interrupt
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the execution of jobs and tasks, use such functions as cancel, destroy,
demote, promote, pause, and resume.

Speeding Up a Job
You might find that your code runs slower on multiple workers than it does
on one desktop computer. This can occur when task startup and stop time
is not negligible relative to the task run time. The most common mistake in
this regard is to make the tasks too small, i.e., too fine-grained. Another
common mistake is to send large amounts of input or output data with each
task. In both of these cases, the time it takes to transfer data and initialize
a task is far greater than the actual time it takes for the worker to evaluate
the task function.

6-34



Profiling Parallel Code

Profiling Parallel Code

In this section...

“Introduction” on page 6-35

“Collecting Parallel Profile Data” on page 6-35

“Viewing Parallel Profile Data” on page 6-36

“Parallel Profiler Demos” on page 6-45

Introduction
The parallel profiler provides an extension of the profile command and the
profile viewer specifically for parallel jobs, to enable you to see how much time
each lab spends evaluating each function and how much time communicating
or waiting for communications with the other labs. Before using the parallel
profiler, familiarize yourself with the standard profiler and its views, as
described in “Profiling for Improving Performance”.

Note The parallel profiler works on parallel jobs, including inside pmode. It
does not work on parfor-loops.

Collecting Parallel Profile Data
For parallel profiling, you use the mpiprofile command within your parallel
job (often within pmode) in a similar way to how you use profile.

To turn on the parallel profiler to start collecting data, enter the following
line in your parallel job task code file, or type at the pmode prompt in the
Parallel Command Window:

mpiprofile on

Now the profiler is collecting information about the execution of code on each
lab and the communications between the labs. Such information includes:

• Execution time of each function on each lab

• Execution time of each line of code in each function
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• Amount of data transferred between each lab

• Amount of time each lab spends waiting for communications

With the parallel profiler on, you can proceed to execute your code while the
profiler collects the data.

In the pmode Parallel Command Window, to find out if the profiler is on, type:

P>> mpiprofile status

For a complete list of options regarding profiler data details, clearing data,
etc., see the mpiprofile reference page.

Viewing Parallel Profile Data
To open the parallel profile viewer from pmode, type in the Parallel Command
Window:

P>> mpiprofile viewer

The remainder of this section is an example that illustrates some of the
features of the parallel profile viewer. This example executes in a pmode
session running on four local labs. Initiate pmode by typing in the MATLAB
Command Window:

pmode start local 4

When the Parallel Command Window (pmode) starts, type the following code
at the pmode prompt:

P>> R1 = rand(16, codistributor())
P>> R2 = rand(16, codistributor())
P>> mpiprofile on
P>> P = R1*R2
P>> mpiprofile off
P>> mpiprofile viewer
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The last command opens the Profiler window, first showing the Parallel
Profile Summary (or function summary report) for lab 1.

The function summary report displays the data for each function executed on
a lab in sortable columns with the following headers:

Column Header Description

Calls How many times the function was called on this lab

Total Time The total amount of time this lab spent executing this
function

Self Time The time this lab spent inside this function, not within
children or subfunctions

Total CommTime The total time this lab spent transferring data with
other labs, including waiting time to receive data

Self Comm
Waiting Time

The time this lab spent during this function waiting to
receive data from other labs
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Column Header Description

Total Interlab
Data

The amount of data transferred to and from this lab
for this function

Computation
Time Ratio

The ratio of time spent in computation for this function
vs. total time (which includes communication time) for
this function

Total Time Plot Bar graph showing relative size of Self Time, Self
Comm Waiting Time, and Total Time for this function
on this lab
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Click the name of any function in the list for more details about the execution
of that function. The function detail report for codistributed.mtimes
includes this listing:

The code that is displayed in the report is taken from the client. If the code
has changed on the client since the parallel job ran on the labs, or if the
labs are running a different version of the functions, the display might not
accurately reflect what actually executed.

You can display information for each lab, or use the comparison controls to
display information for several labs simultaneously. Two buttons provide
Automatic Comparison Selection, allowing you to compare the data from
the labs that took the most versus the least amount of time to execute the code,
or data from the labs that spent the most versus the least amount of time in
performing interlab communication. Manual Comparison Selection allows
you to compare data from specific labs or labs that meet certain criteria.
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The following listing from the summary report shows the result of using
the Automatic Comparison Selection of Compare (max vs. min
TotalTime). The comparison shows data from lab 3 compared to lab 1
because these are the labs that spend the most versus least amount of time
executing the code.
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The following figure shows a summary of all the functions executed during the
profile collection time. The Manual Comparison Selection of max Time
Aggregate means that data is considered from all the labs for all functions to
determine which lab spent the maximum time on each function. Next to each
function’s name is the lab that took the longest time to execute that function.
The other columns list the data from that lab.
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The next figure shows a summary report for the labs that spend the most
versus least time for each function. A Manual Comparison Selection of
max Time Aggregate against min Time >0 Aggregate generated this
summary. Both aggregate settings indicate that the profiler should consider
data from all labs for all functions, for both maximum and minimum. This
report lists the data for codistributed.mtimes from labs 3 and 1, because
they spent the maximum and minimum times on this function. Similarly,
other functions are listed.
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Click on a function name in the summary listing of a comparison to get a
detailed comparison. The detailed comparison for codistributed.mtimes
looks like this, displaying line-by-line data from both labs:
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To see plots of communication data, select Plot All PerLab Communication
in the Show Figures menu. The top portion of the plot view report plots how
much data each lab receives from each other lab for all functions.
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To see only a plot of interlab communication times, select Plot
CommTimePerLab in the Show Figures menu.

Plots like those in the previous two figures can help you determine the best
way to balance work among your labs, perhaps by altering the partition
scheme of your codistributed arrays.

Parallel Profiler Demos
To see demos that show further usage of the parallel profiler
for work load distribution and balancing, use the help browser
to access the Parallel Profiler Demos in Parallel Computing
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Toolbox > Demos. Demos are also available on the Web at
http://www.mathworks.com/products/parallel-computing/demos.html.
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Benchmarking Performance

In this section...

“Demos” on page 6-47

“HPC Challenge Benchmarks” on page 6-47

Demos
Several benchmarking demos can help you understand and evaluate
performance of the parallel computing products. You can access these demos
in the Help Browser under the Parallel Computing Toolbox node: expand
the node for Demos then Benchmarks.

HPC Challenge Benchmarks
Several MATLAB files are available to demonstrate HPC Challenge
benchmark performance. You can find the files in the folder
matlabroot/toolbox/distcomp/examples/benchmark/hpcchallenge. Each
file is self-documented with explanatory comments. These files are not
self-contained demos, but rather require that you know enough about your
cluster to be able to provide the necessary information when using these files.
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Troubleshooting and Debugging

In this section...

“Object Data Size Limitations” on page 6-48

“File Access and Permissions” on page 6-48

“No Results or Failed Job” on page 6-50

“Connection Problems Between the Client and Job Manager” on page 6-51

“SFTP Error: Received Message Too Long” on page 6-52

Object Data Size Limitations
The size limit of data transfers among the parallel computing objects is
limited by the Java Virtual Machine (JVM) memory allocation. This limit
applies to single transfers of data between client and workers in any job using
a job manager as a scheduler, or in any parfor-loop. The approximate size
limitation depends on your system architecture:

System
Architecture

Maximum Data Size Per Transfer (approx.)

64-bit 2.0 GB

32-bit 600 MB

File Access and Permissions

Ensuring That Workers on Windows Operating Systems Can
Access Files
By default, a worker on a Windows operating system is installed as a service
running as LocalSystem, so it does not have access to mapped network drives.

Often a network is configured to not allow services running as LocalSystem
to access UNC or mapped network shares. In this case, you must run the
mdce service under a different user with rights to log on as a service. See the
section “Setting the User” in the MATLAB Distributed Computing Server
System Administrator’s Guide.
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Task Function Is Unavailable
If a worker cannot find the task function, it returns the error message

Error using ==> feval
Undefined command/function 'function_name'.

The worker that ran the task did not have access to the function
function_name. One solution is to make sure the location of the function’s
file, function_name.m, is included in the job’s PathDependencies property.
Another solution is to transfer the function file to the worker by adding
function_name.m to the FileDependencies property of the job.

Load and Save Errors
If a worker cannot save or load a file, you might see the error messages

??? Error using ==> save
Unable to write file myfile.mat: permission denied.
??? Error using ==> load
Unable to read file myfile.mat: No such file or directory.

In determining the cause of this error, consider the following questions:

• What is the worker’s current directory?

• Can the worker find the file or directory?

• What user is the worker running as?

• Does the worker have permission to read or write the file in question?

Tasks or Jobs Remain in Queued State
A job or task might get stuck in the queued state. To investigate the cause of
this problem, look for the scheduler’s logs:

• Platform LSF schedulers might send e-mails with error messages.

• Windows HPC Server (including CCS), LSF®, PBS Pro, TORQUE, and
mpiexec save output messages in a debug log. See the getDebugLog
reference page.
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• If using a generic scheduler, make sure the submit function redirects error
messages to a log file.

Possible causes of the problem are

• The MATLAB worker failed to start due to licensing errors, the executable
is not on the default path on the worker machine, or is not installed in the
location where the scheduler expected it to be.

• MATLAB could not read/write the job input/output files in the scheduler’s
data location. The data location may not be accessible to all the worker
nodes, or the user that MATLAB runs as does not have permission to
read/write the job files.

• If using a generic scheduler

- The environment variable MDCE_DECODE_FUNCTION was not defined
before the MATLAB worker started.

- The decode function was not on the worker’s path.

• If using mpiexec

- The passphrase to smpd was incorrect or missing.

- The smpd daemon was not running on all the specified machines.

No Results or Failed Job

Task Errors
If your job returned no results (i.e., getAllOutputArguments(job) returns an
empty cell array), it is probable that the job failed and some of its tasks have
their ErrorMessage and ErrorIdentifier properties set.

You can use the following code to identify tasks with error messages:

errmsgs = get(yourjob.Tasks, {'ErrorMessage'});
nonempty = ~cellfun(@isempty, errmsgs);
celldisp(errmsgs(nonempty));

This code displays the nonempty error messages of the tasks found in the job
object yourjob.
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Debug Logs
If you are using a supported third-party scheduler, you can use the
getDebugLog function to read the debug log from the scheduler for a particular
job or task.

For example, find the failed job on your LSF scheduler, and read its debug log.

sched = findResource('scheduler', 'type', 'lsf')
failedjob = findJob(sched, 'State', 'failed');
message = getDebugLog(sched, failedjob(1))

Connection Problems Between the Client and Job
Manager
For testing connectivity between the client machine and the machines of
your compute cluster, you can use Admin Center. For more information
about Admin Center, including how to start it and how to test connectivity,
see “Admin Center” in the MATLAB Distributed Computing Server
documentation.

Detailed instructions for other methods of diagnosing connection problems
between the client and job manager can be found in some of the Bug Reports
listed on the MathWorks Web site.

The following sections can help you identify the general nature of some
connection problems.

Client Cannot See the Job Manager
If you cannot locate your job manager with

findResource('scheduler','type','jobmanager')

the most likely reasons for this failure are

• The client cannot contact the job manager host via multicast. Try to fully
specify where to look for the job manager by using the LookupURL property
in your call to findResource:

findResource('scheduler','type','jobmanager', ...
'LookupURL','JobMgrHostName')
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• The job manager is currently not running.

• Firewalls do not allow traffic from the client to the job manager.

• The client and the job manager are not running the same version of the
software.

• The client and the job manager cannot resolve each other’s short hostnames.

Job Manager Cannot See the Client
If findResource displays a warning message that the job manager cannot
open a TCP connection to the client computer, the most likely reasons for
this are

• Firewalls do not allow traffic from the job manager to the client.

• The job manager cannot resolve the short hostname of the client computer.
Use pctconfig to change the hostname that the job manager will use for
contacting the client.

SFTP Error: Received Message Too Long
The example code for generic schedulers with non-shared file systems contacts
an sftp server to handle the file transfer to and from the cluster’s file system.
This use of sftp is subject to all the normal sftp vulnerabilities. One problem
that can occur results in an error message similar to this:

Caused by:

Error using ==> RemoteClusterAccess>RemoteClusterAccess.waitForChoreToFinishOrError at 780

The following errors occurred in the

com.mathworks.toolbox.distcomp.clusteraccess.UploadFilesChore:

Could not send Job3.common.mat for job 3:

One of your shell's init files contains a command that is writing to stdout,

interfering with sftp. Access help

com.mathworks.toolbox.distcomp.remote.spi.plugin.SftpExtraBytesFromShellException:

One of your shell's init files contains a command that is writing to stdout,

interfering with sftp.

Find and wrap the command with a conditional test, such as

if ($?TERM != 0) then

if ("$TERM" != "dumb") then

/your command/
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endif

endif

: 4: Received message is too long: 1718579037

The telling symptom is the phrase "Received message is too long:"
followed by a very large number.

The sftp server starts a shell, usually bash or tcsh, to set your standard read
and write permissions appropriately before transferring files. The server
initializes the shell in the standard way, calling files like .bashrc and .cshrc.
This problem happens if your shell emits text to standard out when it starts.
That text is transferred back to the sftp client running inside MATLAB, and
is interpreted as the size of the sftp server’s response message.

To work around this error, locate the shell startup file code that is emitting
the text, and either remove it or bracket it within if statements to see if
the sftp server is starting the shell:

if ($?TERM != 0) then
if ("$TERM" != "dumb") then

/your command/
endif

endif

You can test this outside of MATLAB with a standard UNIX or Windows
sftp command-line client before trying again in MATLAB. If the problem is
not fixed, the error message persists:

> sftp yourSubmitMachine
Connecting to yourSubmitMachine...
Received message too long 1718579042

If the problem is fixed, you should see:

> sftp yourSubmitMachine
Connecting to yourSubmitMachine...
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Evaluate Functions in a
Cluster

In many cases, the tasks of a job are all the same, or there are a limited
number of different kinds of tasks in a job. Parallel Computing Toolbox
software offers a solution for these cases that alleviates you from having to
define individual tasks and jobs when evaluating a function in a cluster of
workers. The two ways of evaluating a function on a cluster are described in
the following sections:

• “Evaluate Functions Synchronously” on page 7-2

• “Evaluate Functions Asynchronously” on page 7-8
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Evaluate Functions Synchronously

In this section...

“Scope of dfeval” on page 7-2

“Arguments of dfeval” on page 7-3

“Example — Use dfeval” on page 7-4

Scope of dfeval
When you evaluate a function in a cluster of computers with dfeval, you
provide basic required information, such as the function to be evaluated,
the number of tasks to divide the job into, and the variable into which the
results are returned. Synchronous (sync) evaluation in a cluster means that
your MATLAB session is blocked until the evaluation is complete and the
results are assigned to the designated variable. So you provide the necessary
information, while Parallel Computing Toolbox software handles all the
job-related aspects of the function evaluation.

When executing the dfeval function, the toolbox performs all these steps
of running a job:

1 Finds a job manager or scheduler

2 Creates a job

3 Creates tasks in that job

4 Submits the job to the queue in the job manager or scheduler

5 Retrieves the results from the job

6 Destroys the job

By allowing the system to perform all the steps for creating and running jobs
with a single function call, you do not have access to the full flexibility offered
by Parallel Computing Toolbox software. However, this narrow functionality
meets the requirements of many straightforward applications. To focus the
scope of dfeval, the following limitations apply:
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• You can pass property values to the job object; but you cannot set any
task-specific properties, including callback functions, unless you use
configurations.

• All the tasks in the job must have the same number of input arguments.

• All the tasks in the job must have the same number of output arguments.

• If you are using a third-party scheduler instead of the job manager, you
must use configurations in your call to dfeval. See “Parallel Configurations
for Cluster Access” on page 6-14, and the reference page for dfeval.

• You do not have direct access to the job manager, job, or task objects, i.e.,
there are no objects in your MATLAB workspace to manipulate (though
you can get them using findResource and the properties of the scheduler
object). Note that dfevalasync returns a job object.

• Without access to the objects and their properties, you do not have control
over the handling of errors.

Arguments of dfeval
Suppose the function myfun accepts three input arguments, and generates two
output arguments. To run a job with four tasks that call myfun, you could type

[X, Y] = dfeval(@myfun, {a1 a2 a3 a4}, {b1 b2 b3 b4}, {c1 c2 c3 c4});

The number of elements of the input argument cell arrays determines the
number of tasks in the job. All input cell arrays must have the same number
of elements. In this example, there are four tasks.

Because myfun returns two arguments, the results of your job will be assigned
to two cell arrays, X and Y. These cell arrays will have four elements each, for
the four tasks. The first element of X will have the first output argument from
the first task, the first element of Y will have the second argument from the
first task, and so on.

The following table shows how the job is divided into tasks and where the
results are returned.
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Task Function Call Results

myfun(a1, b1, c1) X{1}, Y{1}

myfun(a2, b2, c2) X{2}, Y{2}

myfun(a3, b3, c3) X{3}, Y{3}

myfun(a4, b4, c4) X{4}, Y{4}

So using one dfeval line would be equivalent to the following code, except
that dfeval can run all the statements simultaneously on separate machines.

[X{1}, Y{1}] = myfun(a1, b1, c1);
[X{2}, Y{2}] = myfun(a2, b2, c2);
[X{3}, Y{3}] = myfun(a3, b3, c3);
[X{4}, Y{4}] = myfun(a4, b4, c4);

For further details and examples of the dfeval function, see the dfeval
reference page.

Example — Use dfeval
Suppose you have a function called averages, which returns both the mean
and median of three input values. The function might look like this.

function [mean_, median_] = averages (in1, in2, in3)
% AVERAGES Return mean and median of three input values
mean_ = mean([in1, in2, in3]);
median_ = median([in1, in2, in3]);

You can use dfeval to run this function on four sets of data using four tasks
in a single job. The input data can be represented by the four vectors,

[1 2 6]
[10 20 60]
[100 200 600]
[1000 2000 6000]
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A quick look at the first set of data tells you that its mean is 3, while its
median is 2. So,

[x,y] = averages(1,2,6)
x =

3
y =

2

When calling dfeval, its input requires that the data be grouped together
such that the first input argument to each task function is in the first cell
array argument to dfeval, all second input arguments to the task functions
are grouped in the next cell array, and so on. Because we want to evaluate
four sets of data with four tasks, each of the three cell arrays will have four
elements. In this example, the first arguments for the task functions are 1,
10, 100, and 1000. The second inputs to the task functions are 2, 20, 200, and
2000. With the task inputs arranged thus, the call to dfeval looks like this.

[A, B] = dfeval(@averages, {1 10 100 1000}, ...
{2 20 200 2000}, {6 60 600 6000}, 'jobmanager', ...
'MyJobManager', 'FileDependencies', {'averages.m'})

A =
[ 3]
[ 30]
[ 300]
[3000]

B =
[ 2]
[ 20]
[ 200]
[2000]

Notice that the first task evaluates the first element of the three cell arrays.
The results of the first task are returned as the first elements of each of the
two output values. In this case, the first task returns a mean of 3 and median
of 2. The second task returns a mean of 30 and median of 20.
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If the original function were written to accept one input vector, instead of
three input values, it might make the programming of dfeval simpler. For
example, suppose your task function were

function [mean_, median_] = avgs (V)
% AVGS Return mean and median of input vector
mean_ = mean(V);
median_ = median(V);

Now the function requires only one argument, so a call to dfeval requires
only one cell array. Furthermore, each element of that cell array can be a
vector containing all the values required for an individual task. The first
vector is sent as a single argument to the first task, the second vector to the
second task, and so on.

[A,B] = dfeval(@avgs, {[1 2 6] [10 20 60] ...
[100 200 600] [1000 2000 6000]}, 'jobmanager', ...
'MyJobManager', 'FileDependencies', {'avgs.m'})

A =
[ 3]
[ 30]
[ 300]
[3000]

B =
[ 2]
[ 20]
[ 200]
[2000]

If you cannot vectorize your function, you might have to manipulate your
data arrangement for using dfeval. Returning to our original data in this
example, suppose you want to start with data in three vectors.

v1 = [1 2 6];
v2 = [10 20 60];
v3 = [100 200 600];
v4 = [1000 2000 6000];
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First put all your data in a single matrix.

dataset = [v1; v2; v3; v4]
dataset =

1 2 6
10 20 60

100 200 600
1000 2000 6000

Then make cell arrays containing the elements in each column.

c1 = num2cell(dataset(:,1));
c2 = num2cell(dataset(:,2));
c3 = num2cell(dataset(:,3));

Now you can use these cell arrays as your input arguments for dfeval.

[A, B] = dfeval(@averages, c1, c2, c3, 'jobmanager', ...
'MyJobManager', 'FileDependencies', {'averages.m'})

A =
[ 3]
[ 30]
[ 300]
[3000]

B =
[ 2]
[ 20]
[ 200]
[2000]
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Evaluate Functions Asynchronously
The dfeval function operates synchronously, that is, it blocks the MATLAB
command line until its execution is complete. If you want to send a job to the
job manager and get access to the command line while the job is being run
asynchronously (async), you can use the dfevalasync function.

The dfevalasync function operates in the same way as dfeval, except that it
does not block the MATLAB command line, and it does not directly return
results.

To asynchronously run the example of the previous section, type

job1 = dfevalasync(@averages, 2, c1, c2, c3, 'jobmanager', ...
'MyJobManager', 'FileDependencies', {'averages.m'});

Note that you have to specify the number of output arguments that each
task will return (2, in this example).

The MATLAB session does not wait for the job to execute, but returns the
prompt immediately. Instead of assigning results to cell array variables, the
function creates a job object in the MATLAB workspace that you can use to
access job status and results.

You can use the MATLAB session to perform other operations while the job is
being run on the cluster. When you want to get the job’s results, you should
make sure it is finished before retrieving the data.

waitForState(job1, 'finished')
results = getAllOutputArguments(job1)

results =
[ 3] [ 2]
[ 30] [ 20]
[ 300] [ 200]
[3000] [2000]

The structure of the output arguments is now slightly different than it was for
dfeval. The getAllOutputArguments function returns all output arguments
from all tasks in a single cell array, with one row per task. In this example,
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each row of the cell array results will have two elements. So, results{1,1}
contains the first output argument from the first task, results{1,2} contains
the second argument from the first task, and so on.

For further details and examples of the dfevalasync function, see the
dfevalasync reference page.
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Program Distributed Jobs

A distributed job is one whose tasks do not directly communicate with each
other. The tasks do not need to run simultaneously, and a worker might
run several tasks of the same job in succession. Typically, all tasks perform
the same or similar functions on different data sets in an embarrassingly
parallel configuration.

The following sections describe how to program distributed jobs:

• “Use a Local Scheduler” on page 8-2

• “Use a Job Manager” on page 8-8

• “Use a Fully Supported Third-Party Scheduler” on page 8-21

• “Use the Generic Scheduler Interface” on page 8-34
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Use a Local Scheduler

In this section...

“Create and Run Jobs with a Local Scheduler” on page 8-2

“Local Scheduler Behavior” on page 8-7

Create and Run Jobs with a Local Scheduler
For jobs that require more control than the functionality offered by dfeval,
you have to program all the steps for creating and running the job. Using the
local scheduler lets you create and test your jobs without using the resources
of your cluster. Distributing tasks to workers that are all running on your
client machine might not offer any performance enhancement, so this feature
is provided primarily for code development, testing, and debugging.

Note Workers running from a local scheduler on a Microsoft Windows
operating system can display Simulink graphics as well as the output from
certain functions such as uigetfile and uigetdir. (With other platforms or
schedulers, workers cannot display any graphical output.) This behavior is
subject to removal in a future release.

This section details the steps of a typical programming session with Parallel
Computing Toolbox software using a local scheduler:

• “Create a Scheduler Object” on page 8-3

• “Create a Job” on page 8-3

• “Create Tasks” on page 8-5

• “Submit a Job to the Scheduler” on page 8-5

• “Retrieve the Job’s Results” on page 8-6

Note that the objects that the client session uses to interact with the scheduler
are only references to data that is actually contained in the scheduler’s data
location, not in the client session. After jobs and tasks are created, you can
close your client session and restart it, and your job is still stored in the data
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location. You can find existing jobs using the findJob function or the Jobs
property of the scheduler object.

Create a Scheduler Object
You use the findResource function to create an object in your local MATLAB
session representing the local scheduler.

sched = findResource('scheduler','type','local');

Create a Job
You create a job with the createJob function. This statement creates a job
in the scheduler’s data location, creates the job object job1 in the client
session, and if you omit the semicolon at the end of the command, displays
some information about the job.

job1 = createJob(sched)

Job ID 1 Information
====================

UserName : eng864
State : pending

SubmitTime :
StartTime :

Running Duration :

- Data Dependencies

FileDependencies : {}
PathDependencies : {}

- Associated Task(s)

Number Pending : 0
Number Running : 0
Number Finished : 0

TaskID of errors :

You can use the get function to see all the properties of this job object.
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get(job1)
Configuration: ''

Name: 'Job1'
ID: 1

UserName: 'eng864'
Tag: ''

State: 'pending'
CreateTime: 'Mon Jan 08 15:40:18 EST 2007'
SubmitTime: ''
StartTime: ''

FinishTime: ''
Tasks: [0x1 double]

FileDependencies: {0x1 cell}
PathDependencies: {0x1 cell}

JobData: []
Parent: [1x1 distcomp.localscheduler]

UserData: []

Note that the job’s State property is pending. This means the job has not yet
been submitted (queued) for running, so you can now add tasks to it.

The scheduler’s display now indicates the existence of your job, which is the
pending one.

sched

Local Scheduler Information
===========================

Type : local
ClusterOsType : pc
DataLocation : C:\WINNT\Profiles\eng864\App...

HasSharedFilesystem : true

- Assigned Jobs

Number Pending : 1
Number Queued : 0
Number Running : 0
Number Finished : 0
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- Local Specific Properties

ClusterMatlabRoot : D:\apps\matlab

Create Tasks
After you have created your job, you can create tasks for the job using
the createTask function. Tasks define the functions to be evaluated by
the workers during the running of the job. Often, the tasks of a job are all
identical. In this example, five tasks will each generate a 3-by-3 matrix
of random numbers.

createTask(job1, @rand, 1, {{3,3} {3,3} {3,3} {3,3} {3,3}});

The Tasks property of job1 is now a 5-by-1 matrix of task objects.

get(job1,'Tasks')
ans =

Tasks: 5 by 1
=============

Task ID State End Time Function Name Error
-------------------------------------------------------------

1 pending @rand
2 pending @rand
3 pending @rand
4 pending @rand
5 pending @rand

Submit a Job to the Scheduler
To run your job and have its tasks evaluated, you submit the job to the
scheduler with the submit function.

submit(job1)

The local scheduler starts up to twelve workers and distributes the tasks of
job1 to its workers for evaluation.
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Retrieve the Job’s Results
The results of each task’s evaluation are stored in that task object’s
OutputArguments property as a cell array. After waiting for the job to
complete, use the function getAllOutputArguments to retrieve the results
from all the tasks in the job.

waitForState(job1)
results = getAllOutputArguments(job1);

Display the results from each task.

results{1:5}

0.9501 0.4860 0.4565
0.2311 0.8913 0.0185
0.6068 0.7621 0.8214

0.4447 0.9218 0.4057
0.6154 0.7382 0.9355
0.7919 0.1763 0.9169

0.4103 0.3529 0.1389
0.8936 0.8132 0.2028
0.0579 0.0099 0.1987

0.6038 0.0153 0.9318
0.2722 0.7468 0.4660
0.1988 0.4451 0.4186

0.8462 0.6721 0.6813
0.5252 0.8381 0.3795
0.2026 0.0196 0.8318

After the job is complete, you can repeat the commands to examine the
updated status of the scheduler, job, and task objects:

sched
job1
get(job1,'Tasks')
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Local Scheduler Behavior
The local scheduler runs in the MATLAB client session, so you do not have
to start any separate scheduler process for the local scheduler. When you
submit a job for evaluation to the local scheduler, the scheduler starts a
MATLAB worker for each task in the job, but only up to as many workers as
the scheduler is configured to allow. If your job has more tasks than allowed
workers, the scheduler waits for one of the current tasks to complete before
starting another MATLAB worker to evaluate the next task. You can modify
the number of allowed workers in the local scheduler configuration, up to
a maximum of twelve. If not configured, the default is to run only as many
workers as computational cores on the machine.

The local scheduler has no interaction with any other scheduler, nor with any
other workers that might also be running on your client machine under the
mdce service. Multiple MATLAB sessions on your computer can each start
its own local scheduler with its own twelve workers, but these groups do not
interact with each other, so you cannot combine local groups of workers to
increase your local cluster size.

When you end your MATLAB client session, its local scheduler and any
workers that happen to be running at that time also stop immediately.
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Use a Job Manager

In this section...

“Creating and Running Jobs with a Job Manager” on page 8-8

“Share Code” on page 8-14

“Manage Objects in the Job Manager” on page 8-17

Creating and Running Jobs with a Job Manager
For jobs that are more complex or require more control than the functionality
offered by dfeval, you have to program all the steps for creating and running
of the job.

This section details the steps of a typical programming session with Parallel
Computing Toolbox software using a MathWorks job manager:

• “Find a Job Manager” on page 8-8

• “Create a Job” on page 8-10

• “Create Tasks” on page 8-12

• “Submit a Job to the Job Queue” on page 8-13

• “Retrieve the Job’s Results” on page 8-14

Note that the objects that the client session uses to interact with the job
manager are only references to data that is actually contained in the job
manager process, not in the client session. After jobs and tasks are created,
you can close your client session and restart it, and your job is still stored in
the job manager. You can find existing jobs using the findJob function or the
Jobs property of the job manager object.

Find a Job Manager
You use the findResource function to identify available job managers and to
create an object representing a job manager in your local MATLAB session.
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To find a specific job manager, use parameter-value pairs for matching. In
this example, MyJobManager is the name of the job manager, while MyJMhost
is the hostname of the machine running the job manager lookup service.

jm = findResource('scheduler','type','jobmanager', ...
'Name','MyJobManager','LookupURL','MyJMhost')

jm =

Jobmanager Information
======================

Type : jobmanager
ClusterOsType : 'pc'
DataLocation : database on MyJobManager@MyJMhost

- Assigned Jobs

Number Pending : 0
Number Queued : 0
Number Running : 0
Number Finished : 0

- Authentication and Security

UserName : myloginname
SecurityLevel : 0

- Jobmanager Specific Properties

Name : MyJobManager
Hostname : MyJMhost

HostAddress : 123.123.123.123
State : running

ClusterSize : 2
NumberOfIdleWorkers : 2
NumberOfBusyWorkers : 0

You can view all the accessible properties of the job manager object with
the get function:

get(jm)
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If your network supports multicast, you can omit property values to search
on, and findResource returns all available job managers.

all_managers = findResource('scheduler','type','jobmanager')

You can then examine the properties of each job manager to identify which
one you want to use.

for i = 1:length(all_managers)
get(all_managers(i))

end

When you have identified the job manager you want to use, you can isolate
it and create a single object.

jm = all_managers(3)

Create a Job
You create a job with the createJob function. Although this command
executes in the client session, it actually creates the job on the job manager,
jm, and creates a job object, job1, in the client session.

job1 = createJob(jm)job1 =

Job ID 1 Information
====================

UserName : myloginname
AuthorizedUsers : {}

State : pending
SubmitTime :
StartTime :

Running Duration :

- Data Dependencies

FileDependencies : {}
PathDependencies : {}

- Associated Task(s)
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Number Pending : 0
Number Running : 0
Number Finished : 0

TaskID of errors :

- Jobmanager Dependent Properties

MaximumNumberOfWorkers : Inf
MinimumNumberOfWorkers : 1

Timeout : Inf
RestartWorker : false

QueuedFcn :
RunningFcn :

FinishedFcn :

Use get to see all the accessible properties of this job object.

get(job1)

Note that the job’s State property is pending. This means the job has not
been queued for running yet, so you can now add tasks to it.

The job manager’s display now includes one pending job.

jm

jm =

Jobmanager Information
======================

Type : jobmanager
ClusterOsType : 'pc'
DataLocation : database on MyJobManager@MyJMhost

- Assigned Jobs

Number Pending : 1
Number Queued : 0
Number Running : 0
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Number Finished : 0

- Authentication and Security

UserName : myloginname
SecurityLevel : 0

- Jobmanager Specific Properties

Name : MyJobManager
Hostname : MyJMhost

HostAddress : 123.123.123.123
State : running

ClusterSize : 2
NumberOfIdleWorkers : 2
NumberOfBusyWorkers : 0

You can transfer files to the worker by using the FileDependencies property
of the job object. For details, see the FileDependencies reference page and
“Share Code” on page 8-14.

Create Tasks
After you have created your job, you can create tasks for the job using
the createTask function. Tasks define the functions to be evaluated by
the workers during the running of the job. Often, the tasks of a job are all
identical. In this example, each task will generate a 3-by-3 matrix of random
numbers.

createTask(job1, @rand, 1, {3,3});
createTask(job1, @rand, 1, {3,3});
createTask(job1, @rand, 1, {3,3});
createTask(job1, @rand, 1, {3,3});
createTask(job1, @rand, 1, {3,3});

The Tasks property of job1 is now a 5-by-1 matrix of task objects.

get(job1,'Tasks')
ans =

distcomp.task: 5-by-1
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Alternatively, you can create the five tasks with one call to createTask by
providing a cell array of five cell arrays defining the input arguments to each
task.

T = createTask(job1, @rand, 1, {{3,3} {3,3} {3,3} {3,3} {3,3}});

In this case, T is a 5-by-1 matrix of task objects.

Submit a Job to the Job Queue
To run your job and have its tasks evaluated, you submit the job to the job
queue with the submit function.

submit(job1)

The job manager distributes the tasks of job1 to its registered workers for
evaluation.

Each worker performs the following steps for task evaluation:

1 Receive FileDependencies and PathDependencies from the job. Place
files and modify the path accordingly.

2 Run the jobStartup function the first time evaluating a task for this job.
You can specify this function in FileDependencies or PathDependencies.
If the same worker evaluates subsequent tasks for this job, jobStartup
does not run between tasks.

3 Run the taskStartup function. You can specify this function in
FileDependencies or PathDependencies. This runs before every task
evaluation that the worker performs, so it could occur multiple times on a
worker for each job.

4 If the worker is part of forming a new MATLAB pool, run the poolStartup
function. (This occurs when executing matlabpool open or when running
other types of jobs that form and use a MATLAB pool.)

5 Receive the task function and arguments for evaluation.

6 Evaluate the task function, placing the result in the task’s
OutputArguments property. Any error information goes in the task’s Error
property.
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7 Run the taskFinish function.

Retrieve the Job’s Results
The results of each task’s evaluation are stored in that task object’s
OutputArguments property as a cell array. Use the function
getAllOutputArguments to retrieve the results from all the tasks in the job.

results = getAllOutputArguments(job1);

Display the results from each task.

results{1:5}

0.9501 0.4860 0.4565
0.2311 0.8913 0.0185
0.6068 0.7621 0.8214

0.4447 0.9218 0.4057
0.6154 0.7382 0.9355
0.7919 0.1763 0.9169

0.4103 0.3529 0.1389
0.8936 0.8132 0.2028
0.0579 0.0099 0.1987

0.6038 0.0153 0.9318
0.2722 0.7468 0.4660
0.1988 0.4451 0.4186

0.8462 0.6721 0.6813
0.5252 0.8381 0.3795
0.2026 0.0196 0.8318

Share Code
Because the tasks of a job are evaluated on different machines, each machine
must have access to all the files needed to evaluate its tasks. The basic
mechanisms for sharing code are explained in the following sections:

• “Access Files Directly” on page 8-15
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• “Pass Data Between Sessions” on page 8-15

• “Pass MATLAB Code for Startup and Finish” on page 8-16

Access Files Directly
If the workers all have access to the same drives on the network, they can
access needed files that reside on these shared resources. This is the preferred
method for sharing data, as it minimizes network traffic.

You must define each worker session’s path so that it looks for files in the
right places. You can define the path

• By using the job’s PathDependencies property. This is the preferred
method for setting the path, because it is specific to the job.

• By putting the path command in any of the appropriate startup files for
the worker:

- matlabroot\toolbox\local\startup.m

- matlabroot\toolbox\distcomp\user\jobStartup.m

- matlabroot\toolbox\distcomp\user\taskStartup.m

These files can be passed to the worker by the job’s FileDependencies or
PathDependencies property. Otherwise, the version of each of these files
that is used is the one highest on the worker’s path.

Access to files among shared resources can depend upon permissions based
on the user name. You can set the user name with which the job manager
and worker services of MATLAB Distributed Computing Server software
run by setting the MDCEUSER value in the mdce_def file before starting
the services. For Microsoft Windows operating systems, there is also
MDCEPASS for providing the account password for the specified user. For an
explanation of service default settings and the mdce_def file, see “Defining
the Script Defaults” in the MATLAB Distributed Computing Server System
Administrator’s Guide.

Pass Data Between Sessions
A number of properties on task and job objects are designed for passing code
or data from client to job manager to worker, and back. This information
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could include MATLAB code necessary for task evaluation, or the input
data for processing or output data resulting from task evaluation. All these
properties are described in detail in their own reference pages:

• InputArguments — This property of each task contains the input data
provided to the task constructor. This data gets passed into the function
when the worker performs its evaluation.

• OutputArguments— This property of each task contains the results of the
function’s evaluation.

• JobData — This property of the job object contains data that gets sent
to every worker that evaluates tasks for that job. This property works
efficiently because the data is passed to a worker only once per job, saving
time if that worker is evaluating more than one task for the job.

• FileDependencies— This property of the job object lists all the directories
and files that get zipped and sent to the workers. At the worker, the data is
unzipped, and the entries defined in the property are added to the path of
the MATLAB worker session.

• PathDependencies— This property of the job object provides pathnames
that are added to the MATLAB workers’ path, reducing the need for data
transfers in a shared file system.

There is a default maximum amount of data that can be sent in a single call
for setting properties. This limit applies to the OutputArguments property as
well as to data passed into a job as input arguments or FileDependencies. If
the limit is exceeded, you get an error message. For more information about
this data transfer size limit, see “Object Data Size Limitations” on page 6-48.

Pass MATLAB Code for Startup and Finish
As a session of MATLAB, a worker session executes its startup.m file each
time it starts. You can place the startup.m file in any directory on the
worker’s MATLAB path, such as toolbox/distcomp/user.

These additional files can initialize and clean up a worker session as it begins
or completes evaluations of tasks for a job:

• jobStartup.m automatically executes on a worker when the worker runs
its first task of a job.

8-16



Use a Job Manager

• taskStartup.m automatically executes on a worker each time the worker
begins evaluation of a task.

• poolStartup.m automatically executes on a worker each time the worker
is included in a newly started MATLAB pool.

• taskFinish.m automatically executes on a worker each time the worker
completes evaluation of a task.

Empty versions of these files are provided in the directory

matlabroot/toolbox/distcomp/user

You can edit these files to include whatever MATLAB code you want the
worker to execute at the indicated times.

Alternatively, you can create your own versions of these files and pass them to
the job as part of the FileDependencies property, or include the path names
to their locations in the PathDependencies property.

The worker gives precedence to the versions provided in the FileDependencies
property, then to those pointed to in the PathDependencies property. If any
of these files is not included in these properties, the worker uses the version of
the file in the toolbox/distcomp/user directory of the worker’s MATLAB
installation.

Manage Objects in the Job Manager
Because all the data of jobs and tasks resides in the job manager, these
objects continue to exist even if the client session that created them has
ended. The following sections describe how to access these objects and how to
permanently remove them:

• “What Happens When the Client Session Ends” on page 8-18

• “Recover Objects” on page 8-18

• “Reset Callback Properties” on page 8-19

• “Remove Objects Permanently” on page 8-19
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What Happens When the Client Session Ends
When you close the client session of Parallel Computing Toolbox software, all
of the objects in the workspace are cleared. However, the objects in MATLAB
Distributed Computing Server software remain in place. Job objects and task
objects reside on the job manager. Local objects in the client session can refer
to job managers, jobs, tasks, and workers. When the client session ends, only
these local reference objects are lost, not the actual objects in the engine.

Therefore, if you have submitted your job to the job queue for execution, you
can quit your client session of MATLAB, and the job will be executed by the
job manager. The job manager maintains its job and task objects. You can
retrieve the job results later in another client session.

Recover Objects
A client session of Parallel Computing Toolbox software can access any of the
objects in MATLAB Distributed Computing Server software, whether the
current client session or another client session created these objects.

You create job manager and worker objects in the client session by using
the findResource function. These client objects refer to sessions running in
the engine.

jm = findResource('scheduler','type','jobmanager', ...
'Name','Job_Mgr_123','LookupURL','JobMgrHost')

If your network supports multicast, you can find all available job managers by
omitting any specific property information.

jm_set = findResource('scheduler','type','jobmanager')

The array jm_set contains all the job managers accessible from the client
session. You can index through this array to determine which job manager
is of interest to you.

jm = jm_set(2)

When you have access to the job manager by the object jm, you can create
objects that reference all those objects contained in that job manager. All the
jobs contained in the job manager are accessible in its Jobs property, which is
an array of job objects.
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all_jobs = get(jm,'Jobs')

You can index through the array all_jobs to locate a specific job.

Alternatively, you can use the findJob function to search in a job manager for
particular job identified by any of its properties, such as its State.

finished_jobs = findJob(jm,'State','finished')

This command returns an array of job objects that reference all finished jobs
on the job manager jm.

Reset Callback Properties
When restarting a client session, you lose the settings of any callback
properties (for example, the FinishedFcn property) on jobs or tasks. These
properties are commonly used to get notifications in the client session of state
changes in their objects. When you create objects in a new client session that
reference existing jobs or tasks, you must reset these callback properties if
you intend to use them.

Remove Objects Permanently
Jobs in the job manager continue to exist even after they are finished, and
after the job manager is stopped and restarted. The ways to permanently
remove jobs from the job manager are explained in the following sections:

• “Destroy Selected Objects” on page 8-19

• “Start a Job Manager from a Clean State” on page 8-20

Destroy Selected Objects. From the command line in the MATLAB client
session, you can call the destroy function for any job or task object. If you
destroy a job, you destroy all tasks contained in that job.

For example, find and destroy all finished jobs in your job manager that
belong to the user joep.

jm = findResource('scheduler','type','jobmanager', ...
'Name','MyJobManager','LookupURL','JobMgrHost')

finished_jobs = findJob(jm,'State','finished','UserName','joep')
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destroy(finished_jobs)
clear finished_jobs

The destroy function permanently removes these jobs from the job manager.
The clear function removes the object references from the local MATLAB
workspace.

Start a Job Manager from a Clean State. When a job manager starts,
by default it starts so that it resumes its former session with all jobs intact.
Alternatively, a job manager can start from a clean state with all its former
history deleted. Starting from a clean state permanently removes all job and
task data from the job manager of the specified name on a particular host.

As a network administration feature, the -clean flag of the job manager
startup script is described in “Starting in a Clean State” in the MATLAB
Distributed Computing Server System Administrator’s Guide.
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Use a Fully Supported Third-Party Scheduler

In this section...

“Create and Run Jobs” on page 8-21

“Share Code” on page 8-29

“Manage Objects” on page 8-31

Create and Run Jobs
If your network already uses Platform LSF (Load Sharing Facility), Microsoft
Windows HPC Server (including CCS), PBS Pro, or a TORQUE scheduler, you
can use Parallel Computing Toolbox software to create jobs to be distributed
by your existing scheduler. This section provides instructions for using your
scheduler.

This section details the steps of a typical programming session with Parallel
Computing Toolbox software for jobs distributed to workers by a fully
supported third-party scheduler.

This section assumes you have an LSF, PBS Pro, TORQUE, or Windows
HPC Server (including CCS and HPC Server 2008) scheduler installed
and running on your network. For more information about LSF, see
http://www.platform.com/Products/. For more information about
Windows HPC Server, see http://www.microsoft.com/hpc.

The following sections illustrate how to program Parallel Computing Toolbox
software to use these schedulers:

• “Find an LSF, PBS Pro, or TORQUE Scheduler” on page 8-22

• “Find a Windows HPC Server Scheduler” on page 8-23

• “Create a Job” on page 8-25

• “Create Tasks” on page 8-26

• “Submit a Job to the Job Queue” on page 8-27

• “Retrieve the Job’s Results” on page 8-28
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Find an LSF, PBS Pro, or TORQUE Scheduler
You use the findResource function to identify the type of scheduler and to
create an object representing the scheduler in your local MATLAB client
session.

You specify the scheduler type for findResource to search for with one of
the following:

sched = findResource('scheduler','type','lsf')
sched = findResource('scheduler','type','pbspro')
sched = findResource('scheduler','type','torque')

You set properties on the scheduler object to specify

• Where the job data is stored

• That the workers should access job data directly in a shared file system

• The MATLAB root for the workers to use

set(sched, 'DataLocation', '\\share\scratch\jobdata')
set(sched, 'HasSharedFilesystem', true)
set(sched, 'ClusterMatlabRoot', '\\apps\matlab\')

Alternatively, you can use a parallel configuration to find the scheduler and
set the object properties with a single findResource statement.

If DataLocation is not set, the default location for job data is the current
working directory of the MATLAB client the first time you use findResource
to create an object for this type of scheduler. All settable property values on a
scheduler object are local to the MATLAB client, and are lost when you close
the client session or when you remove the object from the client workspace
with delete or clear all.

Note In a shared file system, all nodes require access to the directory specified
in the scheduler object’s DataLocation directory. See the DataLocation
reference page for information on setting this property for a mixed-platform
environment.
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You can look at all the property settings on the scheduler object. If no jobs are
in the DataLocation directory, the Jobs property is a 0-by-1 array.

get(sched)

Configuration: ''

Type: 'lsf'

DataLocation: '\\share\scratch\jobdata'

HasSharedFilesystem: 1

Jobs: [0x1 double]

ClusterMatlabRoot: '\\apps\matlab\'

ClusterOsType: 'unix'

UserData: []

ClusterSize: Inf

ClusterName: 'CENTER_MATRIX_CLUSTER'

MasterName: 'masterhost.clusternet.ourdomain.com'

SubmitArguments: ''

ParallelSubmissionWrapperScript: [1x92 char]

Find a Windows HPC Server Scheduler
You use the findResource function to identify the Windows HPC Server
scheduler and to create an object representing the scheduler in your local
MATLAB client session.

You specify 'hpcserver' as the scheduler type for findResource to search for.

sched = findResource('scheduler','type','hpcserver')

You set properties on the scheduler object to specify

• Where the job data is stored

• The MATLAB root for the workers to use

• The name of the scheduler host

• Cluster version, and whether to use SOA job submission (available only on
Microsoft Windows HPC Server 2008).

set(sched, 'DataLocation', '\\share\scratch\jobdata');
set(sched, 'ClusterMatlabRoot', '\\apps\matlab\');
set(sched, 'SchedulerHostname', 'server04');

8-23



8 Program Distributed Jobs

set(sched, 'ClusterVersion', 'HPCServer2008');
set(sched, 'UseSOAJobSubmission', false);

Alternatively, you can use a parallel configuration to find the scheduler and
set the object properties with a single findResource statement.

If DataLocation is not set, the default location for job data is the current
working directory of the MATLAB client the first time you use findResource
to create an object for this type of scheduler. All settable property values on a
scheduler object are local to the MATLAB client, and are lost when you close
the client session or when you remove the object from the client workspace
with delete or clear all.

Note Because Windows HPC Server requires a shared file system, all
nodes require access to the directory specified in the scheduler object’s
DataLocation directory.

You can look at all the property settings on the scheduler object. If no jobs are
in the DataLocation directory, the Jobs property is a 0-by-1 array.

get(sched)
Configuration: ''

Type: 'hpcserver'
DataLocation: '\\share\scratch\jobdata'

HasSharedFilesystem: 1
Jobs: [0x1 double]

ClusterMatlabRoot: '\\apps\matlab\'
ClusterOsType: 'pc'

UserData: []
ClusterSize: Inf

SchedulerHostname: 'server04'
UseSOAJobSubmission: 0

JobTemplate: ''
JobDescriptionFile: ''

ClusterVersion: 'HPCServer2008'
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Create a Job
You create a job with the createJob function, which creates a job object in
the client session. The job data is stored in the directory specified by the
scheduler object’s DataLocation property.

j = createJob(sched)

This statement creates the job object j in the client session. Use get to see
the properties of this job object.

get(j)
Configuration: ''

Name: 'Job1'
ID: 1

UserName: 'eng1'
Tag: ''

State: 'pending'
CreateTime: 'Fri Jul 29 16:15:47 EDT 2005'
SubmitTime: ''
StartTime: ''

FinishTime: ''
Tasks: [0x1 double]

FileDependencies: {0x1 cell}
PathDependencies: {0x1 cell}

JobData: []
Parent: [1x1 distcomp.lsfscheduler]

UserData: []

This output varies only slightly between jobs that use LSF and Windows
HPC Server schedulers, but is quite different from a job that uses a job
manager. For example, jobs on LSF or Windows HPC Server schedulers have
no callback functions.

The job’s State property is pending. This state means the job has not been
queued for running yet. This new job has no tasks, so its Tasks property
is a 0-by-1 array.

The scheduler’s Jobs property is now a 1-by-1 array of distcomp.simplejob
objects, indicating the existence of your job.

get(sched, 'Jobs')
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Jobs: [1x1 distcomp.simplejob]

You can transfer files to the worker by using the FileDependencies
property of the job object. Workers can access shared files by using
the PathDependencies property of the job object. For details, see the
FileDependencies and PathDependencies reference pages and “Share Code”
on page 8-29.

Note In a shared file system, MATLAB clients on many computers can access
the same job data on the network. Properties of a particular job or task should
be set from only one computer at a time.

Create Tasks
After you have created your job, you can create tasks for the job. Tasks define
the functions to be evaluated by the workers during the running of the job.
Often, the tasks of a job are all identical except for different arguments or
data. In this example, each task will generate a 3-by-3 matrix of random
numbers.

createTask(j, @rand, 1, {3,3});
createTask(j, @rand, 1, {3,3});
createTask(j, @rand, 1, {3,3});
createTask(j, @rand, 1, {3,3});
createTask(j, @rand, 1, {3,3});

The Tasks property of j is now a 5-by-1 matrix of task objects.

get(j,'Tasks')
ans =

distcomp.simpletask: 5-by-1

Alternatively, you can create the five tasks with one call to createTask by
providing a cell array of five cell arrays defining the input arguments to each
task.

T = createTask(job1, @rand, 1, {{3,3} {3,3} {3,3} {3,3} {3,3}});

In this case, T is a 5-by-1 matrix of task objects.
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Submit a Job to the Job Queue
To run your job and have its tasks evaluated, you submit the job to the
scheduler’s job queue.

submit(j)

The scheduler distributes the tasks of job j to MATLAB workers for
evaluation. For each task, the scheduler starts a MATLAB worker session on
a worker node; this MATLAB worker session runs for only as long as it takes
to evaluate the one task. If the same node evaluates another task in the same
job, it does so with a different MATLAB worker session.

Each worker performs the following steps for task evaluation:

1 Receive FileDependencies and PathDependencies from the job. Place
files and modify the path accordingly.

2 Run the jobStartup function. You can specify this function in
FileDependencies or PathDependencies.

3 Run the taskStartup function. You can specify this function in
FileDependencies or PathDependencies.

If you have enabled UseSOAJobSubmission with HPC Server 2008, the
scheduler can use a worker to evaluate multiple tasks in sequence. In this
case, the worker runs taskStartup before evaluating each task, without
rerunning jobStartup or receiving dependencies again.

4 If the worker is part of forming a new MATLAB pool, run the poolStartup
function. (This occurs when executing matlabpool open or when running
other types of jobs that form and use a MATLAB pool.)

5 Receive the task function and arguments for evaluation.

6 Evaluate the task function, placing the result in the task’s
OutputArguments property. Any error information goes in the task’s Error
property.

7 Run the taskFinish function.
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The job runs asynchronously with the MATLAB client. If you need to wait for
the job to complete before you continue in your MATLAB client session, you
can use the waitForState function.

waitForState(j)

The default state to wait for is finished. This function causes MATLAB to
pause until the State property of j is 'finished'.

Note When you use an LSF scheduler in a nonshared file system, the
scheduler might report that a job is in the finished state even though the LSF
scheduler might not yet have completed transferring the job’s files.

Retrieve the Job’s Results
The results of each task’s evaluation are stored in that task object’s
OutputArguments property as a cell array. Use getAllOutputArguments to
retrieve the results from all the tasks in the job.

results = getAllOutputArguments(j);

Display the results from each task.

results{1:5}

0.9501 0.4860 0.4565
0.2311 0.8913 0.0185
0.6068 0.7621 0.8214

0.4447 0.9218 0.4057
0.6154 0.7382 0.9355
0.7919 0.1763 0.9169

0.4103 0.3529 0.1389
0.8936 0.8132 0.2028
0.0579 0.0099 0.1987

0.6038 0.0153 0.9318
0.2722 0.7468 0.4660
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0.1988 0.4451 0.4186

0.8462 0.6721 0.6813
0.5252 0.8381 0.3795
0.2026 0.0196 0.8318

Share Code
Because different machines evaluate the tasks of a job, each machine must
have access to all the files needed to evaluate its tasks. The following sections
explain the basic mechanisms for sharing data:

• “Access Files Directly” on page 8-29

• “Pass Data Between Sessions” on page 8-30

• “Pass MATLAB Code for Startup and Finish” on page 8-30

Access Files Directly
If all the workers have access to the same drives on the network, they can
access needed files that reside on these shared resources. This is the preferred
method for sharing data, as it minimizes network traffic.

You must define each worker session’s path so that it looks for files in the
correct places. You can define the path by

• Using the job’s PathDependencies property. This is the preferred method
for setting the path, because it is specific to the job.

• Putting the path command in any of the appropriate startup files for the
worker:

- matlabroot\toolbox\local\startup.m

- matlabroot\toolbox\distcomp\user\jobStartup.m

- matlabroot\toolbox\distcomp\user\taskStartup.m

These files can be passed to the worker by the job’s FileDependencies or
PathDependencies property. Otherwise, the version of each of these files
that is used is the one highest on the worker’s path.
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Pass Data Between Sessions
A number of properties on task and job objects are for passing code or data
from client to scheduler or worker, and back. This information could include
MATLAB code necessary for task evaluation, or the input data for processing
or output data resulting from task evaluation. All these properties are
described in detail in their own reference pages:

• InputArguments — This property of each task contains the input data
provided to the task constructor. This data gets passed into the function
when the worker performs its evaluation.

• OutputArguments— This property of each task contains the results of the
function’s evaluation.

• JobData — This property of the job object contains data that gets sent
to every worker that evaluates tasks for that job. This property works
efficiently because depending on file caching, the data might be passed to
a worker node only once per job, saving time if that node is evaluating
more than one task for the job.

• FileDependencies— This property of the job object lists all the directories
and files that get zipped and sent to the workers. At the worker, the data is
unzipped, and the entries defined in the property are added to the path of
the MATLAB worker session.

• PathDependencies— This property of the job object provides pathnames
that are added to the MATLAB workers’ path, reducing the need for data
transfers in a shared file system.

Pass MATLAB Code for Startup and Finish
As a session of MATLAB, a worker session executes its startup.m file each
time it starts. You can place the startup.m file in any directory on the
worker’s MATLAB path, such as toolbox/distcomp/user.

Three additional files can initialize and clean a worker session as it begins or
completes evaluations of tasks for a job:

• jobStartup.m automatically executes on a worker when the worker runs
its first task of a job.
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• taskStartup.m automatically executes on a worker each time the worker
begins evaluation of a task.

• poolStartup.m automatically executes on a worker each time the worker
is included in a newly started MATLAB pool.

• taskFinish.m automatically executes on a worker each time the worker
completes evaluation of a task.

Empty versions of these files are provided in the directory

matlabroot/toolbox/distcomp/user

You can edit these files to include whatever MATLAB code you want the
worker to execute at the indicated times.

Alternatively, you can create your own versions of these files and pass them to
the job as part of the FileDependencies property, or include the pathnames
to their locations in the PathDependencies property.

The worker gives precedence to the versions provided in the FileDependencies
property, then to those pointed to in the PathDependencies property. If any
of these files is not included in these properties, the worker uses the version of
the file in the toolbox/distcomp/user directory of the worker’s MATLAB
installation.

Manage Objects
Objects that the client session uses to interact with the scheduler are only
references to data that is actually contained in the directory specified by
the DataLocation property. After jobs and tasks are created, you can shut
down your client session, restart it, and your job will still be stored in that
remote location. You can find existing jobs using the Jobs property of the
recreated scheduler object.

The following sections describe how to access these objects and how to
permanently remove them:

• “What Happens When the Client Session Ends?” on page 8-32

• “Recover Objects” on page 8-32
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• “Destroy Jobs” on page 8-33

What Happens When the Client Session Ends?
When you close the client session of Parallel Computing Toolbox software,
all of the objects in the workspace are cleared. However, job and task data
remains in the directory identified by DataLocation. When the client session
ends, only its local reference objects are lost, not the data of the scheduler.

Therefore, if you have submitted your job to the scheduler job queue for
execution, you can quit your client session of MATLAB, and the job will be
executed by the scheduler. The scheduler maintains its job and task data.
You can retrieve the job results later in another client session.

Recover Objects
A client session of Parallel Computing Toolbox software can access any of the
objects in the DataLocation, whether the current client session or another
client session created these objects.

You create scheduler objects in the client session by using the findResource
function.

sched = findResource('scheduler', 'type', 'LSF');
set(sched, 'DataLocation', '/share/scratch/jobdata');

When you have access to the scheduler by the object sched, you can create
objects that reference all the data contained in the specified location for that
scheduler. All the job and task data contained in the scheduler data location
are accessible in the scheduler object’s Jobs property, which is an array of job
objects.

all_jobs = get(sched, 'Jobs')

You can index through the array all_jobs to locate a specific job.

Alternatively, you can use the findJob function to search in a scheduler object
for a particular job identified by any of its properties, such as its State.

finished_jobs = findJob(sched, 'State', 'finished')
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This command returns an array of job objects that reference all finished jobs
on the scheduler sched, whose data is found in the specified DataLocation.

Destroy Jobs
Jobs in the scheduler continue to exist even after they are finished. From
the command line in the MATLAB client session, you can call the destroy
function for any job object. If you destroy a job, you destroy all tasks contained
in that job. The job and task data is deleted from the DataLocation directory.

For example, find and destroy all finished jobs in your scheduler whose data
is stored in a specific directory.

sched = findResource('scheduler', 'name', 'LSF');
set(sched, 'DataLocation', '/share/scratch/jobdata');
finished_jobs = findJob(sched, 'State', 'finished');
destroy(finished_jobs);
clear finished_jobs

The destroy function in this example permanently removes from the
scheduler data those finished jobs whose data is in /apps/data/project_88.
The clear function removes the object references from the local MATLAB
client workspace.
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Use the Generic Scheduler Interface

In this section...

“Overview” on page 8-34

“MATLAB Client Submit Function” on page 8-35

“Example — Write the Submit Function” on page 8-39

“MATLAB Worker Decode Function” on page 8-40

“Example — Write the Decode Function” on page 8-43

“Example — Program and Run a Job in the Client” on page 8-43

“Supplied Submit and Decode Functions” on page 8-48

“Manage Jobs with Generic Scheduler” on page 8-50

“Summary” on page 8-53

Overview
Parallel Computing Toolbox software provides a generic interface that lets you
interact with third-party schedulers, or use your own scripts for distributing
tasks to other nodes on the cluster for evaluation.

Because each job in your application is comprised of several tasks, the
purpose of your scheduler is to allocate a cluster node for the evaluation of
each task, or to distribute each task to a cluster node. The scheduler starts
remote MATLAB worker sessions on the cluster nodes to evaluate individual
tasks of the job. To evaluate its task, a MATLAB worker session needs access
to certain information, such as where to find the job and task data. The
generic scheduler interface provides a means of getting tasks from your
Parallel Computing Toolbox client session to your scheduler and thereby
to your cluster nodes.

To evaluate a task, a worker requires five parameters that you must pass from
the client to the worker. The parameters can be passed any way you want to
transfer them, but because a particular one must be an environment variable,
the examples in this section pass all parameters as environment variables.
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Note Whereas a MathWorks job manager keeps MATLAB workers running
between tasks, a third-party scheduler runs MATLAB workers for only as
long as it takes each worker to evaluate its one task.

MATLAB Client Submit Function
When you submit a job to a scheduler, the function identified by the scheduler
object’s SubmitFcn property executes in the MATLAB client session. You
set the scheduler’s SubmitFcn property to identify the submit function and
any arguments you might want to send to it. For example, to use a submit
function called mysubmitfunc, you set the property with the command

set(sched, 'SubmitFcn', @mysubmitfunc)

where sched is the scheduler object in the client session, created with the
findResource function. In this case, the submit function gets called with its
three default arguments: scheduler, job, and properties object, in that order.
The function declaration line of the function might look like this:

function mysubmitfunc(scheduler, job, props)

Inside the function of this example, the three argument objects are known as
scheduler, job, and props.

You can write a submit function that accepts more than the three default
arguments, and then pass those extra arguments by including them in the
definition of the SubmitFcn property.
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time_limit = 300
testlocation = 'Plant30'
set(sched, 'SubmitFcn', {@mysubmitfunc, time_limit, testlocation})

In this example, the submit function requires five arguments: the three
defaults, along with the numeric value of time_limit and the string value of
testlocation. The function’s declaration line might look like this:

function mysubmitfunc(scheduler, job, props, localtimeout, plant)

The following discussion focuses primarily on the minimum requirements
of the submit and decode functions.

This submit function has three main purposes:

• To identify the decode function that MATLAB workers run when they start

• To make information about job and task data locations available to the
workers via their decode function

• To instruct your scheduler how to start a MATLAB worker on the cluster
for each task of your job
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Identify the Decode Function
The client’s submit function and the worker’s decode function work together
as a pair. Therefore, the submit function must identify its corresponding
decode function. The submit function does this by setting the environment
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variable MDCE_DECODE_FUNCTION. The value of this variable is a string
identifying the name of the decode function on the path of the MATLAB
worker. Neither the decode function itself nor its name can be passed to the
worker in a job or task property; the file must already exist before the worker
starts. For more information on the decode function, see “MATLAB Worker
Decode Function” on page 8-40. Standard decode functions for distributed and
parallel jobs are provided with the product. If your submit functions make
use of the definitions in these decode functions, you do not have to provide
your own decode functions. For example, to use the standard decode function
for distributed jobs, in your submit function set MDCE_DECODE_FUNCTION to
'parallel.cluster.generic.distributedDecodeFcn'.

Pass Job and Task Data
The third input argument (after scheduler and job) to the submit function is
the object with the properties listed in the following table.

You do not set the values of any of these properties. They are automatically
set by the toolbox so that you can program your submit function to forward
them to the worker nodes.

Property Name Description

StorageConstructor String. Used internally to indicate
that a file system is used to contain
job and task data.

StorageLocation String. Derived from the scheduler
DataLocation property.

JobLocation String. Indicates where this job’s
data is stored.

TaskLocations Cell array. Indicates where each
task’s data is stored. Each element
of this array is passed to a separate
worker.

NumberOfTasks Double. Indicates the number of
tasks in the job. You do not need to
pass this value to the worker, but
you can use it within your submit
function.
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With these values passed into your submit function, the function can pass
them to the worker nodes by any of several means. However, because the
name of the decode function must be passed as an environment variable, the
examples that follow pass all the other necessary property values also as
environment variables.

The submit function writes the values of these object properties out to
environment variables with the setenv function.

Define Scheduler Command to Run MATLAB Workers
The submit function must define the command necessary for your scheduler
to start MATLAB workers. The actual command is specific to your scheduler
and network configuration. The commands for some popular schedulers are
listed in the following table. This table also indicates whether or not the
scheduler automatically passes environment variables with its submission. If
not, your command to the scheduler must accommodate these variables.

Scheduler Scheduler Command
Passes Environment
Variables

Condor® condor_submit Not by default.
Command can pass
all or specific variables.

LSF bsub Yes, by default.

PBS qsub Command must specify
which variables to pass.

Sun™ Grid Engine qsub Command must specify
which variables to pass.

Your submit function might also use some of these properties and others
when constructing and invoking your scheduler command. scheduler, job,
and props (so named only for this example) refer to the first three arguments
to the submit function.
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Argument Object Property

scheduler MatlabCommandToRun

scheduler ClusterMatlabRoot

job MinimumNumberOfWorkers

job MaximumNumberOfWorkers

props NumberOfTasks

Example — Write the Submit Function
The submit function in this example uses environment variables to pass the
necessary information to the worker nodes. Each step below indicates the
lines of code you add to your submit function.

1 Create the function declaration. There are three objects automatically
passed into the submit function as its first three input arguments: the
scheduler object, the job object, and the props object.

function mysubmitfunc(scheduler, job, props)

This example function uses only the three default arguments. You can
have additional arguments passed into your submit function, as discussed
in “MATLAB Client Submit Function” on page 8-35.

2 Identify the values you want to send to your environment variables. For
convenience, you define local variables for use in this function.

decodeFcn = 'mydecodefunc';
jobLocation = get(props, 'JobLocation');
taskLocations = get(props, 'TaskLocations'); %This is a cell array
storageLocation = get(props, 'StorageLocation');
storageConstructor = get(props, 'StorageConstructor');

The name of the decode function that must be available on the MATLAB
worker path is mydecodefunc.

3 Set the environment variables, other than the task locations. All the
MATLAB workers use these values when evaluating tasks of the job.
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setenv('MDCE_DECODE_FUNCTION', decodeFcn);
setenv('MDCE_JOB_LOCATION', jobLocation);
setenv('MDCE_STORAGE_LOCATION', storageLocation);
setenv('MDCE_STORAGE_CONSTRUCTOR', storageConstructor);

Your submit function can use any names you choose for the environment
variables, with the exception of MDCE_DECODE_FUNCTION; the MATLAB
worker looks for its decode function identified by this variable. If you use
alternative names for the other environment variables, be sure that the
corresponding decode function also uses your alternative variable names.
You can see the variable names used in the standard decode function by
typing

edit parallel.cluster.generic.distributedDecodeFcn

4 Set the task-specific variables and scheduler commands. This is where you
instruct your scheduler to start MATLAB workers for each task.

for i = 1:props.NumberOfTasks
setenv('MDCE_TASK_LOCATION', taskLocations{i});
constructSchedulerCommand;

end

The line constructSchedulerCommand represents the code you write to
construct and execute your scheduler’s submit command. This command
is typically a string that combines the scheduler command with necessary
flags, arguments, and values derived from the values of your object
properties. This command is inside the for-loop so that your scheduler gets
a command to start a MATLAB worker on the cluster for each task.

Note If you are not familiar with your network scheduler, ask your system
administrator for help.

MATLAB Worker Decode Function
The sole purpose of the MATLAB worker’s decode function is to read certain
job and task information into the MATLAB worker session. This information
could be stored in disk files on the network, or it could be available as
environment variables on the worker node. Because the discussion of the
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submit function illustrated only the usage of environment variables, so does
this discussion of the decode function.

When working with the decode function, you must be aware of the

• Name and location of the decode function itself

• Names of the environment variables this function must read
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Note Standard decode functions are now included in the product.
If your submit functions make use of the definitions in these
decode functions, you do not have to provide your own decode
functions. For example, to use the standard decode function for
distributed jobs, in your submit function set MDCE_DECODE_FUNCTION to
'parallel.cluster.generic.distributedDecodeFcn'. The remainder
of this section is useful only if you use names and settings other than the
standards used in the provided decode functions.

Identify File Name and Location
The client’s submit function and the worker’s decode function work together
as a pair. For more information on the submit function, see “MATLAB
Client Submit Function” on page 8-35. The decode function on the worker is
identified by the submit function as the value of the environment variable
MDCE_DECODE_FUNCTION. The environment variable must be copied from the

8-41



8 Program Distributed Jobs

client node to the worker node. Your scheduler might perform this task for
you automatically; if it does not, you must arrange for this copying.

The value of the environment variable MDCE_DECODE_FUNCTION defines the
filename of the decode function, but not its location. The file cannot be passed
as part of the job PathDependencies or FileDependencies property, because
the function runs in the MATLAB worker before that session has access to
the job. Therefore, the file location must be available to the MATLAB worker
as that worker starts.

Note The decode function must be available on the MATLAB worker’s path.

You can get the decode function on the worker’s path by either moving the file
into a directory on the path (for example, matlabroot/toolbox/local), or by
having the scheduler use cd in its command so that it starts the MATLAB
worker from within the directory that contains the decode function.

In practice, the decode function might be identical for all workers on the
cluster. In this case, all workers can use the same decode function file if it is
accessible on a shared drive.

When a MATLAB worker starts, it automatically runs the file identified by
the MDCE_DECODE_FUNCTION environment variable. This decode function runs
before the worker does any processing of its task.

Read the Job and Task Information
When the environment variables have been transferred from the client to
the worker nodes (either by the scheduler or some other means), the decode
function of the MATLAB worker can read them with the getenv function.

With those values from the environment variables, the decode function must
set the appropriate property values of the object that is its argument. The
property values that must be set are the same as those in the corresponding
submit function, except that instead of the cell array TaskLocations, each
worker has only the individual string TaskLocation, which is one element of
the TaskLocations cell array. Therefore, the properties you must set within
the decode function on its argument object are as follows:
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• StorageConstructor

• StorageLocation

• JobLocation

• TaskLocation

Example — Write the Decode Function
The decode function must read four environment variables and use their
values to set the properties of the object that is the function’s output.

In this example, the decode function’s argument is the object props.

function props = workerDecodeFunc(props)
% Read the environment variables:
storageConstructor = getenv('MDCE_STORAGE_CONSTRUCTOR');
storageLocation = getenv('MDCE_STORAGE_LOCATION');
jobLocation = getenv('MDCE_JOB_LOCATION');
taskLocation = getenv('MDCE_TASK_LOCATION');
%
% Set props object properties from the local variables:
set(props, 'StorageConstructor', storageConstructor);
set(props, 'StorageLocation', storageLocation);
set(props, 'JobLocation', jobLocation);
set(props, 'TaskLocation', taskLocation);

When the object is returned from the decode function to the MATLAB worker
session, its values are used internally for managing job and task data.

Example — Program and Run a Job in the Client

1. Create a Scheduler Object
You use the findResource function to create an object representing the
scheduler in your local MATLAB client session.

You can specify 'generic' as the name for findResource to search for.
(Any scheduler name starting with the string 'generic' creates a generic
scheduler object.)
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sched = findResource('scheduler', 'type', 'generic')

Generic schedulers must use a shared file system for workers to access job
and task data. Set the DataLocation and HasSharedFilesystem properties
to specify where the job data is stored and that the workers should access job
data directly in a shared file system.

set(sched, 'DataLocation', '\\share\scratch\jobdata')
set(sched, 'HasSharedFilesystem', true)

Note All nodes require access to the directory specified in the scheduler
object’s DataLocation directory. See the DataLocation reference page for
information on setting this property for a mixed-platform environment.

If DataLocation is not set, the default location for job data is the current
working directory of the MATLAB client the first time you use findResource
to create an object for this type of scheduler, which might not be accessible
to the worker nodes.

If MATLAB is not on the worker’s system path, set the ClusterMatlabRoot
property to specify where the workers are to find the MATLAB installation.

set(sched, 'ClusterMatlabRoot', '\\apps\matlab\')

You can look at all the property settings on the scheduler object. If no jobs
are in the DataLocation directory, the Jobs property is a 0-by-1 array. All
settable property values on a scheduler object are local to the MATLAB client,
and are lost when you close the client session or when you remove the object
from the client workspace with delete or clear all.

get(sched)
Configuration: ''

Type: 'generic'
DataLocation: '\\share\scratch\jobdata'

HasSharedFilesystem: 1
Jobs: [0x1 double]

ClusterMatlabRoot: '\\apps\matlab\'
ClusterOsType: 'pc'

UserData: []
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ClusterSize: Inf
MatlabCommandToRun: 'worker'

SubmitFcn: []
ParallelSubmitFcn: []

You must set the SubmitFcn property to specify the submit function for this
scheduler.

set(sched, 'SubmitFcn', @mysubmitfunc)

With the scheduler object and the user-defined submit and decode functions
defined, programming and running a job is now similar to doing so with a job
manager or any other type of scheduler.

2. Create a Job
You create a job with the createJob function, which creates a job object in
the client session. The job data is stored in the directory specified by the
scheduler object’s DataLocation property.

j = createJob(sched)

This statement creates the job object j in the client session. Use get to see
the properties of this job object.

get(j)
Configuration: ''

Name: 'Job1'
ID: 1

UserName: 'neo'
Tag: ''

State: 'pending'
CreateTime: 'Fri Jan 20 16:15:47 EDT 2006'
SubmitTime: ''
StartTime: ''

FinishTime: ''
Tasks: [0x1 double]

FileDependencies: {0x1 cell}
PathDependencies: {0x1 cell}

JobData: []
Parent: [1x1 distcomp.genericscheduler]
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UserData: []

Note Properties of a particular job or task should be set from only one
computer at a time.

This generic scheduler job has somewhat different properties than a job that
uses a job manager. For example, this job has no callback functions.

The job’s State property is pending. This state means the job has not been
queued for running yet. This new job has no tasks, so its Tasks property
is a 0-by-1 array.

The scheduler’s Jobs property is now a 1-by-1 array of distcomp.simplejob
objects, indicating the existence of your job.

get(sched)
Configuration: ''

Type: 'generic'
DataLocation: '\\share\scratch\jobdata'

HasSharedFilesystem: 1
Jobs: [1x1 distcomp.simplejob]

ClusterMatlabRoot: '\\apps\matlab\'
ClusterOsType: 'pc'

UserData: []
ClusterSize: Inf

MatlabCommandToRun: 'worker'
SubmitFcn: @mysubmitfunc

ParallelSubmitFcn: []

3. Create Tasks
After you have created your job, you can create tasks for the job. Tasks define
the functions to be evaluated by the workers during the running of the job.
Often, the tasks of a job are identical except for different arguments or data.
In this example, each task generates a 3-by-3 matrix of random numbers.

createTask(j, @rand, 1, {3,3});
createTask(j, @rand, 1, {3,3});
createTask(j, @rand, 1, {3,3});
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createTask(j, @rand, 1, {3,3});
createTask(j, @rand, 1, {3,3});

The Tasks property of j is now a 5-by-1 matrix of task objects.

get(j,'Tasks')
ans =

distcomp.simpletask: 5-by-1

Alternatively, you can create the five tasks with one call to createTask by
providing a cell array of five cell arrays defining the input arguments to each
task.

T = createTask(job1, @rand, 1, {{3,3} {3,3} {3,3} {3,3} {3,3}});

In this case, T is a 5-by-1 matrix of task objects.

4. Submit a Job to the Job Queue
To run your job and have its tasks evaluated, you submit the job to the
scheduler’s job queue.

submit(j)

The scheduler distributes the tasks of j to MATLAB workers for evaluation.

The job runs asynchronously. If you need to wait for it to complete before
you continue in your MATLAB client session, you can use the waitForState
function.

waitForState(j)

The default state to wait for is finished or failed. This function pauses
MATLAB until the State property of j is 'finished' or 'failed'.

5. Retrieve the Job’s Results
The results of each task’s evaluation are stored in that task object’s
OutputArguments property as a cell array. Use getAllOutputArguments to
retrieve the results from all the tasks in the job.

results = getAllOutputArguments(j);
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Display the results from each task.

results{1:5}

0.9501 0.4860 0.4565
0.2311 0.8913 0.0185
0.6068 0.7621 0.8214

0.4447 0.9218 0.4057
0.6154 0.7382 0.9355
0.7919 0.1763 0.9169

0.4103 0.3529 0.1389
0.8936 0.8132 0.2028
0.0579 0.0099 0.1987

0.6038 0.0153 0.9318
0.2722 0.7468 0.4660
0.1988 0.4451 0.4186

0.8462 0.6721 0.6813
0.5252 0.8381 0.3795
0.2026 0.0196 0.8318

Supplied Submit and Decode Functions
There are several submit and decode functions provided with the toolbox for
your use with the generic scheduler interface. These files are in the folder

matlabroot/toolbox/distcomp/examples/integration

In this folder are subdirectories for each of several types of scheduler.

Depending on your network and cluster configuration, you might need to
modify these files before they will work in your situation. Ask your system
administrator for help.

At the time of publication, there are folders for Condor (condor), PBS (pbs),
and Platform LSF (lsf) schedulers, generic UNIX-based scripts (ssh), Sun
Grid Engine (sge), and mpiexec on Microsoft Windows operating systems
(winmpiexec). In addition, the pbs, lsf, and sge folders have subfolders called
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shared, nonshared, and remoteSubmission, which contain scripts for use in
particular cluster configurations. Each of these subfolders contains a file
called README, which provides instruction on where and how to use its scripts.

For each scheduler type, the folder (or configuration subfolder)
contains wrappers, submit functions, and other job management
scripts for for distributed and parallel jobs. For example, the directory
matlabroot/toolbox/distcomp/examples/integration/pbs/shared
contains the following files for use with a PBS scheduler:

Filename Description

distributedSubmitFcn.m Submit function for a distributed job

parallelSubmitFcn.m Submit function for a parallel job

distributedJobWrapper.sh Script that is submitted to PBS to start
workers that evaluate the tasks of a
distributed job

parallelJobWrapper.sh Script that is submitted to PBS to start labs
that evaluate the tasks of a parallel job

destroyJobFcn.m Script to destroy a job from the scheduler

extractJobId.m Script to get the job’s ID from the scheduler

getJobStateFcn.m Script to get the job’s state from the scheduler

getSubmitString.m Script to get the submission string for the
scheduler

These files are all programmed to use the standard decode functions provided
with the product, so they do not have specialized decode functions.

The folder for other scheduler types contain similar files. As more files
or solutions for more schedulers might become available at any time,
visit the support page for this product on the MathWorks Web site at
http://www.mathworks.com/support/product/product.html?product=DM.
This Web page also provides contact information in case you have any
questions.
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Manage Jobs with Generic Scheduler
While you can use the get, cancel, and destroy methods on jobs that use
the generic scheduler interface, by default these methods access or affect only
the job data where it is stored on disk. To cancel or destroy a job or task
that is currently running or queued, you must provide instructions to the
scheduler directing it what to do and when to do it. To accomplish this, the
toolbox provides a means of saving data associated with each job or task from
the scheduler, and a set of properties to define instructions for the scheduler
upon each cancel or destroy request.

Save Job Scheduler Data
The first requirement for job management is to identify the job from the
scheduler’s perspective. When you submit a job to the scheduler, the
command to do the submission in your submit function can return from the
scheduler some data about the job. This data typically includes a job ID. By
storing that job ID with the job, you can later refer to the job by this ID when
you send management commands to the scheduler. Similarly, you can store
information, such as an ID, for each task. The toolbox function that stores
this scheduler data is setJobSchedulerData.

If your scheduler accommodates submission of entire jobs (collection of tasks)
in a single command, you might get back data for the whole job and/or for
each task. Part of your submit function might be structured like this:

for ii = 1:props.NumberOfTasks

define scheduler command per task

end

submit job to scheduler

data_array = parse data returned from scheduler %possibly NumberOfTasks-by-2 matrix

setJobSchedulerData(scheduler, job, data_array)

If your scheduler accepts only submissions of individual tasks, you might get
return data pertaining to only each individual tasks. In this case, your submit
function might have code structured like this:

for ii = 1:props.NumberOfTasks

submit task to scheduler

%Per-task settings:

data_array(1,ii) = ... parse string returned from scheduler
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data_array(2,ii) = ... save ID returned from scheduler

etc

end

setJobSchedulerData(scheduler, job, data_array)

Define Scheduler Commands in User Functions
With the scheduler data (such as the scheduler’s ID for the job or task) now
stored on disk along with the rest of the job data, you can write code to control
what the scheduler should do when that particular job or task is canceled
or destroyed.

For example, you might create these four functions:

• myCancelJob.m

• myDestroyJob.m

• myCancelTask.m

• myDestroyTask.m

Your myCancelJob.m function defines what you want to communicate to your
scheduler in the event that you use the cancel function on your job from
the MATLAB client. The toolbox takes care of the job state and any data
management with the job data on disk, so your myCancelJob.m function needs
to deal only with the part of the job currently running or queued with the
scheduler. The toolbox function that retrieves scheduler data from the job is
getJobSchedulerData. Your cancel function might be structured something
like this:

function myCancelTask(sched, job)

array_data = getJobSchedulerData(sched, job)

job_id = array_data(...) % Extract the ID from the data, depending on how

% it was stored in the submit function above.

command to scheduler canceling job job_id

In a similar way, you can define what do to for destroying a job, and what to
do for canceling and destroying tasks.
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Destroy or Cancel a Running Job
After your functions are written, you set the appropriate properties of the
scheduler object with handles to your functions. The corresponding scheduler
properties are:

• CancelJobFcn

• DestroyJobFcn

• CancelTaskFcn

• DestroyTaskFcn

You can set the properties in the Configurations Manager for your scheduler,
or on the command line:

schdlr = findResource(scheduler, 'type', 'generic');
% set required properties
set(schdlr, 'CancelJobFcn', @myCancelJob)
set(schdlr, 'DestroyJobFcn', @myDestroyJob)
set(schdlr, 'CancelTaskFcn', @myCancelTask)
set(schdlr, 'DestroyTaskFcn', @myDestroyTask)

Continue with job creation and submission as usual.

j1 = createJob(schdlr);
for ii = 1:n

t(ii) = createTask(j1,...)
end
submit(j1)

While it is running or queued, you can cancel or destroy the job or a task.

This command cancels the task and moves it to the finished state, and
triggers execution of myCancelTask, which sends the appropriate commands
to the scheduler:

cancel(t(4))

This command deletes job data for j1, and triggers execution of myDestroyJob,
which sends the appropriate commands to the scheduler:

destroy(j1)
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Get State Information About a Job or Task
When using a third-party scheduler, it is possible that the scheduler itself can
have more up-to-date information about your jobs than what is available to
the toolbox from the job storage location. To retrieve that information from
the scheduler, you can write a function to do that, and set the value of the
GetJobStateFcn property as a handle to your function.

Whenever you use a toolbox function such as get, waitForState, etc., that
accesses the state of a job on the generic scheduler, after retrieving the state
from storage, the toolbox runs the function specified by the GetJobStateFcn
property, and returns its result in place of the stored state. The function
you write for this purpose must return a valid string value for the State of
a job object.

When using the generic scheduler interface in a nonshared file system
environment, the remote file system might be slow in propagating large data
files back to your local data location. Therefore, a job’s State property might
indicate that the job is finished some time before all its data is available to you.

Summary
The following list summarizes the sequence of events that occur when running
a job that uses the generic scheduler interface:

1 Provide a submit function and a decode function. Be sure the decode
function is on all the MATLAB workers’ paths.

The following steps occur in the MATLAB client session:

2 Define the SubmitFcn property of your scheduler object to point to the
submit function.

3 Send your job to the scheduler.

submit(job)

4 The client session runs the submit function.

5 The submit function sets environment variables with values derived from
its arguments.
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6 The submit function makes calls to the scheduler — generally, a call for
each task (with environment variables identified explicitly, if necessary).

The following step occurs in your network:

7 For each task, the scheduler starts a MATLAB worker session on a cluster
node.

The following steps occur in each MATLAB worker session:

8 The MATLAB worker automatically runs the decode function, finding it
on the path.

9 The decode function reads the pertinent environment variables.

10 The decode function sets the properties of its argument object with values
from the environment variables.

11 The MATLAB worker uses these object property values in processing its
task without your further intervention.
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Program Parallel Jobs

Parallel jobs are those in which the workers (or labs) can communicate
with each other during the evaluation of their tasks. The following sections
describe how to program parallel jobs:

• “Introduction” on page 9-2

• “Use a Supported Scheduler” on page 9-4

• “Use the Generic Scheduler Interface” on page 9-8

• “Further Notes on Parallel Jobs” on page 9-11
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Introduction
A parallel job consists of only a single task that runs simultaneously on
several workers, usually with different data. More specifically, the task is
duplicated on each worker, so each worker can perform the task on a different
set of data, or on a particular segment of a large data set. The workers can
communicate with each other as each executes its task. In this configuration,
workers are referred to as labs.

In principle, creating and running parallel jobs is similar to programming
distributed jobs:

1 Find a scheduler.

2 Create a parallel job.

3 Create a task.

4 Submit the job for running. For details about what each worker performs
for evaluating a task, see “Submit a Job to the Job Queue” on page 8-13.

5 Retrieve the results.

The differences between distributed jobs and parallel jobs are summarized
in the following table.

Distributed Job Parallel Job

MATLAB sessions, called workers,
perform the tasks but do not
communicate with each other.

MATLAB sessions, called labs, can
communicate with each other during
the running of their tasks.

You define any number of tasks in
a job.

You define only one task in a job.
Duplicates of that task run on all
labs running the parallel job.

Tasks need not run simultaneously.
Tasks are distributed to workers as
the workers become available, so a
worker can perform several of the
tasks in a job.

Tasks run simultaneously, so you
can run the job only on as many labs
as are available at run time. The
start of the job might be delayed
until the required number of labs is
available.
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A parallel job has only one task that runs simultaneously on every lab. The
function that the task runs can take advantage of a lab’s awareness of how
many labs are running the job, which lab this is among those running the job,
and the features that allow labs to communicate with each other.
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Use a Supported Scheduler

In this section...

“Schedulers and Conditions” on page 9-4

“Code the Task Function” on page 9-4

“Code in the Client” on page 9-5

Schedulers and Conditions
You can run a parallel job using any type of scheduler. This section illustrates
how to program parallel jobs for supported schedulers (job manager, local
scheduler, Microsoft Windows HPC Server (including CCS), Platform LSF,
PBS Pro, TORQUE, or mpiexec).

To use this supported interface for parallel jobs, the following conditions
must apply:

• You must have a shared file system between client and cluster machines

• You must be able to submit jobs directly to the scheduler from the client
machine

Note When using any third-party scheduler for running a parallel job, if all
these conditions are not met, you must use the generic scheduler interface.
(Parallel jobs also include pmode, matlabpool, spmd, and parfor.) See “Use
the Generic Scheduler Interface” on page 9-8.

Code the Task Function
In this section a simple example illustrates the basic principles of
programming a parallel job with a third-party scheduler. In this example,
the lab whose labindex value is 1 creates a magic square comprised of a
number of rows and columns that is equal to the number of labs running the
job (numlabs). In this case, four labs run a parallel job with a 4-by-4 magic
square. The first lab broadcasts the matrix with labBroadcast to all the
other labs , each of which calculates the sum of one column of the matrix. All
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of these column sums are combined with the gplus function to calculate the
total sum of the elements of the original magic square.

The function for this example is shown below.

function total_sum = colsum
if labindex == 1

% Send magic square to other labs
A = labBroadcast(1,magic(numlabs))

else
% Receive broadcast on other labs
A = labBroadcast(1)

end

% Calculate sum of column identified by labindex for this lab
column_sum = sum(A(:,labindex))

% Calculate total sum by combining column sum from all labs
total_sum = gplus(column_sum)

This function is saved as the file colsum.m on the path of the MATLAB client.
It will be sent to each lab by the job’s FileDependencies property.

While this example has one lab create the magic square and broadcast it
to the other labs, there are alternative methods of getting data to the labs.
Each lab could create the matrix for itself. Alternatively, each lab could read
its part of the data from a file on disk, the data could be passed in as an
argument to the task function, or the data could be sent in a file contained in
the job’s FileDependencies property. The solution to choose depends on your
network configuration and the nature of the data.

Code in the Client
As with distributed jobs, you find a scheduler and create a scheduler object in
your MATLAB client by using the findResource function. There are slight
differences in the arguments for findResource, depending on the scheduler
you use, but using configurations to define as many properties as possible
minimizes coding differences between the scheduler types.

You can create and configure the scheduler object with this code:
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sched = findResource('scheduler', 'configuration', myconfig)

where myconfig is the name of a user-defined configuration for the type of
scheduler you are using. Any required differences for various scheduling
options are controlled in the configuration. You can have one or more
separate configurations for each type of scheduler. For complete details, see
“Parallel Configurations for Cluster Access” on page 6-14. Create or modify
configurations according to the instructions of your system administrator.

When your scheduler object is defined, you create the job object with the
createParallelJob function.

pjob = createParallelJob(sched);

The function file colsum.m (created in “Code the Task Function” on page 9-4)
is on the MATLAB client path, but it has to be made available to the labs.
One way to do this is with the job’s FileDependencies property, which can be
set in the configuration you used, or by:

set(pjob, 'FileDependencies', {'colsum.m'})

Here you might also set other properties on the job, for example, setting the
number of workers to use. Again, configurations might be useful in your
particular situation, especially if most of your jobs require many of the same
property settings. To run this example on four labs, you can established this
in the configuration, or by the following client code:

set(pjob, 'MaximumNumberOfWorkers', 4)
set(pjob, 'MinimumNumberOfWorkers', 4)

You create the job’s one task with the usual createTask function. In this
example, the task returns only one argument from each lab, and there are no
input arguments to the colsum function.

t = createTask(pjob, @colsum, 1, {})

Use submit to run the job.

submit(pjob)
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Make the MATLAB client wait for the job to finish before collecting the
results. The results consist of one value from each lab. The gplus function in
the task shares data between the labs, so that each lab has the same result.

waitForState(pjob)
results = getAllOutputArguments(pjob)
results =

[136]
[136]
[136]
[136]
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Use the Generic Scheduler Interface

In this section...

“Introduction” on page 9-8

“Code in the Client” on page 9-8

Introduction
This section discusses programming parallel jobs using the generic scheduler
interface. This interface lets you execute jobs on your cluster with any
scheduler you might have.

The principles of using the generic scheduler interface for parallel jobs are the
same as those for distributed jobs. The overview of the concepts and details of
submit and decode functions for distributed jobs are discussed fully in “Use
the Generic Scheduler Interface” on page 8-34 in the chapter on Programming
Distributed Jobs.

Code in the Client

Configure the Scheduler Object
Coding a parallel job for a generic scheduler involves the same procedure
as coding a distributed job.

1 Create an object representing your scheduler with findResource.

2 Set the appropriate properties on the scheduler object if they are not
defined in the configuration. Because the scheduler itself is often common
to many users and applications, it is probably best to use a configuration
for programming these properties. See “Parallel Configurations for Cluster
Access” on page 6-14.

Among the properties required for a parallel job is ParallelSubmitFcn.
You can write your own parallel submit and decode functions, or use
those come with the product for various schedulers and platforms; see the
following section, “Supplied Submit and Decode Functions” on page 9-9.
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3 Use createParallelJob to create a parallel job object for your scheduler.

4 Create a task, run the job, and retrieve the results as usual.

Supplied Submit and Decode Functions
There are several submit and decode functions provided with the toolbox for
your use with the generic scheduler interface. These files are in the folder

matlabroot/toolbox/distcomp/examples/integration

In this folder are subdirectories for each of several types of scheduler.

Depending on your network and cluster configuration, you might need to
modify these files before they will work in your situation. Ask your system
administrator for help.

At the time of publication, there are folders for Condor (condor), PBS (pbs),
and Platform LSF (lsf) schedulers, generic UNIX-based scripts (ssh), Sun
Grid Engine (sge), and mpiexec on Microsoft Windows operating systems
(winmpiexec). In addition, the pbs, lsf, and sge folders have subfolders called
shared, nonshared, and remoteSubmission, which contain scripts for use in
particular cluster configurations. Each of these subfolders contains a file
called README, which provides instruction on where and how to use its scripts.

For each scheduler type, the folder (or configuration subfolder)
contains wrappers, submit functions, and other job management
scripts for for distributed and parallel jobs. For example, the directory
matlabroot/toolbox/distcomp/examples/integration/pbs/shared
contains the following files for use with a PBS scheduler:

Filename Description

distributedSubmitFcn.m Submit function for a distributed job

parallelSubmitFcn.m Submit function for a parallel job

distributedJobWrapper.sh Script that is submitted to PBS to start
workers that evaluate the tasks of a
distributed job
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Filename Description

parallelJobWrapper.sh Script that is submitted to PBS to start labs
that evaluate the tasks of a parallel job

destroyJobFcn.m Script to destroy a job from the scheduler

extractJobId.m Script to get the job’s ID from the scheduler

getJobStateFcn.m Script to get the job’s state from the scheduler

getSubmitString.m Script to get the submission string for the
scheduler

These files are all programmed to use the standard decode functions provided
with the product, so they do not have specialized decode functions. For
parallel jobs, the standard decode function provided with the product is
parallel.cluster.generic.parallelDecodeFcn. You can view the required
variables in this file by typing

edit parallel.cluster.generic.parallelDecodeFcn

The folder for other scheduler types contain similar files. As more files
or solutions for more schedulers might become available at any time,
visit the support page for this product on the MathWorks Web site at
http://www.mathworks.com/support/product/product.html?product=DM.
This Web page also provides contact information in case you have any
questions.
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Further Notes on Parallel Jobs

In this section...

“Number of Tasks in a Parallel Job” on page 9-11

“Avoid Deadlock and Other Dependency Errors” on page 9-11

Number of Tasks in a Parallel Job
Although you create only one task for a parallel job, the system copies this
task for each worker that runs the job. For example, if a parallel job runs on
four workers (labs), the Tasks property of the job contains four task objects.
The first task in the job’s Tasks property corresponds to the task run by the
lab whose labindex is 1, and so on, so that the ID property for the task object
and labindex for the lab that ran that task have the same value. Therefore,
the sequence of results returned by the getAllOutputArguments function
corresponds to the value of labindex and to the order of tasks in the job’s
Tasks property.

Avoid Deadlock and Other Dependency Errors
Because code running in one lab for a parallel job can block execution until
some corresponding code executes on another lab, the potential for deadlock
exists in parallel jobs. This is most likely to occur when transferring data
between labs or when making code dependent upon the labindex in an if
statement. Some examples illustrate common pitfalls.

Suppose you have a codistributed array D, and you want to use the gather
function to assemble the entire array in the workspace of a single lab.

if labindex == 1
assembled = gather(D);

end

The reason this fails is because the gather function requires communication
between all the labs across which the array is distributed. When the if
statement limits execution to a single lab, the other labs required for
execution of the function are not executing the statement. As an alternative,
you can use gather itself to collect the data into the workspace of a single lab:
assembled = gather(D, 1).
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In another example, suppose you want to transfer data from every lab to the
next lab on the right (defined as the next higher labindex). First you define
for each lab what the labs on the left and right are.

from_lab_left = mod(labindex - 2, numlabs) + 1;
to_lab_right = mod(labindex, numlabs) + 1;

Then try to pass data around the ring.

labSend (outdata, to_lab_right);
indata = labReceive(from_lab_left);

The reason this code might fail is because, depending on the size of the data
being transferred, the labSend function can block execution in a lab until the
corresponding receiving lab executes its labReceive function. In this case, all
the labs are attempting to send at the same time, and none are attempting to
receive while labSend has them blocked. In other words, none of the labs get
to their labReceive statements because they are all blocked at the labSend
statement. To avoid this particular problem, you can use the labSendReceive
function.
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When to Use a GPU for Matrix Operations

In this section...

“Capabilities” on page 10-2

“Requirements” on page 10-2

“Demos” on page 10-3

Capabilities
This chapter describes how to program MATLAB to use your computer’s
graphics processing unit (GPU) for matrix operations. In many cases,
execution in the GPU is faster than in the CPU, so the techniques described
in this chapter might offer improved performance.

Several options are available for using your GPU:

• Transferring data between the MATLAB workspace and the GPU

• Evaluating built-in functions on the GPU

• Running MATLAB code on the GPU

• Creating kernels from PTX files for execution on the GPU

• Choosing one of multiple GPU cards to use

The particular workflows for these capabilities are described in the following
sections of this chapter.

Requirements
The following are required for using the GPU with MATLAB:

• NVIDIA CUDA-enabled device with compute capability of 1.3 or greater

• The latest NVIDIA CUDA device driver

• Access from a MATLAB worker running on a Microsoft Windows operating
system with a job manager as the scheduler, requires an NVIDIA Tesla
Compute Cluster (TCC) driver with an NVIDIA Tesla card.
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Demos
Demos showing the usage of the GPU are available in the Demos node under
Parallel Computing Toolbox in the help browser. You can also access the
product demos by entering the following command at the MATLAB prompt:

demo toolbox parallel
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Using GPUArray

In this section...

“Transfer Data Between Workspace and GPU” on page 10-4

“Create GPU Data Directly” on page 10-5

“Examine GPUArray Characteristics” on page 10-7

“Built-In Functions That Support GPUArray” on page 10-7

Transfer Data Between Workspace and GPU

Send Data to the GPU
A GPUArray in MATLAB represents data that is stored on the GPU. Use
the gpuArray function to transfer an array from the MATLAB workspace
to the GPU:

N = 6;
M = magic(N);
G = gpuArray(M);

G is now a MATLAB GPUArray object that represents the data of the magic
square stored on the GPU. The data provided as input to gpuArray must
be nonsparse, and either 'single', 'double', 'int8', 'int16', 'int32',
'int64', 'uint8', 'uint16', 'uint32', 'uint64', or 'logical'. (For more
information, see “Data Types” on page 10-25.)

Retrieve Data from the GPU
Use the gather function to retrieve data from the GPU to the MATLAB
workspace. This takes data that is on the GPU represented by a GPUArray
object, and makes it available in the MATLAB workspace as a regular
MATLAB variable. You can use isequal to verify that you get the correct
data back:

G = gpuArray(ones(100, 'uint32'));
D = gather(G);
OK = isequal(D, ones(100, 'uint32'))
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Examples: Transferring Data

Transfer Data to the GPU. Create a 1000-by-1000 random matrix in
MATLAB, and then transfer it to the GPU:

X = rand(1000);
G = gpuArray(X);

Transfer Data of a Specified Precision. Create a matrix of double-precision
random data in MATLAB, and then transfer the matrix as single-precision
from MATLAB to the GPU:

X = rand(1000);
G = gpuArray(single(X));

Construct an Array for Storing on the GPU. Construct a 100-by-100
matrix of uint32 ones and transfer it to the GPU. You can accomplish this
with a single line of code:

G = gpuArray(ones(100, 'uint32'));

Create GPU Data Directly
A number of static methods on the GPUArray class allow you to directly
construct arrays on the GPU without having to transfer them from the
MATLAB workspace. These constructors require only array size and data
class information, so they can construct an array without any element data
from the workspace. Use any of the following to directly create an array on
the GPU:

parallel.gpu.GPUArray.ones parallel.gpu.GPUArray.rand

parallel.gpu.GPUArray.zeros parallel.gpu.GPUArray.randi

parallel.gpu.GPUArray.inf parallel.gpu.GPUArray.randn

parallel.gpu.GPUArray.nan parallel.gpu.GPUArray.RandStream

parallel.gpu.GPUArray.true parallel.gpu.GPUArray.rng

parallel.gpu.GPUArray.false parallel.gpu.GPUArray.linspace

parallel.gpu.GPUArray.eye parallel.gpu.GPUArray.logspace

parallel.gpu.GPUArray.colon
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For a complete list of available static methods in any release, type

methods('parallel.gpu.GPUArray')

The static constructors appear at the bottom of the output from this command.

For help on any one of the constructors, type

help parallel.gpu.GPUArray/functionname

For example, to see the help on the colon constructor, type

help parallel.gpu.GPUArray/colon

Example: Construct an Identity Matrix on the GPU
To create a 1024-by-1024 identity matrix of type int32 on the GPU, type

II = parallel.gpu.GPUArray.eye(1024,'int32');
size(II)

1024 1024

With one numerical argument, you create a 2-dimensional matrix.

Example: Construct a Multidimensional Array on the GPU
To create a 3-dimensional array of ones with data class double on the GPU,
type

G = parallel.gpu.GPUArray.ones(100, 100, 50);
size(G)

100 100 50
classUnderlying(G)
double

The default class of the data is double, so you do not have to specify it.

Example: Construct a Vector on the GPU
To create a 8192-element column vector of zeros on the GPU, type

Z = parallel.gpu.GPUArray.zeros(8192, 1);
size(Z)
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8192 1

For a column vector, the size of the second dimension is 1.

Examine GPUArray Characteristics
There are several functions available for examining the characteristics of a
GPUArray object:

Function Description

classUnderlying Class of the underlying data in the array

isreal Indication if array data is real

length Length of vector or largest array dimension

ndims Number of dimensions in the array

size Size of array dimensions

For example, to examine the size of the GPUArray object G, type:

G = gpuArray(rand(100));
s = size(G)

100 100

Built-In Functions That Support GPUArray
A subset of the MATLAB built-in functions supports the use of GPUArray.
Whenever any of these functions is called with at least one GPUArray as an
input argument, it executes on the GPU and returns a GPUArray as the
result. You can mix input from GPUArray and MATLAB workspace data in
the same function call. These functions include the discrete Fourier transform
(fft), matrix multiplication (mtimes), and left matrix division (mldivide).

The following functions and their symbol operators are enhanced to accept
GPUArray input arguments so that they execute on the GPU:
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abs
acos
acosh
acot
acoth
acsc
acsch
all
any
arrayfun
asec
asech
asin
asinh
atan
atan2
atanh
bitand
bitcmp
bitor
bitshift
bitxor
cast
cat
ceil
chol
classUnderlying
colon
complex
conj

conv
conv2
cos
cosh
cot
coth
csc
csch
ctranspose
cumprod
cumsum
diag
diff
disp
display
dot
double
eig
eps
eq
erf
erfc
erfcinv
erfcx
erfinv
exp
expm1
filter
filter2
find

fft
fft2
fix
floor
gamma
gammaln
gather
ge
gt
horzcat
hypot
ifft
ifft2
imag
int16
int32
int64
int8
isempty
isequal
isequalwithequalnans
isfinite
isinf
islogical
isnan
isreal
ldivide
le
length

log
log10
log1p
log2
logical
lt
lu
max
meshgrid
min
minus
mldivide
mod
mrdivide
mtimes
ndgrid
ndims
ne
norm
not
numel
plot (and related)
plus
power
prod
rdivide
real
reallog
realpow
realsqrt
rem

repmat
reshape
round
sec
sech
sign
sin
single
sinh
size
sort
sqrt
subsasgn
subsindex
subsref
sum
svd
tan
tanh
times
transpose
tril
triu
uint16
uint32
uint64
uint8
uminus
uplus
vertcat

To get specific help on the overloaded functions, and to learn about any
restrictions concerning their support for GPUArray objects, type:

help parallel.gpu.GPUArray/functionname

For example, to see the help on the overload of lu, type
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help parallel.gpu.GPUArray/lu

The following functions are not methods of the GPUArray class, but they do
work with GPUArray data:

angle
beta
betaln
fliplr

flipud
flipdim
fftshift
ifftshift

mean
kron
perms
squeeze
rot90

Example: Calling Functions on GPUArray Objects
This example uses the fft and real functions, along with the arithmetic
operators + and *. All the calculations are performed on the GPU, then
gather retrieves the data from the GPU back to the MATLAB workspace.

Ga = gpuArray(rand(1000, 'single'));
Gfft = fft(Ga);
Gb = (real(Gfft) + Ga) * 6;
G = gather(Gb);

The whos command is instructive for showing where each variable’s data
is stored.

whos
Name Size Bytes Class

G 1000x1000 4000000 single
Ga 1000x1000 108 parallel.gpu.GPUArray
Gb 1000x1000 108 parallel.gpu.GPUArray
Gfft 1000x1000 108 parallel.gpu.GPUArray

Notice that all the arrays are stored on the GPU (GPUArray), except for G,
which is the result of the gather function.
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Execute MATLAB Code on a GPU

In this section...

“MATLAB Code vs. GPUArray Objects” on page 10-10

“Running Your MATLAB Functions on the GPU” on page 10-10

“Example: Running Your MATLAB Code” on page 10-11

“Supported MATLAB Code” on page 10-12

MATLAB Code vs. GPUArray Objects
You have two options for performing MATLAB calculations on the GPU:

• You can transfer or create data on the GPU, and use the resulting
GPUArray as input to enhanced built-in functions that support them. For
more information and a list of functions that support GPUArray as inputs,
see “Built-In Functions That Support GPUArray” on page 10-7.

• You can run your own MATLAB function file on a GPU.

Your decision on which solution to adopt depends on whether the functions
you require are enhanced to support GPUArray, and the performance impact
of transferring data to/from the GPU.

Running Your MATLAB Functions on the GPU
To execute your MATLAB function on the GPU, call arrayfun with a function
handle to the MATLAB function as the first input argument:

result = arrayfun(@myFunction, arg1, arg2);

Subsequent arguments provide inputs to the MATLAB function. These input
arguments can be workspace data or GPUArray. If any of the input arguments
is a GPUArray, the function executes on the GPU and returns a GPUArray.
(If none of the inputs is GPUArray, then arrayfun executes in the CPU.)

See the arrayfun reference page for descriptions of the available options.
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Example: Running Your MATLAB Code
In this example, a small function applies correction data to an array of
measurement data. The function defined in the file myCal.m is:

function c = myCal(rawdata, gain, offst)
c = (rawdata .* gain) + offst;

The function performs only element-wise operations when applying a gain
factor and offset to each element of the rawdata array.

Create some nominal measurement:

meas = ones(1000)*3; % 1000-by-1000 matrix

The function allows the gain and offset to be arrays of the same size
as rawdata, so that unique corrections can be applied to individual
measurements. In a typical situation, you might keep the correction data on
the GPU so that you do not have to transfer it for each application:

gn = gpuArray(rand(1000))/100 + 0.995;
offs = gpuArray(rand(1000))/50 - 0.01;

Run your calibration function on the GPU:

corrected = arrayfun(@myCal, meas, gn, offs);

This runs on the GPU because the input arguments gn and offs are already
in GPU memory.

Retrieve the corrected results from the GPU to the MATLAB workspace:

results = gather(corrected);

10-11



10 GPU Computing

Supported MATLAB Code
The function passed into arrayfun can contain the following built-in
MATLAB functions and operators:

abs
acos
acosh
acot
acoth
acsc
acsch
asec
asech
asin
asinh
atan
atan2
atanh
bitand
bitcmp
bitor
bitshift
bitxor
ceil
complex
conj
cos
cosh
cot
coth
csc

csch
double
eps
erf
erfc
erfcinv
erfcx
erfinv
exp
expm1
false
fix
floor
gamma
gammaln
hypot
imag
Inf
int32
isfinite
isinf
isnan
log
log2
log10
log1p
logical

max
min
mod
NaN
pi
rand
randi
randn
real
reallog
realpow
realsqrt
rem
round
sec
sech
sign
sin
single
sinh
sqrt
tan
tanh
true
uint32
xor

+
-
.*
./
.\
.^
==
~=
<
<=
>
>=
&
|
~
&&
||

Scalar expansion versions
of the following:

*
/
\
^

Branching instructions:

break
continue
else
elseif
for
if
return
while
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Generating Random Numbers on the GPU
The function you pass to arrayfun for execution on the GPU can contain the
random number generator functions rand, randi, and randn. However, the
GPU does not support the complete functionality of these that MATLAB does.

arrayfun on the GPU supports the following forms of random matrix
generation:

rand
rand()
rand('single')
rand('double')
randn
randn()
randn('single')
randn('double')

randi
randi()
randi(IMAX, ...)
randi([IMIN IMAX], ...)
randi(..., 'single')
randi(..., 'double')
randi(..., 'int32')
randi(..., 'uint32')

You do not specify the array size for random generation. Instead, the number
of generated random values is determined by the sizes of the input variables
to your function. In effect, there will be enough random number elements to
satisfy the needs of any input or output variables.

For example, suppose your function myfun.m contains the following code that
includes generating and using the random matrix R:

function Y = myfun(X)
R = rand();
Y = R.*X;

end

If you use arrayfun to run this function with an input variable that is a
GPUArray, the function runs on the GPU, where the number of random
elements for R is determined by the size of X, so you do not need to specify it.
The following code passes the GPUArray matrix G to myfun on the GPU.

G = 2*parallel.gpu.GPUArray.ones(4,4)
H = arrayfun(@myfun, G)
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Because G is a 4-by-4 GPUArray, myfun generates 16 random value scalar
elements for R, one for each calculation with an element of G.

Limitations and Restrictions
The following limitations apply to the code within the function that arrayfun
is evaluating on a GPU.

• Nested and anonymous functions do not have access to their parent
function workspace.

• The code can call only those supported functions listed above, and cannot
call scripts. Overloading the supported functions is not allowed.

• Indexing (subsasgn, subsref) is not supported.

• The following language features are not supported: persistent or global
variables; parfor, spmd, switch, and try/catch.

• All double calculations are IEEE-compliant, but because of hardware
limitations, single calculations are not.

• The only supported data type conversions are single, double, int32,
uint32, and logical.

• Functional forms of arithmetic operators are not supported, but symbol
operators are. For example, the function cannot contain a call to plus,
but it can use the + operator.

• Like arrayfun in MATLAB, matrix exponential power, multiplication, and
division (^, *, /, \) perform element-wise calculations only.

• There is no ans variable to hold unassigned computation results. Make
sure to explicitly assign to variables the results of all calculations that
you are interested in.

• When generating random matrices with rand, randi, or randn, you do not
need to specify the matrix size, and each element of the matrix has its
own random stream.
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Identify and Select a GPU from Multiple GPUs
If you have only one GPU in your computer, that GPU is the default. If you
have more than one GPU card in your computer, you can use the following
functions to identify and select which card you want to use:

Function Description

gpuDeviceCount The number of GPU cards in your computer

gpuDevice Select which card to use, or see which card is
selected and view its properties

Example: Selecting a GPU
This example shows how to identify and select a GPU for your computations.

1 Determine how many GPU devices are in your computer:

gpuDeviceCount

2

2 With two devices, the first is the default. You can examine its properties
to determine if that is the one you want to use:

gpuDevice

parallel.gpu.CUDADevice handle
Package: parallel.gpu

Properties:
Name: 'Tesla C1060'

Index: 1
ComputeCapability: '1.3'

SupportsDouble: 1
DriverVersion: 4

MaxThreadsPerBlock: 512
MaxShmemPerBlock: 16384

MaxThreadBlockSize: [512 512 64]
MaxGridSize: [65535 65535]
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SIMDWidth: 32
TotalMemory: 4.2948e+09
FreeMemory: 4.2563e+09

MultiprocessorCount: 30
ClockRateKHz: 1296000
ComputeMode: 'Default'

GPUOverlapsTransfers: 1
KernelExecutionTimeout: 0

CanMapHostMemory: 1
DeviceSupported: 1
DeviceSelected: 1

If this is the device you want to use, you can proceed.

3 To use another device, call gpuDevice with the index of the other card, and
view its properties to verify that it is the one you want. For example, this
step chooses and views the second device (indexing is 1-based):

gpuDevice(2)

Note If you select a device that does not have sufficient compute capability,
you get a warning and you will not be able to use that device.
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Executing CUDA or PTX Code on the GPU

Creating Kernels from CU Files
This section explains how to make a kernel from CU and PTX (parallel thread
execution) files.

Compile a PTX File
If you have a CU file you want to execute on the GPU, you must first compile
it to create a PTX file. One way to do this is with the nvcc compiler in the
NVIDIA CUDA Toolkit. For example, if your CU file is called myfun.cu, you
can create a compiled PTX file with the shell command:

nvcc -ptx myfun.cu

This generates the file named myfun.ptx.

Construct the Kernel Object
With a .cu file and a .ptx file you can create a kernel object in MATLAB that
you can then use to evaluate the kernel:

k = parallel.gpu.CUDAKernel('myfun.ptx', 'myfun.cu');

Note You cannot save or load kernel objects.

Running the Kernel
Use the feval function to evaluate the kernel on the GPU. The following
examples show how to execute a kernel using GPUArray objects and MATLAB
workspace data.

Using Workspace Data
Assume that you have already written some kernels in a native language and
want to use them in MATLAB to execute on the GPU. You have a kernel that
does a convolution on two vectors; load and run it with two random input
vectors:
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k = parallel.gpu.CUDAKernel('conv.ptx', 'conv.cu');

o = feval(k, rand(100, 1), rand(100, 1));

Even if the inputs are constants or variables for MATLAB workspace data,
the output is GPUArray.

Using GPU Data
It might be more efficient to use GPUArray objects as input when running
a kernel:

k = parallel.gpu.CUDAKernel('conv.ptx', 'conv.cu');

i1 = gpuArray(rand(100, 1, 'single'));
i2 = gpuArray(rand(100, 1, 'single'));

o1 = feval(k, i1, i2);

Because the output is a GPUArray, you can now perform other operations using
this input or output data without further transfers between the MATLAB
workspace and the GPU. When all your GPU computations are complete,
gather your final result data into the MATLAB workspace:

o2 = feval(k, o1, i2);

r1 = gather(o1);
r2 = gather(o2);

Determining Input and Output Correspondence
When calling [out1, out2] = feval(kernel, in1, in2, in3), the inputs
in1, in2, and in3 correspond to each of the input argument to the C function
within your CU file. The outputs out1 and out2 store the values of the first
and second non-const pointer input arguments to the C function after the
C kernel has been executed.

For example, if the C kernel within a CU file has the following signature:

void reallySimple( float * pInOut, float c )

the corresponding kernel object (k) in MATLAB has the following properties:
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MaxNumLHSArguments: 1
NumRHSArguments: 2

ArgumentTypes: {'inout single vector' 'in single scalar'}

Therefore, to use the kernel object from this code with feval, you need to
provide feval two input arguments (in addition to the kernel object), and
you can use one output argument:

y = feval(k, x1, x2)

The input values x1 and x2 correspond to pInOut and c in the C function
prototype. The output argument y corresponds to the value of pInOut in the C
function prototype after the C kernel has executed.

The following is a slightly more complicated example that shows a
combination of const and non-const pointers:

void moreComplicated( const float * pIn, float * pInOut1, float * pInOut2 )

The corresponding kernel object in MATLAB then has the properties:

MaxNumLHSArguments: 2

NumRHSArguments: 3

ArgumentTypes: {'in single vector' 'inout single vector' 'inout single vector'}

You can use feval on this code’s kernel (k) with the syntax:

[y1, y2] = feval(k, x1, x2, x3)

The three input arguments x1, x2, and x3, correspond to the three arguments
that are passed into the C function. The output arguments y1 and y2,
correspond to the values of pInOut1 and pInOut2 after the C kernel has
executed.

Kernel Object Properties
When you create a kernel object without a terminating semicolon, or when
you type the object variable at the command line, MATLAB displays the
kernel object properties. For example:

k = parallel.gpu.CUDAKernel('conv.ptx', 'conv.cu')
k =
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parallel.gpu.CUDAKernel handle
Package: parallel.gpu

Properties:
ThreadBlockSize: [1 1 1]

MaxThreadsPerBlock: 512
GridSize: [1 1]

SharedMemorySize: 0
EntryPoint: '_Z8theEntryPf'

MaxNumLHSArguments: 1
NumRHSArguments: 2

ArgumentTypes: {'in single vector' 'inout single vector'}

The properties of a kernel object control some of its execution behavior. Use
dot notation to alter those properties that can be changed.

For a descriptions of the object properties, see the CUDAKernel object reference
page.

Specifying Entry Points
If your PTX file contains multiple entry points, you can identify the particular
kernel in myfun.ptx that you want the kernel object k to refer to:

k = parallel.gpu.CUDAKernel('myfun.ptx', 'myfun.cu', 'myKernel1');

A single PTX file can contain multiple entry points to different kernels. Each
of these entry points has a unique name. These names are generally mangled
(as in C++ mangling). However, when generated by nvcc the PTX name
always contains the original function name from the CU. For example, if the
CU file defines the kernel function as

__global__ void simplestKernelEver( float * x, float val )

then the PTX code contains an entry that might be called
_Z18simplestKernelEverPff.

When you have multiple entry points, specify the entry name for the
particular kernel when calling CUDAKernel to generate your kernel.
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Note The CUDAKernel function searches for your entry name in the PTX file,
and matches on any substring occurrences. Therefore, you should not name
any of your entries as substrings of any others.

Providing C Prototype Input
If you do not have the CU file corresponding to your PTX file, you can specify
the C prototype for your C kernel instead of the CU file:

k = parallel.gpu.CUDAKernel('myfun.ptx', 'float *, const float *, float');

In parsing C prototype, the supported C data types are listed in the following
table.

Float Types Integer Types Boolean and
Character Types

double, double2

float, float2

short, unsigned
short, short2, ushort2

int, unsigned int,
int2, uint2

long, unsigned long,
long2, ulong2

long long, unsigned
long long, longlong2,
ulonglong2

bool

char, unsigned char,
char2, uchar2

All inputs can be scalars or pointers, and can be labeled const.

The C declaration of a kernel is always of the form:

__global__ void aKernel(inputs ...)

• The kernel must return nothing, and operate only on its input arguments
(scalars or pointers).
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• A kernel is unable to allocate any form of memory, so all outputs must
be pre-allocated before the kernel is executed. Therefore, the sizes of all
outputs must be known before you run the kernel.

• In principle, all pointers passed into the kernel that are not const could
contain output data, since the many threads of the kernel could modify
that data.

When translating the definition of a kernel in C into MATLAB:

• All scalar inputs in C (double, float, int, etc.) must be scalars in
MATLAB, or scalar (i.e., single-element) GPUArray data. They are passed
(after being cast into the requested type) directly to the kernel as scalars.

• All const pointer inputs in C (const double *, etc.) can be scalars
or matrices in MATLAB. They are cast to the correct type, copied onto
the card, and a pointer to the first element is passed to the kernel. No
information about the original size is passed to the kernel. It is as though
the kernel has directly received the result of mxGetData on an mxArray.

• All nonconstant pointer inputs in C are transferred to the kernel exactly as
nonconstant pointers. However, because a nonconstant pointer could be
changed by the kernel, this will be considered as an output from the kernel.

These rules have some implications. The most notable is that every output
from a kernel must necessarily also be an input to the kernel, since the input
allows the user to define the size of the output (which follows from being
unable to allocate memory on the GPU).

Complete Kernel Workflow

Adding Two Numbers
This example adds two doubles together in the GPU. You should have the
NVIDIA CUDA Toolkit installed, and have CUDA-capable drivers for your
card.

1 The CU code to do this is as follows.

__global__ void add1( double * pi, double c )
{
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*pi += c;
}

The directive __global__ indicates that this is an entry point to a kernel.
The code uses a pointer to send out the result in pi, which is both an
input and an output. Put this code in a file called test.cu in the current
directory.

2 Compile the CU code at the shell command line to generate a PTX file
called test.ptx.

nvcc -ptx test.cu

3 Create the kernel in MATLAB. Currently this PTX file only has one entry
so you do not need to specify it. If you were to put more kernels in, you
would specify add1 as the entry.

k = parallel.gpu.CUDAKernel('test.ptx', 'test.cu');

4 Run the kernel with two inputs of 1. By default, a kernel runs on one
thread.

>> o = feval(k, 1, 1);
o =

2

Adding Two Vectors
This example extends the previous one to add two vectors together. For
simplicity, assume that there are exactly the same number of threads as
elements in the vectors and that there is only one thread block.

1 The CU code is slightly different from the last example. Both inputs are
pointers, and one is constant because you are not changing it. Each thread
will simply add the elements at its thread index. The thread index must
work out which element this thread should add. (Getting these thread- and
block-specific values is a very common pattern in CUDA programming.)

__global__ void add2( double * v1, const double * v2 )
{

int idx = threadIdx.x;
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v1[idx] += v2[idx];
}

Save this code in the file test.cu.

2 Compile as before using nvcc.

nvcc -ptx test.cu

3 If this code was put in the same CU file as the first example, you need to
specify the entry point name this time to distinguish it.

k = parallel.gpu.CUDAKernel('test.ptx', 'add2', 'test.cu');

4 When you run the kernel, you need to set the number of threads correctly
for the vectors you want to add.

>> o = feval(k, 1, 1);
o =

2
>> N = 128;
>> k.ThreadBlockSize = N;
>> o = feval(k, ones(N, 1), ones(N, 1));
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GPU Characteristics and Limitations

In this section...

“Data Types” on page 10-25

“Complex Numbers” on page 10-25

Data Types
Code in a function passed to arrayfun for execution on the GPU can use only
these GPU native data types: single, double, int32, uint32, and logical.

The overloaded functions for GPUArrays support these types where
appropriate. GPUArrays also support the storing of data types in addition
to these. This allows a GPUArray to be used with kernels written for these
alternative data types, such as int8, uint8, etc.

Complex Numbers
If the output of a function running on the GPU could potentially be complex,
you must explicitly specify its input arguments as complex. This applies to
gpuArray or to functions called in code run by arrayfun.

For example, if creating a GPUArray which might have negative elements,
use G = gpuArray(complex(p)), then you can successfully execute sqrt(G).

Or, within a function passed to arrayfun, if x is a vector of real numbers, and
some elements have negative values, sqrt(x) will generate an error; instead
you should call sqrt(complex(x)).

The following table lists the functions that might return complex data, along
with the input range over which the output remains real.

Function Input Range for Real Output

acos(x) abs(x) <= 1

acosh(x) x >= 1

acoth(x) x >= 1
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Function Input Range for Real Output

acsc(x) x >= 1

asec(x) x >= 1

asech(x) 0 <= x <= 1

asin(x) abs(x) <= 1

atanh abs(x) <= 1

log(x) x >= 0

log1p(x) x >= -1

log10(x) x >= 0

log2(x) x >= 0

power(x,y) x >= 0

reallog(x) x >= 0

realsqrt(x) x >= 0

sqrt(x) x >= 0

10-26



11

Object Reference

Data (p. 11-2) Representing data on multiple
resources

Schedulers (p. 11-2) Representing job manager, local
scheduler, or third-party scheduler

Generic Scheduler Interface Tools
(p. 11-3)

Access to remote clusters

Jobs (p. 11-3) Representing different types of jobs

Tasks (p. 11-3) Representing different types of tasks

Workers (p. 11-4) Representing MATLAB worker
sessions

Graphics Processing Unit (p. 11-4) Representing GPU devices, arrays,
code



11 Object Reference

Data
codistributed Access data of arrays distributed

among workers in MATLAB pool

codistributor1d 1-D distribution scheme for
codistributed array

codistributor2dbc 2-D block-cyclic distribution scheme
for codistributed array

Composite Access nondistributed data on
multiple labs from client

distributed Access data of distributed arrays
from client

GPUArray Array of data stored on Graphics
Processing Unit (GPU)

Schedulers
ccsscheduler Access Microsoft Windows HPC

Server scheduler

genericscheduler Access generic scheduler

jobmanager Control job queue and execution

localscheduler Access local scheduler on client
machine

lsfscheduler Access Platform LSF scheduler

mpiexec Directly access mpiexec for job
distribution

pbsproscheduler Access PBS Pro scheduler

torquescheduler Access TORQUE scheduler
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Generic Scheduler Interface Tools

RemoteClusterAccess Connect to schedulers when client
utilities are not available locally

Jobs
job Define job behavior and properties

when using job manager

matlabpooljob Define MATLAB pool job behavior
and properties when using job
manager

paralleljob Define parallel job behavior and
properties when using job manager

simplejob Define job behavior and properties
when using local or third-party
scheduler

simplematlabpooljob Define MATLAB pool job behavior
and properties when using local or
third-party scheduler

simpleparalleljob Define parallel job behavior and
properties when using local or
third-party scheduler

Tasks
simpletask Define task behavior and properties

when using local or third-party
scheduler

task Define task behavior and properties
when using job manager
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Workers
worker Access information about MATLAB

worker session

Graphics Processing Unit

CUDAKernel Kernel executable on GPU

GPUArray Array of data stored on Graphics
Processing Unit (GPU)

GPUDevice Graphics Processing Unit (GPU)
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ccsscheduler

Purpose Access Microsoft Windows HPC Server scheduler

Constructor findResource

Container
Hierarchy

Parent None

Children simplejob and simpleparalleljob objects

Description A ccsscheduler object provides access to your network’s Windows HPC
Server (including CCS) scheduler, which controls the job queue, and
distributes job tasks to workers or labs for execution.

Methods createJob Create job object in scheduler and
client

createMatlabPoolJob Create MATLAB pool job

createParallelJob Create parallel job object

findJob Find job objects stored in
scheduler

getDebugLog Read output messages from job
run by supported third-party or
local scheduler

Properties ClusterMatlabRoot Specify MATLAB root for cluster

ClusterOsType Specify operating system of nodes
on which scheduler will start
workers

ClusterSize Number of workers available to
scheduler

ClusterVersion Version of HPC Server scheduler
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Configuration Specify configuration to apply to
object or toolbox function

DataLocation Specify directory where job data
is stored

HasSharedFilesystem Specify whether nodes share data
location

JobDescriptionFile Name of XML job description
file for Microsoft Windows HPC
Server scheduler

Jobs Jobs contained in job manager
service or in scheduler’s data
location

JobTemplate Name of job template for HPC
Server 2008 scheduler

SchedulerHostname Name of host running Microsoft
Windows HPC Server scheduler

Type Type of scheduler object

UserData Specify data to associate with
object

UseSOAJobSubmission Allow service-oriented
architecture (SOA) submission on
HPC Server 2008 cluster

See Also genericscheduler, jobmanager, lsfscheduler, mpiexec,
pbsproscheduler, torquescheduler
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Purpose Access data of arrays distributed among workers in MATLAB pool

Constructor codistributed, codistributed.build

Description Data of distributed arrays that exist on the labs are accessible from the
other labs as codistributed array objects.

Codistributed arrays on labs that you create inside spmd statements can
be accessed via distributed arrays on the client.

Methods codistributed.cell Create codistributed cell array

codistributed.colon Distributed colon operation

codistributed.eye Create codistributed identity
matrix

codistributed.false Create codistributed false array

codistributed.Inf Create codistributed array of Inf
values

codistributed.NaN Create codistributed array of
Not-a-Number values

codistributed.ones Create codistributed array of ones

codistributed.rand Create codistributed array
of uniformly distributed
pseudo-random numbers

codistributed.randn Create codistributed array of
normally distributed random
values

codistributed.spalloc Allocate space for sparse
codistributed matrix

codistributed.speye Create codistributed sparse
identity matrix
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codistributed.sprand Create codistributed sparse
array of uniformly distributed
pseudo-random values

codistributed.sprandn Create codistributed sparse
array of uniformly distributed
pseudo-random values

codistributed.true Create codistributed true array

codistributed.zeros Create codistributed array of
zeros

gather Transfer distributed array data
or GPUArray to local workspace

getCodistributor Codistributor object for existing
codistributed array

getLocalPart Local portion of codistributed
array

globalIndices Global indices for local part of
codistributed array

isaUnderlying True if distributed array’s
underlying elements are of
specified class

iscodistributed True for codistributed array

redistribute Redistribute codistributed array
with another distribution scheme

sparse Create sparse distributed or
codistributed matrix
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Purpose 1-D distribution scheme for codistributed array

Constructor codistributor1d

Description A codistributor1d object defines the 1-D distribution scheme for a
codistributed array. The 1-D codistributor distributes arrays along a
single specified dimension, the distribution dimension, in a noncyclic,
partitioned manner.

Methods codistributor1d.defaultPartition

Default partition for codistributed
array

globalIndices Global indices for local part of
codistributed array

isComplete True if codistributor object is
complete

Properties Dimension Distributed dimension of
codistributor1d object

Partition Partition scheme of
codistributor1d object
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Purpose 2-D block-cyclic distribution scheme for codistributed array

Constructor codistributor2dbc

Description A codistributor2dbc object defines the 2-D block-cyclic distribution
scheme for a codistributed array. The 2-D block-cyclic codistributor
can only distribute two-dimensional matrices. It distributes matrices
along two subscripts over a rectangular computational grid of labs in
a blocked, cyclic manner. The parallel matrix computation software
library called ScaLAPACK uses the 2-D block-cyclic codistributor.

Methods codistributor2dbc.defaultLabGrid

Default computational grid for
2-D block-cyclic distributed
arrays

globalIndices Global indices for local part of
codistributed array

isComplete True if codistributor object is
complete

Properties BlockSize Block size of codistributor2dbc
object

codistributor2dbc.defaultBlockSize

Default block size for
codistributor2dbc distribution
scheme

LabGrid Lab grid of codistributor2dbc
object

Orientation Orientation of codistributor2dbc
object
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Composite

Purpose Access nondistributed data on multiple labs from client

Constructor Composite

Description Variables that exist on the labs running an spmd statement are
accessible on the client as a Composite object. A Composite resembles a
cell array with one element for each lab. So for Composite C:

C{1} represents value of C on lab1
C{2} represents value of C on lab2
etc.

spmd statements create Composites automatically, which you can
access after the statement completes. You can also create a Composite
explicitly with the Composite function.

Methods exist Check whether Composite is
defined on labs

subsasgn Subscripted assignment for
Composite

subsref Subscripted reference for
Composite

Other methods of a Composite object behave similarly to these MATLAB
array functions:

disp, display Display Composite

end Indicate last Composite index

isempty Determine whether Composite is empty

length Length of Composite

ndims Number of Composite dimensions
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numel Number of elements in Composite

size Composite dimensions
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CUDAKernel

Purpose Kernel executable on GPU

Constructor parallel.gpu.CUDAKernel

Description A CUDAKernel object represents a CUDA kernel, that can execute on
a GPU. You create the kernel when you compile PTX or CU code, as
described in “Executing CUDA or PTX Code on the GPU” on page 10-17.

Methods feval Evaluate kernel on GPU

Properties A CUDAKernel object has the following properties:

Property Name Description

ThreadBlockSize Size of block of threads on the kernel. This can be an
integer vector of length 1, 2, or 3 (since thread blocks can
be up to 3-dimensional). The product of the elements of
ThreadBlockSize must not exceed the MaxThreadsPerBlock
for this kernel, and no element of ThreadBlockSize can
exceed the corresponding element of the gpuDevice property
MaxThreadBlockSize.

MaxThreadsPerBlock Maximum number of threads permissible in a single block
for this CUDA kernel. The product of the elements of
ThreadBlockSize must not exceed this value.

GridSize Size of grid (effectively the number of thread blocks that
will be launched independently by the GPU). This is an
integer vector of length 1 or 2. Neither element of this vector
can exceed the corresponding element in the vector of the
MaxGridSize property of the GPUDevice object.
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Property Name Description

SharedMemorySize The amount of dynamic shared memory (in bytes) that each
thread block can use. Each thread block has an available
shared memory region. The size of this region is limited
in current cards to ~16 kB, and is shared with registers on
the multiprocessors. As with all memory, this needs to be
allocated before the kernel is launched. It is also common for
the size of this shared memory region to be tied to the size
of the thread block. Setting this value on the kernel ensures
that each thread in a block can access this available shared
memory region.

EntryPoint (read-only) A string containing the actual entry point name
in the PTX code that this kernel is going to call. An example
might look like '_Z13returnPointerPKfPy'.

MaxNumLHSArguments (read-only) The maximum number of left hand side
arguments that this kernel supports. It cannot be greater
than the number of right hand side arguments, and if any
inputs are constant or scalar it will be less.

NumRHSArguments (read-only) The required number of right hand side
arguments needed to call this kernel. All inputs need to
define either the scalar value of an input, the data for a
vector input/output, or the size of an output argument.

ArgumentTypes (read-only) Cell array of strings, the same length as
NumRHSArguments. Each of the strings indicates what the
expected MATLAB type for that input is (a numeric type such
as uint8, single, or double followed by the word scalar or
vector to indicate if we are passing by reference or value). In
addition, if that argument is only an input to the kernel, it is
prefixed by in; and if it is an input/output, it is prefixed by
inout. This allows you to decide how to efficiently call the
kernel with both MATLAB data and GPUArray, and to see
which of the kernel inputs are being treated as outputs.

See Also GPUArray, GPUDevice
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Purpose Access data of distributed arrays from client

Constructor distributed

Description Data of distributed arrays that exist on the labs are accessible on the
client as a distributed array. A distributed array resembles a normal
array in the way you access and manipulate its elements, but none of
its data exists on the client.

Codistributed arrays that you create inside spmd statements are
accessible via distributed arrays on the client. You can also create a
distributed array explicitly on the client with the distributed function.

Methods distributed.cell Create distributed cell array

distributed.eye Create distributed identity
matrix

distributed.false Create distributed false array

distributed.Inf Create distributed array of Inf
values

distributed.NaN Create distributed array of
Not-a-Number values

distributed.ones Create distributed array of ones

distributed.rand Create distributed array
of uniformly distributed
pseudo-random numbers

distributed.randn Create distributed array of
normally distributed random
values

distributed.spalloc Allocate space for sparse
distributed matrix
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distributed.speye Create distributed sparse identity
matrix

distributed.sprand Create distributed sparse
array of uniformly distributed
pseudo-random values

distributed.sprandn Create distributed sparse
array of normally distributed
pseudo-random values

distributed.true Create distributed true array

distributed.zeros Create distributed array of zeros

gather Transfer distributed array data
or GPUArray to local workspace

isaUnderlying True if distributed array’s
underlying elements are of
specified class

isdistributed True for distributed array

sparse Create sparse distributed or
codistributed matrix
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Purpose Access generic scheduler

Constructor findResource

Container
Hierarchy

Parent None

Children simplejob and simpleparalleljob objects

Description A genericscheduler object provides access to your network’s scheduler,
which distributes job tasks to workers or labs for execution. The generic
scheduler interface requires use of the MATLAB code submit function
on the client and the MATLAB code decode function on the worker node.

Methods createJob Create job object in scheduler and
client

createMatlabPoolJob Create MATLAB pool job

createParallelJob Create parallel job object

findJob Find job objects stored in
scheduler

getJobSchedulerData Get specific user data for job on
generic scheduler

setJobSchedulerData Set specific user data for job on
generic scheduler

Properties CancelJobFcn Specify function to run when
canceling job on generic scheduler

CancelTaskFcn Specify function to run when
canceling task on generic
scheduler
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ClusterMatlabRoot Specify MATLAB root for cluster

ClusterOsType Specify operating system of nodes
on which scheduler will start
workers

ClusterSize Number of workers available to
scheduler

Configuration Specify configuration to apply to
object or toolbox function

DataLocation Specify directory where job data
is stored

DestroyJobFcn Specify function to run when
destroying job on generic
scheduler

DestroyTaskFcn Specify function to run when
destroying task on generic
scheduler

GetJobStateFcn Specify function to run when
querying job state on generic
scheduler

HasSharedFilesystem Specify whether nodes share data
location

Jobs Jobs contained in job manager
service or in scheduler’s data
location

MatlabCommandToRun MATLAB command that generic
scheduler runs to start lab

ParallelSubmitFcn Specify function to run when
parallel job submitted to generic
scheduler

SubmitFcn Specify function to run when job
submitted to generic scheduler
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Type Type of scheduler object

UserData Specify data to associate with
object

See Also ccsscheduler, jobmanager, lsfscheduler, mpiexec,
pbsproscheduler, torquescheduler
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Purpose Array of data stored on Graphics Processing Unit (GPU)

Constructor gpuArray converts an array in the MATLAB workspace into a
GPUArray with data stored on the GPU device.

Also, the following static methods create GPUArray data:

parallel.gpu.GPUArray.ones parallel.gpu.GPUArray.rand

parallel.gpu.GPUArray.zeros parallel.gpu.GPUArray.randi

parallel.gpu.GPUArray.inf parallel.gpu.GPUArray.randn

parallel.gpu.GPUArray.nan parallel.gpu.GPUArray.RandStream

parallel.gpu.GPUArray.true parallel.gpu.GPUArray.rng

parallel.gpu.GPUArray.false parallel.gpu.GPUArray.linspace

parallel.gpu.GPUArray.eye parallel.gpu.GPUArray.logspace

parallel.gpu.GPUArray.colon

You can get help on any of these methods with the command

help parallel.gpu.GPUArray.methodname

where methodname is the name of the method. For example, to get
help on ones, type

help parallel.gpu.GPUArray.ones

Description A GPUArray object represents an array of data stored on the GPU.
You can use the data for direct calculations, or in CUDA kernels that
execute on the GPU. You can return data to the MATLAB workspace
with the gather function.

Methods The methods for a GPUArray object are too numerous to list here. Most
resemble and behave the same as built-in MATLAB functions. See
“Using GPUArray” on page 10-4. For the complete list, use the methods
function on the GPUArray class:
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methods('parallel.gpu.GPUArray')

See Also CUDAKernel, GPUDevice
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Purpose Graphics Processing Unit (GPU)

Constructor gpuDevice

Description A GPUDevice object represents a graphic processing unit (GPU) in your
computer. You can use the GPU to execute CUDA kernels or MATLAB
code.

Methods The following convenience functions let you identify and select a GPU
device:

gpuDevice Query or select GPU device

gpuDeviceCount Number of GPU devices present

Methods of the class include the following:

Method Name Description

parallel.gpu.GPUDevice.isAvailable(idx) True if the GPU specified by index
idx is supported and capable of being
selected. idx can be an integer or a
vector of integers; the default index is
the current device.

parallel.gpu.GPUDevice.getDevice(idx) Returns a GPUDevice object without
selecting it.

For the complete list, use the methods function on the GPUDevice class:

methods('parallel.gpu.GPUDevice')

You can get help on any of the class methods with the command

help parallel.gpu.GPUDevice.methodname

where methodname is the name of the method. For example, to get help
on isAvailable, type
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help parallel.gpu.GPUDevice.isAvailable

Properties A GPUDevice object has the following read-only properties:

Property Name Description

Name Name of the CUDA device.

Index Index by which you can select the device.

ComputeCapability Computational capability of the CUDA device. Must
meet required specification.

SupportsDouble Indicates if this device can support double precision
operations.

DriverVersion The CUDA device driver version currently in use.
Must meet required specification.

MaxThreadsPerBlock Maximum supported number of threads per block
during CUDAKernel execution.

MaxShmemPerBlock Maximum supported amount of shared memory that
can be used by a thread block during CUDAKernel
execution.

MaxThreadBlockSize Maximum size in each dimension for thread block.
Each dimension of a thread block must not exceed
these dimensions. Also, the product of the thread block
size must not exceed MaxThreadsPerBlock.

MaxGridSize Maximum size of grid of thread blocks.

SIMDWidth Number of simultaneously executing threads.

TotalMemory Total available memory (in bytes) on the device.

FreeMemory Free memory (in bytes) on the device. This property
is available only for the currently selected device, and
has the value NaN for unselected devices.

MultiprocessorCount The number of vector processors present on the device.
The total core count of the device is 8 times this
property.
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Property Name Description

ClockRateKHz Peak clock rate of the GPU in kHz.

ComputeMode The compute mode of the device, according to the
following values:

'Default' — The device is not restricted and can
support multiple CUDA sessions simultaneously.
'Exclusive' — The device can be used by only one
CUDA session.
'Prohibited'— The device cannot be used.

GPUOverlapsTransfers Indicates if the device supports overlapped transfers.

KernelExecutionTimeout Indicates if the device can abort long-running kernels.
If true, the operating system places an upper bound
on the time allowed for the CUDA kernel to execute,
after which the CUDA driver times out the kernel and
returns an error.

CanMapHostMemory Indicates if the device supports mapping host memory
into the CUDA address space.

DeviceSupported Indicates if toolbox can use this this device. Not
all devices are supported; for example, if their
ComputeCapability is insufficient, the toolbox cannot
use them.

DeviceSelected Indicates if this is the currently selected device.

See Also CUDAKernel, GPUArray
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Purpose Define job behavior and properties when using job manager

Constructor createJob

Container
Hierarchy

Parent jobmanager object

Children task objects

Description A job object contains all the tasks that define what each worker does
as part of the complete job execution. A job object is used only with a
job manager as scheduler.

Methods cancel Cancel job or task

createTask Create new task in job

destroy Remove job or task object from
parent and memory

diary Display or save Command
Window text of batch job

findTask Task objects belonging to job
object

getAllOutputArguments Output arguments from
evaluation of all tasks in job
object

load Load workspace variables from
batch job

submit Queue job in scheduler

wait Wait for job to finish or change
state

waitForState Wait for object to change state
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Properties AuthorizedUsers Specify users authorized to access
job

Configuration Specify configuration to apply to
object or toolbox function

CreateTime When task or job was created

FileDependencies Directories and files that worker
can access

FinishedFcn Specify callback to execute after
task or job runs

FinishTime When task or job finished

ID Object identifier

JobData Data made available to all
workers for job’s tasks

MaximumNumberOfWorkers Specify maximum number of
workers to perform job tasks

MinimumNumberOfWorkers Specify minimum number of
workers to perform job tasks

Name Name of job manager, job, or
worker object

Parent Parent object of job or task

PathDependencies Specify directories to add to
MATLAB worker path

QueuedFcn Specify function file to execute
when job is submitted to job
manager queue

RestartWorker Specify whether to restart
MATLAB workers before
evaluating job tasks
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RunningFcn Specify function file to execute
when job or task starts running

StartTime When job or task started

State Current state of task, job, job
manager, or worker

SubmitTime When job was submitted to queue

Tag Specify label to associate with job
object

Tasks Tasks contained in job object

Timeout Specify time limit to complete
task or job

UserData Specify data to associate with
object

UserName User who created job or job
manager object

See Also paralleljob, simplejob, simpleparalleljob
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Purpose Control job queue and execution

Constructor findResource

Container
Hierarchy

Parent None

Children job, paralleljob, and worker objects

Description A jobmanager object provides access to the job manager, which controls
the job queue, distributes job tasks to workers or labs for execution, and
maintains job results. The job manager is provided with the MATLAB
Distributed Computing Server product, and its use as a scheduler is
optional.

Methods changePassword Prompt user to change job
manager password

clearLocalPassword Delete local store of user’s job
manager password

createJob Create job object in scheduler and
client

createMatlabPoolJob Create MATLAB pool job

createParallelJob Create parallel job object

demote Demote job in job manager queue

findJob Find job objects stored in
scheduler

pause Pause job manager queue

promote Promote job in job manager queue

resume Resume processing queue in job
manager
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Properties BusyWorkers Workers currently running tasks

ClusterOsType Specify operating system of nodes
on which scheduler will start
workers

ClusterSize Number of workers available to
scheduler

Configuration Specify configuration to apply to
object or toolbox function

HostAddress IP address of host running job
manager or worker session

Hostname Name of host running job
manager or worker session

IdleWorkers Idle workers available to run
tasks

IsUsingSecureCommunication True if job manager and workers
use secure communication

Jobs Jobs contained in job manager
service or in scheduler’s data
location

Name Name of job manager, job, or
worker object

NumberOfBusyWorkers Number of workers currently
running tasks

NumberOfIdleWorkers Number of idle workers available
to run tasks

PromptForPassword Specify if system should prompt
for password when authenticating
user

SecurityLevel Security level controlling access
to job manager and its jobs
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State Current state of task, job, job
manager, or worker

Type Type of scheduler object

UserData Specify data to associate with
object

UserName User who created job or job
manager object

See Also ccsscheduler, genericscheduler, lsfscheduler, mpiexec,
pbsproscheduler, torquescheduler
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Purpose Access local scheduler on client machine

Constructor findResource

Container
Hierarchy

Parent None

Children simplejob and simpleparalleljob objects

Description A localscheduler object provides access to your client machine’s local
scheduler, which controls the job queue, and distributes job tasks to
workers or labs for execution on the client machine.

Methods createJob Create job object in scheduler and
client

createMatlabPoolJob Create MATLAB pool job

createParallelJob Create parallel job object

findJob Find job objects stored in
scheduler

getDebugLog Read output messages from job
run by supported third-party or
local scheduler

Properties ClusterMatlabRoot Specify MATLAB root for cluster

ClusterOsType Specify operating system of nodes
on which scheduler will start
workers

ClusterSize Number of workers available to
scheduler
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Configuration Specify configuration to apply to
object or toolbox function

DataLocation Specify directory where job data
is stored

HasSharedFilesystem Specify whether nodes share data
location

Jobs Jobs contained in job manager
service or in scheduler’s data
location

Type Type of scheduler object

UserData Specify data to associate with
object

See Also jobmanager
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Purpose Access Platform LSF scheduler

Constructor findResource

Container
Hierarchy

Parent None

Children simplejob and simpleparalleljob objects

Description An lsfscheduler object provides access to your network’s Platform LSF
scheduler, which controls the job queue, and distributes job tasks to
workers or labs for execution.

Methods createJob Create job object in scheduler and
client

createMatlabPoolJob Create MATLAB pool job

createParallelJob Create parallel job object

findJob Find job objects stored in
scheduler

getDebugLog Read output messages from job
run by supported third-party or
local scheduler

setupForParallelExecution Set options for submitting
parallel jobs to scheduler

Properties ClusterMatlabRoot Specify MATLAB root for cluster

ClusterName Name of Platform LSF cluster

ClusterOsType Specify operating system of nodes
on which scheduler will start
workers
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ClusterSize Number of workers available to
scheduler

Configuration Specify configuration to apply to
object or toolbox function

DataLocation Specify directory where job data
is stored

HasSharedFilesystem Specify whether nodes share data
location

Jobs Jobs contained in job manager
service or in scheduler’s data
location

MasterName Name of Platform LSF master
node

ParallelSubmissionWrapperScriptScript that scheduler runs to
start labs

SubmitArguments Specify additional arguments
to use when submitting job
to Platform LSF, PBS Pro,
TORQUE, or mpiexec scheduler

Type Type of scheduler object

UserData Specify data to associate with
object

See Also ccsscheduler, genericscheduler, jobmanager, mpiexec,
pbsproscheduler, torquescheduler
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Purpose Define MATLAB pool job behavior and properties when using job
manager

Constructor createMatlabPoolJob

Container
Hierarchy

Parent jobmanager object

Children task object

Description A matlabpooljob object contains all the information needed to define
what each lab does as part of the complete job execution. A MATLAB
pool job uses one worker in a MATLAB pool to run a parallel job on
the other labs of the pool. A matlabpooljob object is used only with a
job manager as scheduler.

Methods cancel Cancel job or task

createTask Create new task in job

destroy Remove job or task object from
parent and memory

diary Display or save Command
Window text of batch job

findTask Task objects belonging to job
object

getAllOutputArguments Output arguments from
evaluation of all tasks in job
object

load Load workspace variables from
batch job

submit Queue job in scheduler
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wait Wait for job to finish or change
state

waitForState Wait for object to change state

Properties AuthorizedUsers Specify users authorized to access
job

Configuration Specify configuration to apply to
object or toolbox function

CreateTime When task or job was created

FileDependencies Directories and files that worker
can access

FinishedFcn Specify callback to execute after
task or job runs

FinishTime When task or job finished

ID Object identifier

JobData Data made available to all
workers for job’s tasks

MaximumNumberOfWorkers Specify maximum number of
workers to perform job tasks

MinimumNumberOfWorkers Specify minimum number of
workers to perform job tasks

Name Name of job manager, job, or
worker object

Parent Parent object of job or task

PathDependencies Specify directories to add to
MATLAB worker path
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QueuedFcn Specify function file to execute
when job is submitted to job
manager queue

RestartWorker Specify whether to restart
MATLAB workers before
evaluating job tasks

RunningFcn Specify function file to execute
when job or task starts running

StartTime When job or task started

State Current state of task, job, job
manager, or worker

SubmitTime When job was submitted to queue

Tag Specify label to associate with job
object

Task First task contained in MATLAB
pool job object

Tasks Tasks contained in job object

Timeout Specify time limit to complete
task or job

UserData Specify data to associate with
object

UserName User who created job or job
manager object

See Also paralleljob, simplematlabpooljob, simpleparalleljob
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Purpose Directly access mpiexec for job distribution

Constructor findResource

Container
Hierarchy

Parent None

Children simplejob and simpleparalleljob objects

Description An mpiexec object provides direct access to the mpiexec executable for
distribution of a job’s tasks to workers or labs for execution.

Methods createJob Create job object in scheduler and
client

createMatlabPoolJob Create MATLAB pool job

createParallelJob Create parallel job object

findJob Find job objects stored in
scheduler

getDebugLog Read output messages from job
run by supported third-party or
local scheduler

Properties ClusterMatlabRoot Specify MATLAB root for cluster

ClusterOsType Specify operating system of nodes
on which scheduler will start
workers

ClusterSize Number of workers available to
scheduler

Configuration Specify configuration to apply to
object or toolbox function
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DataLocation Specify directory where job data
is stored

EnvironmentSetMethod Specify means of setting
environment variables for
mpiexec scheduler

HasSharedFilesystem Specify whether nodes share data
location

Jobs Jobs contained in job manager
service or in scheduler’s data
location

MpiexecFileName Specify pathname of executable
mpiexec command

SubmitArguments Specify additional arguments
to use when submitting job
to Platform LSF, PBS Pro,
TORQUE, or mpiexec scheduler

Type Type of scheduler object

UserData Specify data to associate with
object

WorkerMachineOsType Specify operating system of nodes
on which mpiexec scheduler will
start labs

See Also ccsscheduler, genericscheduler, jobmanager, lsfscheduler,
pbsproscheduler, torquescheduler
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Purpose Define parallel job behavior and properties when using job manager

Constructor createParallelJob

Container
Hierarchy

Parent jobmanager object

Children task objects

Description A paralleljob object contains all the tasks that define what each
lab does as part of the complete job execution. A parallel job runs
simultaneously on all labs and uses communication among the labs
during task evaluation. A paralleljob object is used only with a job
manager as scheduler.

Methods cancel Cancel job or task

createTask Create new task in job

destroy Remove job or task object from
parent and memory

diary Display or save Command
Window text of batch job

findTask Task objects belonging to job
object

getAllOutputArguments Output arguments from
evaluation of all tasks in job
object

load Load workspace variables from
batch job

submit Queue job in scheduler
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wait Wait for job to finish or change
state

waitForState Wait for object to change state

Properties AuthorizedUsers Specify users authorized to access
job

Configuration Specify configuration to apply to
object or toolbox function

CreateTime When task or job was created

FileDependencies Directories and files that worker
can access

FinishedFcn Specify callback to execute after
task or job runs

FinishTime When task or job finished

ID Object identifier

JobData Data made available to all
workers for job’s tasks

MaximumNumberOfWorkers Specify maximum number of
workers to perform job tasks

MinimumNumberOfWorkers Specify minimum number of
workers to perform job tasks

Name Name of job manager, job, or
worker object

Parent Parent object of job or task

PathDependencies Specify directories to add to
MATLAB worker path
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QueuedFcn Specify function file to execute
when job is submitted to job
manager queue

RestartWorker Specify whether to restart
MATLAB workers before
evaluating job tasks

RunningFcn Specify function file to execute
when job or task starts running

StartTime When job or task started

State Current state of task, job, job
manager, or worker

SubmitTime When job was submitted to queue

Tag Specify label to associate with job
object

Tasks Tasks contained in job object

Timeout Specify time limit to complete
task or job

UserData Specify data to associate with
object

UserName User who created job or job
manager object

See Also job, simplejob, simpleparalleljob
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Purpose Access PBS Pro scheduler

Constructor findResource

Container
Hierarchy

Parent None

Children simplejob and simpleparalleljob objects

Description A pbsproscheduler object provides access to your network’s PBS Pro
scheduler, which controls the job queue, and distributes job tasks to
workers or labs for execution.

Methods createJob Create job object in scheduler and
client

createMatlabPoolJob Create MATLAB pool job

createParallelJob Create parallel job object

findJob Find job objects stored in
scheduler

getDebugLog Read output messages from job
run by supported third-party or
local scheduler

setupForParallelExecution Set options for submitting
parallel jobs to scheduler

Properties ClusterMatlabRoot Specify MATLAB root for cluster

ClusterOsType Specify operating system of nodes
on which scheduler will start
workers
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ClusterSize Number of workers available to
scheduler

Configuration Specify configuration to apply to
object or toolbox function

DataLocation Specify directory where job data
is stored

HasSharedFilesystem Specify whether nodes share data
location

Jobs Jobs contained in job manager
service or in scheduler’s data
location

ParallelSubmissionWrapperScriptScript that scheduler runs to
start labs

RcpCommand Command to copy files from client

ResourceTemplate Resource definition for PBS Pro
or TORQUE scheduler

RshCommand Remote execution command used
on worker nodes during parallel
job

ServerName Name of current PBS Pro or
TORQUE server machine

SubmitArguments Specify additional arguments
to use when submitting job
to Platform LSF, PBS Pro,
TORQUE, or mpiexec scheduler

Type Type of scheduler object

UserData Specify data to associate with
object

See Also ccsscheduler, genericscheduler, jobmanager, lsfscheduler,
mpiexec, torquescheduler
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Purpose Connect to schedulers when client utilities are not available locally

Constructor r = parallel.cluster.RemoteClusterAccess(username)
r = parallel.cluster.RemoteClusterAccess(username, P1, V1,

..., Pn, Vn)

Description parallel.cluster.RemoteClusterAccess allows you to establish a
connection and run commands on a remote host. This class is intended
for use with the generic scheduler interface when using remote
submission of jobs or on nonshared file systems.

r = parallel.cluster.RemoteClusterAccess(username) uses the
supplied username when connecting to the remote host. You will be
prompted for a password when establishing the connection.

r = parallel.cluster.RemoteClusterAccess(username, P1, V1,
..., Pn, Vn) allows additional parameter-value pairs that modify the
behavior of the connection. The accepted parameters are:

• 'IdentityFilename' — A string containing the full path to
the identity file to use when connecting to a remote host. If
'IdentityFilename' is not specified, you are prompted for a
password when establishing the connection.

• 'IdentityFileHasPassphrase'— A boolean indicating whether or
not the identity file requires a passphrase. If true, you are prompted
for a password when establishing a connection. If an identity file is
not supplied, this property is ignored. This value is false by default.

For more information and detailed examples, see the integration scripts
provided in matlabroot/toolbox/distcomp/examples/integration.
For example, the scripts for PBS in a nonshared file system are in

matlabroot/toolbox/distcomp/examples/integration/pbs/nonshared
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Methods

Method Name Description

connect RemoteClusterAccess.connect(clusterHost)
establishes a connection to the specified host using the
user credential options supplied in the constructor. File
mirroring is not supported.

RemoteClusterAccess.connect(clusterHost,
remoteDataLocation) establishes a connection to the
specified host using the user credential options supplied
in the constructor. remoteDataLocation identifies a
folder on the clusterHost that is used for file mirroring.
The user credentials supplied in the constructor must
have write access to this folder.

disconnect RemoteClusterAccess.disconnect() disconnects the
existing remote connection. The connect method must
have already been called.

doLastMirrorForJob RemoteClusterAccess.doLastMirrorForJob(job)
performs a final copy of changed files from the remote
DataLocation to the local DataLocation for the supplied
job. Any running mirrors for the job also stop and the job
files are removed from the remote DataLocation. The
startMirrorForJob or resumeMirrorForJob method
must have already been called.

getRemoteJobLocation RemoteClusterAccess.getRemoteJobLocation(jobID,
remoteOS) returns the full path to the remote job
location for the supplied jobID. Valid values for
remoteOS are 'pc' and 'unix'.

isJobUsingConnection RemoteClusterAccess.isJobUsingConnection(jobID)
returns true if the job is currently being mirrored.
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Method Name Description

resumeMirrorForJob RemoteClusterAccess.resumeMirrorForJob(job)
resumes the mirroring of files from the remote
DataLocation to the local DataLocation for the
supplied job. This is similar to the startMirrorForJob
method, but does not first copy the files from the
local DataLocation to the remote DataLocation. The
connect method must have already been called. This is
useful if the original client MATLAB session has ended,
and you are accessing the same files from a new client
session.

runCommand [status, result] =
RemoteClusterAccess.runCommand(command) runs the
supplied command on the remote host and returns the
resulting status and standard output. The connect
method must have already been called.

startMirrorForJob RemoteClusterAccess.startMirrorForJob(job)
copies all the job files from the local DataLocation to the
remote DataLocation, and starts mirroring files so that
any changes to the files in the remote DataLocation are
copied back to the local DataLocation. The connect
method must have already been called.

stopMirrorForJob RemoteClusterAccess.stopMirrorForJob(job)
immediately stops the mirroring of files from the remote
DataLocation to the local DataLocation for the specified
job. The startMirrorForJob or resumeMirrorForJob
method must have already been called. This cancels the
running mirror and removes the files for the job from the
remote location. This is similar to doLastMirrorForJob,
except that stopMirrorForJob makes no attempt to
ensure that the local job files are up to date. For normal
mirror stoppage, use doLastMirrorForJob.
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Properties A RemoteClusterAccess object has the following read-only properties.
Their values are set when you construct the object or call its connect
method.

Property Name Description

DataLocation Location on the remote host for files that are being
mirrored.

Hostname Name of the remote host to access.

IdentityFileHasPassphrase Indicates if the identity file requires a passphrase.

IdentityFilename Full path to the identity file used when connecting to
the remote host.

IsConnected Indicates if there is an active connection to the remote
host.

IsFileMirrorSupported Indicates if file mirroring is supported for this
connection. This is false if no remote DataLocation is
supplied to the connect() method.

UseIdentityFile Indicates if an identity file should be used when
connecting to the remote host.

Username User name for connecting to the remote host.

Examples Mirror files from the remote data location. Assume the object job
represents a job on your generic scheduler.

remoteConnection = parallel.cluster.RemoteClusterAccess('testname');

remoteConnection.connect('headnode1','/tmp/filemirror');

remoteConnection.startMirrorForJob(job);

submit(job)

% Wait for the job to finish

job.wait();

% Ensure that all the local files are up to date, and remove the

% remote files

remoteConnection.doLastMirrorForJob(job);
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% Get the output arguments for the job

results = job.getAllOutputArguments()

For more detailed examples, see the integration scripts provided
in matlabroot/toolbox/distcomp/examples/integration. For
example, the scripts for PBS in a nonshared file system are in

matlabroot/toolbox/distcomp/examples/integration/pbs/nonshared
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Purpose Define job behavior and properties when using local or third-party
scheduler

Constructor createJob

Container
Hierarchy

Parent ccsscheduler, genericscheduler, localscheduler,
lsfscheduler, mpiexec, pbsproscheduler, or
torquescheduler object

Children simpletask objects

Description A simplejob object contains all the tasks that define what each worker
does as part of the complete job execution. A simplejob object is used
only with a local or third-party scheduler.

Methods cancel Cancel job or task

createTask Create new task in job

destroy Remove job or task object from
parent and memory

diary Display or save Command
Window text of batch job

findTask Task objects belonging to job
object

getAllOutputArguments Output arguments from
evaluation of all tasks in job
object

load Load workspace variables from
batch job

submit Queue job in scheduler
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wait Wait for job to finish or change
state

waitForState Wait for object to change state

Properties Configuration Specify configuration to apply to
object or toolbox function

CreateTime When task or job was created

FileDependencies Directories and files that worker
can access

FinishTime When task or job finished

ID Object identifier

JobData Data made available to all
workers for job’s tasks

Name Name of job manager, job, or
worker object

Parent Parent object of job or task

PathDependencies Specify directories to add to
MATLAB worker path

StartTime When job or task started

State Current state of task, job, job
manager, or worker

SubmitTime When job was submitted to queue

Tag Specify label to associate with job
object

Tasks Tasks contained in job object
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UserData Specify data to associate with
object

UserName User who created job or job
manager object

See Also job, paralleljob, simpleparalleljob
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Purpose Define MATLAB pool job behavior and properties when using local or
third-party scheduler

Constructor createMatlabPoolJob

Container
Hierarchy

Parent ccsscheduler, genericscheduler, localscheduler,
lsfscheduler, mpiexec, pbsproscheduler, or
torquescheduler object

Children simpletask object

Description A simplematlabpooljob object contains all the information needed to
define what each lab does as part of the complete job execution. A
MATLAB pool job uses one worker in a MATLAB pool to run a parallel
job on the other labs of the pool. A simplematlabpooljob object is used
only with a local or third-party scheduler.

Methods cancel Cancel job or task

createTask Create new task in job

destroy Remove job or task object from
parent and memory

diary Display or save Command
Window text of batch job

findTask Task objects belonging to job
object

getAllOutputArguments Output arguments from
evaluation of all tasks in job
object

load Load workspace variables from
batch job

submit Queue job in scheduler
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wait Wait for job to finish or change
state

waitForState Wait for object to change state

Properties Configuration Specify configuration to apply to
object or toolbox function

CreateTime When task or job was created

FileDependencies Directories and files that worker
can access

FinishTime When task or job finished

ID Object identifier

JobData Data made available to all
workers for job’s tasks

MaximumNumberOfWorkers Specify maximum number of
workers to perform job tasks

MinimumNumberOfWorkers Specify minimum number of
workers to perform job tasks

Name Name of job manager, job, or
worker object

Parent Parent object of job or task

PathDependencies Specify directories to add to
MATLAB worker path

StartTime When job or task started

State Current state of task, job, job
manager, or worker

SubmitTime When job was submitted to queue

Tag Specify label to associate with job
object
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Task First task contained in MATLAB
pool job object

Tasks Tasks contained in job object

UserData Specify data to associate with
object

UserName User who created job or job
manager object

See Also matlabpooljob, paralleljob, simpleparalleljob
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Purpose Define parallel job behavior and properties when using local or
third-party scheduler

Constructor createParallelJob

Container
Hierarchy

Parent ccsscheduler, genericscheduler, localscheduler,
lsfscheduler, mpiexec, pbsproscheduler, or
torquescheduler object

Children simpletask objects

Description A simpleparalleljob object contains all the tasks that define what each
lab does as part of the complete job execution. A parallel job runs
simultaneously on all labs and uses communication among the labs
during task evaluation. A simpleparalleljob object is used only with
a local or third-party scheduler.

Methods cancel Cancel job or task

createTask Create new task in job

destroy Remove job or task object from
parent and memory

diary Display or save Command
Window text of batch job

findTask Task objects belonging to job
object

getAllOutputArguments Output arguments from
evaluation of all tasks in job
object

load Load workspace variables from
batch job

submit Queue job in scheduler
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wait Wait for job to finish or change
state

waitForState Wait for object to change state

Properties Configuration Specify configuration to apply to
object or toolbox function

CreateTime When task or job was created

FileDependencies Directories and files that worker
can access

FinishTime When task or job finished

ID Object identifier

JobData Data made available to all
workers for job’s tasks

MaximumNumberOfWorkers Specify maximum number of
workers to perform job tasks

MinimumNumberOfWorkers Specify minimum number of
workers to perform job tasks

Name Name of job manager, job, or
worker object

Parent Parent object of job or task

PathDependencies Specify directories to add to
MATLAB worker path

StartTime When job or task started

State Current state of task, job, job
manager, or worker

SubmitTime When job was submitted to queue

Tag Specify label to associate with job
object
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Tasks Tasks contained in job object

UserData Specify data to associate with
object

UserName User who created job or job
manager object

See Also job, paralleljob, simplejob
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Purpose Define task behavior and properties when using local or third-party
scheduler

Constructor createTask

Container
Hierarchy

Parent simplejob, simplematlabpooljob, or
simpleparalleljob object

Children None

Description A simpletask object defines what each lab or worker does as part of the
complete job execution. A simpletask object is used only with a local
or third-party scheduler.

Methods cancel Cancel job or task

destroy Remove job or task object from
parent and memory

waitForState Wait for object to change state

Properties CaptureCommandWindowOutput Specify whether to return
Command Window output

CommandWindowOutput Text produced by execution of
task object’s function

Configuration Specify configuration to apply to
object or toolbox function

CreateTime When task or job was created

Error Task error information

ErrorIdentifier Task error identifier

ErrorMessage Message from task error
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FinishTime When task or job finished

Function Function called when evaluating
task

ID Object identifier

InputArguments Input arguments to task object

Name Name of job manager, job, or
worker object

NumberOfOutputArguments Number of arguments returned
by task function

OutputArguments Data returned from execution of
task

Parent Parent object of job or task

StartTime When job or task started

State Current state of task, job, job
manager, or worker

UserData Specify data to associate with
object

See Also task
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Purpose Define task behavior and properties when using job manager

Constructor createTask

Container
Hierarchy

Parent job, matlabpooljob, or paralleljob object

Children None

Description A task object defines what each lab or worker does as part of the
complete job execution. A task object is used only with a job manager
as scheduler.

Methods cancel Cancel job or task

destroy Remove job or task object from
parent and memory

waitForState Wait for object to change state

Properties AttemptedNumberOfRetries Number of times failed task was
rerun

CaptureCommandWindowOutput Specify whether to return
Command Window output

CommandWindowOutput Text produced by execution of
task object’s function

Configuration Specify configuration to apply to
object or toolbox function

CreateTime When task or job was created

Error Task error information

ErrorIdentifier Task error identifier
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ErrorMessage Message from task error

FailedAttemptInformation Information returned from failed
task

FinishedFcn Specify callback to execute after
task or job runs

FinishTime When task or job finished

Function Function called when evaluating
task

ID Object identifier

InputArguments Input arguments to task object

MaximumNumberOfRetries Specify maximum number of
times to rerun failed task

NumberOfOutputArguments Number of arguments returned
by task function

OutputArguments Data returned from execution of
task

Parent Parent object of job or task

RunningFcn Specify function file to execute
when job or task starts running

StartTime When job or task started

State Current state of task, job, job
manager, or worker

Timeout Specify time limit to complete
task or job

UserData Specify data to associate with
object

Worker Worker session that performed
task
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See Also simpletask
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Purpose Access TORQUE scheduler

Constructor findResource

Container
Hierarchy

Parent None

Children simplejob and simpleparalleljob objects

Description A torquescheduler object provides access to your network’s TORQUE
scheduler, which controls the job queue, and distributes job tasks to
workers or labs for execution.

Methods createJob Create job object in scheduler and
client

createMatlabPoolJob Create MATLAB pool job

createParallelJob Create parallel job object

findJob Find job objects stored in
scheduler

getDebugLog Read output messages from job
run by supported third-party or
local scheduler

setupForParallelExecution Set options for submitting
parallel jobs to scheduler

Properties ClusterMatlabRoot Specify MATLAB root for cluster

ClusterOsType Specify operating system of nodes
on which scheduler will start
workers
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ClusterSize Number of workers available to
scheduler

Configuration Specify configuration to apply to
object or toolbox function

DataLocation Specify directory where job data
is stored

HasSharedFilesystem Specify whether nodes share data
location

Jobs Jobs contained in job manager
service or in scheduler’s data
location

ParallelSubmissionWrapperScriptScript that scheduler runs to
start labs

RcpCommand Command to copy files from client

ResourceTemplate Resource definition for PBS Pro
or TORQUE scheduler

RshCommand Remote execution command used
on worker nodes during parallel
job

ServerName Name of current PBS Pro or
TORQUE server machine

SubmitArguments Specify additional arguments
to use when submitting job
to Platform LSF, PBS Pro,
TORQUE, or mpiexec scheduler

Type Type of scheduler object

UserData Specify data to associate with
object

See Also ccsscheduler, genericscheduler, jobmanager, lsfscheduler,
mpiexec, pbsproscheduler
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Purpose Access information about MATLAB worker session

Constructor getCurrentWorker

Container
Hierarchy

Parent jobmanager object

Children None

Description A worker object represents the MATLAB worker session that evaluates
tasks in a job scheduled by a job manager. Only worker sessions started
with the startworker script can be represented by a worker object.

Methods None

Properties Computer Information about computer on
which worker is running

CurrentJob Job whose task this worker
session is currently evaluating

CurrentTask Task that worker is currently
running

HostAddress IP address of host running job
manager or worker session

Hostname Name of host running job
manager or worker session

JobManager Job manager that this worker is
registered with

Name Name of job manager, job, or
worker object

PreviousJob Job whose task this worker
previously ran
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PreviousTask Task that this worker previously
ran

State Current state of task, job, job
manager, or worker

See Also jobmanager, simpletask, task
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Function Reference

Parallel Code Execution (p. 13-2) Constructs for automatically
running code in parallel

Distributed and Codistributed
Arrays (p. 13-3)

Data partitioned across multiple
MATLAB sessions

Jobs and Tasks (p. 13-6) Parallel computation through
individual tasks

Interlab Communication Within a
Parallel Job (p. 13-9)

Communications between labs
during job execution

Graphics Processing Unit (p. 13-11) Transferring data and running code
on the GPU

Utilities (p. 13-11) Utilities for using Parallel
Computing Toolbox
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Parallel Code Execution

Parallel Code on a MATLAB Pool
(p. 13-2)

Parallel computations on a pool of
MATLAB sessions

Configuration, Input, and Output
(p. 13-2)

Data access and setup control

Interactive Functions (p. 13-3) Parallel code development and
debugging

Parallel Code on a MATLAB Pool

batch Run MATLAB script or function as
batch job

Composite Create Composite object

distributed Create distributed array from data
in client workspace

matlabpool Open or close pool of MATLAB
sessions for parallel computation

parfor Execute code loop in parallel

spmd Execute code in parallel on MATLAB
pool

Configuration, Input, and Output

defaultParallelConfig Default parallel computing
configuration

diary Display or save Command Window
text of batch job

exist Check whether Composite is defined
on labs

importParallelConfig Import parallel configuration .mat
file
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load Load workspace variables from
batch job

pctRunOnAll Run command on client and all
workers in matlabpool

subsasgn Subscripted assignment for
Composite

subsref Subscripted reference for Composite

Interactive Functions

mpiprofile Profile parallel communication and
execution times

pmode Interactive Parallel Command
Window

Distributed and Codistributed Arrays

Toolbox Functions (p. 13-3) Array creation and manipulation

Overloaded MATLAB Functions
(p. 13-4)

Predefined arrays with overloaded
functions

Toolbox Functions

codistributed Create codistributed array from
replicated local data

codistributed.build Create codistributed array from
distributed data

codistributed.colon Distributed colon operation

codistributor Create codistributor object for
codistributed arrays
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codistributor1d Create 1-D codistributor object for
codistributed arrays

codistributor1d.defaultPartition Default partition for codistributed
array

codistributor2dbc Create 2-D block-cyclic codistributor
object for codistributed arrays

codistributor2dbc.defaultLabGrid Default computational grid for 2-D
block-cyclic distributed arrays

for for-loop over distributed range

gather Transfer distributed array data or
GPUArray to local workspace

getCodistributor Codistributor object for existing
codistributed array

getLocalPart Local portion of codistributed array

globalIndices Global indices for local part of
codistributed array

isaUnderlying True if distributed array’s
underlying elements are of specified
class

isComplete True if codistributor object is
complete

isreplicated True for replicated array

redistribute Redistribute codistributed array
with another distribution scheme

Overloaded MATLAB Functions

codistributed.cell Create codistributed cell array

codistributed.eye Create codistributed identity matrix

codistributed.false Create codistributed false array
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codistributed.Inf Create codistributed array of Inf
values

codistributed.NaN Create codistributed array of
Not-a-Number values

codistributed.ones Create codistributed array of ones

codistributed.rand Create codistributed array
of uniformly distributed
pseudo-random numbers

codistributed.randn Create codistributed array of
normally distributed random values

codistributed.spalloc Allocate space for sparse
codistributed matrix

codistributed.speye Create codistributed sparse identity
matrix

codistributed.sprand Create codistributed sparse
array of uniformly distributed
pseudo-random values

codistributed.sprandn Create codistributed sparse
array of uniformly distributed
pseudo-random values

codistributed.true Create codistributed true array

codistributed.zeros Create codistributed array of zeros

distributed.cell Create distributed cell array

distributed.eye Create distributed identity matrix

distributed.false Create distributed false array

distributed.Inf Create distributed array of Inf
values

distributed.NaN Create distributed array of
Not-a-Number values

distributed.ones Create distributed array of ones

distributed.rand Create distributed array of uniformly
distributed pseudo-random numbers
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distributed.randn Create distributed array of normally
distributed random values

distributed.spalloc Allocate space for sparse distributed
matrix

distributed.speye Create distributed sparse identity
matrix

distributed.sprand Create distributed sparse
array of uniformly distributed
pseudo-random values

distributed.sprandn Create distributed sparse array of
normally distributed pseudo-random
values

distributed.true Create distributed true array

distributed.zeros Create distributed array of zeros

sparse Create sparse distributed or
codistributed matrix

Jobs and Tasks

Job Creation (p. 13-6) Job and task definition

Job Management (p. 13-7) Job and task execution

Task Execution Information (p. 13-8) Information on the processes
evaluating a task

Object Control (p. 13-9) Parallel Computing Toolbox objects

Job Creation

createJob Create job object in scheduler and
client

createMatlabPoolJob Create MATLAB pool job
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createParallelJob Create parallel job object

createTask Create new task in job

dfeval Evaluate function using cluster

dfevalasync Evaluate function asynchronously
using cluster

findResource Find available parallel computing
resources

jobStartup File for user-defined options to run
when job starts

mpiLibConf Location of MPI implementation

mpiSettings Configure options for MPI
communication

pctconfig Configure settings for Parallel
Computing Toolbox client session

poolStartup File for user-defined options to run
on each worker when MATLAB pool
starts

setupForParallelExecution Set options for submitting parallel
jobs to scheduler

taskFinish File for user-defined options to run
when task finishes

taskStartup File for user-defined options to run
when task starts

Job Management

cancel Cancel job or task

changePassword Prompt user to change job manager
password

clearLocalPassword Delete local store of user’s job
manager password
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demote Demote job in job manager queue

destroy Remove job or task object from
parent and memory

findJob Find job objects stored in scheduler

findTask Task objects belonging to job object

getAllOutputArguments Output arguments from evaluation
of all tasks in job object

getDebugLog Read output messages from job run
by supported third-party or local
scheduler

getJobSchedulerData Get specific user data for job on
generic scheduler

pause Pause job manager queue

promote Promote job in job manager queue

resume Resume processing queue in job
manager

setJobSchedulerData Set specific user data for job on
generic scheduler

submit Queue job in scheduler

wait Wait for job to finish or change state

waitForState Wait for object to change state

Task Execution Information

getCurrentJob Job object whose task is currently
being evaluated

getCurrentJobmanager Job manager object that scheduled
current task

getCurrentTask Task object currently being
evaluated in this worker session
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getCurrentWorker Worker object currently running this
session

getFileDependencyDir Directory where FileDependencies
are written on worker machine

Object Control

clear Remove objects from MATLAB
workspace

get Object properties

inspect Open Property Inspector

length Length of object array

methods List functions of object class

set Configure or display object properties

size Size of object array

Interlab Communication Within a Parallel Job
gcat Global concatenation

gop Global operation across all labs

gplus Global addition

labBarrier Block execution until all labs reach
this call

labBroadcast Send data to all labs or receive data
sent to all labs

labindex Index of this lab

labProbe Test to see if messages are ready to
be received from other lab

labReceive Receive data from another lab
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labSend Send data to another lab

labSendReceive Simultaneously send data to and
receive data from another lab

numlabs Total number of labs operating in
parallel on current job

pload Load file into parallel session

psave Save data from parallel job session
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Graphics Processing Unit
arrayfun Apply function to each element of

array on GPU

feval Evaluate kernel on GPU

gather Transfer distributed array data or
GPUArray to local workspace

gpuArray Create array on GPU

gpuDevice Query or select GPU device

gpuDeviceCount Number of GPU devices present

parallel.gpu.CUDAKernel Create GPU CUDA kernel object
from PTX and CU code

Utilities
help Help for toolbox functions in

Command Window

pctRunDeployedCleanup Clean up after deployed parallel
applications
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arrayfun

Purpose Apply function to each element of array on GPU

Syntax A = arrayfun(FUN, B)
A = arrayfun(FUN, B, C, ...)
[A, B, ...] = arrayfun(FUN, C, ...)

Description This method of a GPUArray object is very similar in behavior to the
MATLAB function arrayfun, except that the actual evaluation of the
function happens on the GPU, not on the CPU. Thus, any required
data not already on the GPU is moved to GPU memory, the MATLAB
function passed in for evaluation is compiled for the GPU, and then
executed on the GPU. All the output arguments return as GPUArray
objects, whose data can be retrieved with the gather method.

A = arrayfun(FUN, B) applies the function specified by FUN to each
element of the GPUArray B, and returns the results in GPUArray A. A is
the same size as B, and A(i,j,...) is equal to FUN(B(i,j,...)). FUN
is a function handle to a function that takes one input argument and
returns a scalar value. FUN must return values of the same class each
time it is called. The input data must be a arrays of one of the following
types: single, double, int32, uint32, logical, or GPUArray. The
order in which arrayfun computes elements of A is not specified and
should not be relied on.

FUN must be a handle to a function that is written in the MATLAB
language (i.e., not a built-in function or a mex function); it must not be a
nested, anonymous, or sub-function; and the MATLAB file that defines
the function must contain exactly one function definition.

The subset of the MATLAB language that is currently supported for
execution on the GPU can be found in “Execute MATLAB Code on a
GPU” on page 10-10.

A = arrayfun(FUN, B, C, ...) evaluates FUN using elements of
arrays B, C, ... as input arguments. The resulting GPUArray element
A(i,j,...) is equal to FUN(B(i,j,...), C(i,j,...), ...). The
inputs B, C, ... must all have the same size or be scalar. Any scalar
inputs are scalar expanded before being input to the function FUN.
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One or more of the inputs B, C, ... must be a GPUArray; any of the
others can reside in CPU memory. Each array that is held in CPU
memory is converted to a GPUArray before calling the function on the
GPU. If you plan to use an array in several different arrayfun calls, it
is more efficient to convert that array to a GPUArray before making the
series of calls to arrayfun.

[A, B, ...] = arrayfun(FUN, C, ...), where FUN is a function
handle to a function that returns multiple outputs, returns GPUArrays
A, B, ..., each corresponding to one of the output arguments of FUN.
arrayfun calls FUN each time with as many outputs as there are in the
call to arrayfun. FUN can return output arguments having different
classes, but the class of each output must be the same each time FUN
is called. This means that all elements of A must be the same class; B
can be a different class from A, but all elements of B must be of the
same class, etc.

Examples If you define a MATLAB function as follows:

function [o1, o2] = aGpuFunction(a, b, c)
o1 = a + b;
o2 = o1 .* c + 2;

You can evaluate this on the GPU.

s1 = gpuArray(rand(400));
s2 = gpuArray(rand(400));
s3 = gpuArray(rand(400));
[o1, o2] = arrayfun(@aGpuFunction, s1, s2, s3);
whos

Name Size Bytes Class Attr

o1 400x400 108 parallel.gpu.GPUArray
o2 400x400 108 parallel.gpu.GPUArray
s1 400x400 108 parallel.gpu.GPUArray
s2 400x400 108 parallel.gpu.GPUArray
s3 400x400 108 parallel.gpu.GPUArray
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Use gather to retrieve the data from the GPU to the MATLAB
workspace.

d = gather(o2);

See Also gather | gpuArray
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Purpose Run MATLAB script or function as batch job

Syntax j = batch('aScript')
j = batch(schedobj, 'aScript')
j = batch(fcn, N, {x1, ..., xn})
j = batch(schedobj, fcn, N, {x1, ..., xn})
j = batch(..., 'p1', v1, 'p2', v2, ...)

Arguments j The batch job object.

'aScript' The script of MATLAB code to be evaluated by the
MATLAB pool job.

schedobj Scheduler object for allocating cluster compute
resources.

fcn Function handle or string of function name to be
evaluated by the MATLAB pool job.

N The number of output arguments from the evaluated
function.

{x1, ...,
xn}

Cell array of input arguments to the function.

p1, p2 Object properties or other arguments to control job
behavior.

v1, v2 Initial values for corresponding object properties or
arguments.

Description j = batch('aScript') runs the script aScript.m on a worker
according to the scheduler defined in the default parallel configuration.
The function returns j, a handle to the job object that runs the script.
The script file aScript.m is added to the FileDependencies and copied
to the worker.
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j = batch(schedobj, 'aScript') is identical to batch(’aScript’)
except that the script runs on a worker according to the scheduler
identified by schedobj.

j = batch(fcn, N, {x1, ..., xn}) runs the function specified by
a function handle or function name, fcn, on a worker according to the
scheduler defined in the default parallel configuration. The function
returns j, a handle to the job object that runs the function. The function
is evaluated with the given arguments, x1, ...,xn, returning N output
arguments. The function file for fcn is added to the FileDependencies
and copied to the worker.

j = batch(schedobj, fcn, N, {x1, ..., xn}) is identical to
batch(fcn, N, {x1, ..., xn}) except that the function runs on a
worker according to the scheduler identified by schedobj.

j = batch(..., 'p1', v1, 'p2', v2, ...) allows additional
parameter-value pairs that modify the behavior of the job. These
parameters support batch for functions and scripts, unless otherwise
indicated. The accepted parameters are:

• 'Workspace' — A 1-by-1 struct to define the workspace on the
worker just before the script is called. The field names of the struct
define the names of the variables, and the field values are assigned
to the workspace variables. By default this parameter has a field for
every variable in the current workspace where batch is executed.
This parameter supports only the running of scripts.

• 'Configuration' — A single string that is the name of a parallel
configuration to use to find the correct cluster. By default it is the
string returned from defaultParallelConfig. The configuration is
applied to the properties of the job and tasks that are created for
the batch.

• 'PathDependencies'— A string or cell array of strings that defines
paths to be added to the workers’ MATLAB path before the script or
function is executed. See the PathDependencies reference page.

14-6



batch

• 'FileDependencies'— A string or cell array of strings. Each string
in the list identifies either a file or a directory, which is transferred
to the worker. See the FileDependencies reference page.

• 'CurrentDirectory'— A string indicating in what folder the script
executes. There is no guarantee that this folder exists on the worker.
The default value for this property is the cwd of MATLAB when
the batch command is executed, unless any FileDependencies are
defined. If the string for this argument is '.', there is no change
in folder before batch execution.

• 'CaptureDiary'— A boolean flag to indicate that the toolbox should
collect the diary from the function call. See the diary function for
information about the collected data. The default is true.

• 'Matlabpool' — A nonnegative scalar integer that defines the
number of labs to make into a MATLAB pool for the job to run on
in addition to the worker running the batch. The script or function
uses the pool for execution of statements such as parfor and spmd.
A value of N for the property Matlabpool is effectively the same as
adding a call to matlabpool N into the code. Because the MATLAB
pool requires N workers in addition to the worker running the batch,
there must be at least N+1 workers available on the cluster. (See
“Run a Batch Parallel Loop” on page 1-8.) The default value is 0,
which causes the script or function to run on only the single worker
without a MATLAB pool.

Tips As a matter of good programming practice, when you no longer need it,
you should destroy the job created by the batch function so that it does
not continue to consume cluster storage resources.

Examples Run a batch script on a worker without using a MATLAB pool:

j = batch('script1', 'matlabpool', 0);

Run a batch MATLAB pool job on a remote cluster, using eight workers
for the MATLAB pool in addition to the worker running the batch script.
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Capture the diary, and load the results of the job into the workspace.
This job requires a total of nine workers:

j = batch('script1', 'matlabpool', 8, 'CaptureDiary', true);
wait(j); % Wait for the job to finish
diary(j) % Display the diary
load(j) % Load job workspace data into client workspace

Run a batch MATLAB pool job on a local worker, which employs two
other local workers for the pool. Note, this runs a total of three worker
sessions, in addition to the client, all on the local machine:

j = batch('script1', 'configuration', 'local', ...
'matlabpool', 2);

Clean up a batch job’s data after you are finished with it:

destroy(j)

Run a batch function on a remote cluster that generates a 10-by-10
random matrix:

sch = findResource('scheduler', ...
'configuration', defaultParallelConfig);

j = batch(sch, @rand, 1, {10, 10});

wait(j) % Wait for the job to finish
diary(j) % Display the diary

r = getAllOutputArguments(j) % Get results into a cell array
r{1} % Display result

See Also diary | findJob | load | wait
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Purpose Cancel job or task

Syntax cancel(t)
cancel(j)

Arguments t Pending or running task to cancel.

j Pending, running, or queued job to cancel.

Description cancel(t) stops the task object, t, that is currently in the pending or
running state. The task’s State property is set to finished, and no
output arguments are returned. An error message stating that the task
was canceled is placed in the task object’s ErrorMessage property, and
the worker session running the task is restarted.

cancel(j) stops the job object, j, that is pending, queued, or running.
The job’s State property is set to finished, and a cancel is executed
on all tasks in the job that are not in the finished state. A job object
that has been canceled cannot be started again.

If the job is running in a job manager, any worker sessions that are
evaluating tasks belonging to the job object will be restarted.

Examples Cancel a task. Note afterward the task’s State, ErrorMessage, and
OutputArguments properties.

job1 = createJob(jm);

t = createTask(job1, @rand, 1, {3,3});

cancel(t)

get(t)

ID: 1

Function: @rand

NumberOfOutputArguments: 1

InputArguments: {[3] [3]}

OutputArguments: {1x0 cell}

CaptureCommandWindowOutput: 0

CommandWindowOutput: ''
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State: 'finished'

ErrorMessage: 'Task cancelled by user'

ErrorIdentifier: 'distcomp:task:Cancelled'

Timeout: Inf

CreateTime: 'Fri Oct 22 11:38:39 EDT 2004'

StartTime: 'Fri Oct 22 11:38:46 EDT 2004'

FinishTime: 'Fri Oct 22 11:38:46 EDT 2004'

Worker: []

Parent: [1x1 distcomp.job]

UserData: []

RunningFcn: []

FinishedFcn: []

See Also destroy | submit
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Purpose Prompt user to change job manager password

Syntax changePassword(jm)
changePassword(jm, username)

Arguments jm Job manager object on which password is changing

username User whose password is changed

Description changePassword(jm) prompts the user to change the password for the
current user. The user’s current password must be entered as well as
the new password.

changePassword(jm, username) prompts the job manager’s admin
user to change the password for the specified user. The admin user’s
password must be entered as well as the user’s new password. This
enables the admin user to reset a password if the user has forgotten it.

For more information on job manager security, see “Setting Job
Manager Security”.

See Also clearLocalPassword
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Purpose Remove objects from MATLAB workspace

Syntax clear obj

Arguments obj An object or an array of objects.

Description clear obj removes obj from the MATLAB workspace.

Tips If obj references an object in the job manager, it is cleared from the
workspace, but it remains in the job manager. You can restore obj to
the workspace with the findResource, findJob, or findTask function;
or with the Jobs or Tasks property.

Examples This example creates two job objects on the job manager jm. The
variables for these job objects in the MATLAB workspace are job1 and
job2. job1 is copied to a new variable, job1copy; then job1 and job2
are cleared from the MATLAB workspace. The job objects are then
restored to the workspace from the job object’s Jobs property as j1
and j2, and the first job in the job manager is shown to be identical to
job1copy, while the second job is not.

job1 = createJob(jm);
job2 = createJob(jm);
job1copy = job1;
clear job1 job2;
j1 = jm.Jobs(1);
j2 = jm.Jobs(2);
isequal (job1copy, j1)
ans =

1
isequal (job1copy, j2)
ans =

0

See Also createJob | createTask | findJob | findResource | findTask
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Purpose Delete local store of user’s job manager password

Syntax clearLocalPassword(jm)

Arguments jm Job manager associated with the local password

Description clearLocalPassword(jm) clears the current user’s password on the
local computer.

When you call a privileged action (for example, with findResource,
createJob, or submit) on a job manager running with a higher security
level, a popup dialog requires you to enter your user name and password
for authentication. To prevent having to enter it for every subsequent
privileged action, you can choose to have the password remembered in
a local password store. The clearLocalPassword function removes
your password from this local store. This means any subsequent call
to a privileged action on this computer requires you to re-authenticate
with a valid password. Clearing your password might be useful after
you have finished working on a shared machine.

For more information on job manager security, see “Setting Job
Manager Security”.

See Also changePassword
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Purpose Create codistributed array from replicated local data

Syntax C = codistributed(X)
C = codistributed(X, codist)
C = codistributed(X, codist, lab)
C = codistributed(C1, codist)

Description C = codistributed(X) distributes a replicated X using the default
codistributor. X must be a replicated array, that is, it must have the
same value on all labs. size(C) is the same as size(X).

C = codistributed(X, codist) distributes a replicated X using the
codistributor codist. X must be a replicated array, namely it must
have the same value on all labs. size(C) is the same as size(X). For
information on constructing codistributor objects, see the reference
pages for codistributor1d and codistributor2dbc.

C = codistributed(X, codist, lab) distributes a local array X that
resides on the lab identified by lab, using the codistributor codist.
Local array X must be defined on all labs, but only the value from lab is
used to construct C. size(C) is the same as size(X).

C = codistributed(C1, codist) where the input array C1 is already
a codistributed array, redistributes the array C1 according to the
distribution scheme defined by codistributor codist. This is the same
as calling C = redistribute(C1, codist). If the specified distribution
scheme is that same as that already in effect, then the result is the
same as the input.

Tips gather essentially performs the inverse of codistributed.

Examples Create a 1000-by-1000 codistributed array C1 using the default
distribution scheme.

spmd
N = 1000;
X = magic(N); % Replicated on every lab
C1 = codistributed(X); % Partitioned among the labs
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end

Create a 1000-by-1000 codistributed array C2, distributed by rows (over
its first dimension).

spmd
N = 1000;
X = magic(N);
C2 = codistributed(X, codistributor1d(1));

end

See Also codistributor1d | codistributor2dbc | gather | globalIndices |
getLocalPart | redistribute | size | subsasgn | subsref
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Purpose Create codistributed array from distributed data

Syntax D = codistributed.build(L, codist)
D = codistributed.build(L, codist, 'noCommunication')

Description D = codistributed.build(L, codist) forms a codistributed array
with getLocalPart(D) = L. The codistributed array D is created as
if you had combined all copies of the local array L. The distribution
scheme is specified by codist. Global error checking ensures that
the local parts conform with the specified distribution scheme. For
information on constructing codistributor objects, see the reference
pages for codistributor1d and codistributor2dbc.

D = codistributed.build(L, codist, 'noCommunication')
builds a codistributed array, without performing any interworker
communications for error checking.

codist must be complete, which you can check by calling
codist.isComplete(). The requirements on the size and structure of
the local part L depend on the class of codist. For the 1-D and 2-D
block-cyclic codistributors, L must have the same class and sparsity
on all labs. Furthermore, the local part L must represent the region
described by the globalIndices method on codist.

Examples Create a codistributed array of size 1001-by-1001 such that column
ii contains the value ii.

spmd
N = 1001;
globalSize = [N, N];
% Distribute the matrix over the second dimension (columns),
% and let the codistributor derive the partition from the
% global size.
codistr = codistributor1d(2, ...

codistributor1d.unsetPartition, globalSize)

% On 4 labs, codistr.Partition equals [251, 250, 250, 250].
% Allocate storage for the local part.
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localSize = [N, codistr.Partition(labindex)];
L = zeros(localSize);

% Use globalIndices to map the indices of the columns
% of the local part into the global column indices.
globalInd = codistr.globalIndices(2);
% On 4 labs, globalInd has the values:
% 1:251 on lab 1
% 252:501 on lab 2
% 502:751 on lab 3
% 752:1001 on lab 4

% Initialize the columns of the local part to
% the correct value.
for localCol = 1:length(globalInd)

globalCol = globalInd(localCol);
L(:, localCol) = globalCol;

end
D = codistributed.build(L, codistr)

end

See Also codistributor1d | codistributor2dbc | gather | globalIndices |
getLocalPart | redistribute | size | subsasgn | subsref
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Purpose Create codistributed cell array

Syntax C = codistributed.cell(n)
C = codistributed.cell(m, n, p, ...)
C = codistributed.cell([m, n, p, ...])
C = cell(n, codist)
C = cell(m, n, p, ..., codist)
C = cell([m, n, p, ...], codist)

Description C = codistributed.cell(n) creates an n-by-n codistributed array of
underlying class cell, distributing along columns.

C = codistributed.cell(m, n, p, ...) or C =
codistributed.cell([m, n, p, ...]) creates an m-by-n-by-p-by-...
codistributed array of underlying class cell, using a default scheme of
distributing along the last nonsingleton dimension.

Optional arguments to codistributed.cell must be specified after the
required arguments, and in the following order:

• codist— A codistributor object specifying the distribution scheme
of the resulting array. If omitted, the array is distributed using
the default distribution scheme. For information on constructing
codistributor objects, see the reference pages for codistributor1d
and codistributor2dbc.

• 'noCommunication' — Specifies that no communication is to
be performed when constructing the array, skipping some error
checking steps.

C = cell(n, codist) is the same as C = codistributed.cell(n,
codist). You can also use the 'noCommunication' object with this
syntax. To use the default distribution scheme, specify a codistributor
constructor without arguments. For example:

spmd
C = cell(8, codistributor1d());

end
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C = cell(m, n, p, ..., codist) and C = cell([m, n, p, ...],
codist) are the same as C = codistributed.cell(m, n, p, ...)
and C = codistributed.cell([m, n, p, ...]), respectively. You
can also use the optional 'noCommunication' argument with this
syntax.

Examples With four labs,

spmd(4)
C = codistributed.cell(1000);

end

creates a 1000-by-1000 distributed cell array C, distributed by its second
dimension (columns). Each lab contains a 1000-by-250 local piece of C.

spmd(4)
codist = codistributor1d(2, 1:numlabs);
C = cell(10, 10, codist);

end

creates a 10-by-10 codistributed cell array C, distributed by its columns.
Each lab contains a 10-by-labindex local piece of C.

See Also cell | distributed.cell
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Purpose Distributed colon operation

Syntax codistributed.colon(a,d,b)
codistributed.colon(a,b)

Description codistributed.colon(a,d,b) partitions the vector a:d:b into numlabs
contiguous subvectors of equal, or nearly equal length, and creates a
codistributed array whose local portion on each lab is the labindex-th
subvector.

codistributed.colon(a,b) uses d = 1.

Optional arguments to codistributed.colon must be specified after
the required arguments, and in the following order:

• codist— A codistributor object specifying the distribution scheme
of the resulting vector. If omitted, the array is distributed using
the default distribution scheme. For information on constructing
codistributor objects, see the reference pages for codistributor1d
and codistributor2dbc.

• 'noCommunication' — Specifies that no communication is to be
performed when constructing the vector, skipping some error
checking steps.

Examples Partition the vector 1:10 into four subvectors among four labs.

spmd(4); C = codistributed.colon(1,10), end
Lab 1:

This lab stores C(1:3).
LocalPart: [1 2 3]

Codistributor: [1x1 codistributor1d]
Lab 2:

This lab stores C(4:6).
LocalPart: [4 5 6]

Codistributor: [1x1 codistributor1d]
Lab 3:

This lab stores C(7:8).
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LocalPart: [7 8]
Codistributor: [1x1 codistributor1d]

Lab 4:
This lab stores C(9:10).

LocalPart: [9 10]
Codistributor: [1x1 codistributor1d]

See Also colon | codistributor1d | codistributor2dbc | for
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Purpose Create codistributed identity matrix

Syntax C = codistributed.eye(n)
C = codistributed.eye(m, n)
C = codistributed.eye([m, n])
C = eye(n, codist)
C = eye(m, n, codist)
C = eye([m, n], codist)

Description C = codistributed.eye(n) creates an n-by-n codistributed identity
matrix of underlying class double.

C = codistributed.eye(m, n) or C = codistributed.eye([m, n])
creates an m-by-n codistributed matrix of underlying class double with
ones on the diagonal and zeros elsewhere.

Optional arguments to codistributed.eye must be specified after the
required arguments, and in the following order:

• classname— Specifies the class of the codistributed array C. Valid
choices are the same as for the regular eye function: 'double' (the
default), 'single', 'int8', 'uint8', 'int16', 'uint16', 'int32',
'uint32', 'int64', and 'uint64'.

• codist— A codistributor object specifying the distribution scheme
of the resulting array. If omitted, the array is distributed using
the default distribution scheme. For information on constructing
codistributor objects, see the reference pages for codistributor1d
and codistributor2dbc.

• 'noCommunication'— Specifies that no interworker communication
is to be performed when constructing the array, skipping some error
checking steps.

C = eye(n, codist) is the same as C = codistributed.eye(n,
codist). You can also use the optional arguments with this syntax. To
use the default distribution scheme, specify a codistributor constructor
without arguments. For example:
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spmd
C = eye(8, codistributor1d());

end

C = eye(m, n, codist) and C = eye([m, n], codist) are the same
as C = codistributed.eye(m, n) and C = codistributed.eye([m,
n]), respectively. You can also use the optional arguments with this
syntax.

Examples With four labs,

spmd(4)
C = codistributed.eye(1000);

end

creates a 1000-by-1000 codistributed double array C, distributed by its
second dimension (columns). Each lab contains a 1000-by-250 local
piece of C.

spmd(4)

codist = codistributor('1d', 2, 1:numlabs);

C = eye(10, 10, 'uint16', codist);

end

creates a 10-by-10 codistributed uint16 array D, distributed by its
columns. Each lab contains a 10-by-labindex local piece of D.

See Also eye | codistributed.ones | codistributed.speye |
codistributed.zeros | distributed.eye
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Purpose Create codistributed false array

Syntax F = codistributed.false(n)
F = codistributed.false(m, n, ...)
F = codistributed.false([m, n, ...])
F = false(n, codist)
F = false(m, n, ..., codist)
F = false([m, n, ...], codist)

Description F = codistributed.false(n) creates an n-by-n codistributed array
of logical zeros.

F = codistributed.false(m, n, ...) or F =
codistributed.false([m, n, ...]) creates an m-by-n-by-...
codistributed array of logical zeros.

Optional arguments to codistributed.false must be specified after
the required arguments, and in the following order:

• codist— A codistributor object specifying the distribution scheme
of the resulting array. If omitted, the array is distributed using
the default distribution scheme. For information on constructing
codistributor objects, see the reference pages for codistributor1d
and codistributor2dbc.

• 'noCommunication'— Specifies that no interworker communication
is to be performed when constructing the array, skipping some error
checking steps.

F = false(n, codist) is the same as F = codistributed.false(n,
codist). You can also use the optional arguments with this syntax. To
use the default distribution scheme, specify a codistributor constructor
without arguments. For example:

spmd
F = false(8, codistributor1d());

end
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F = false(m, n, ..., codist) and F = false([m, n, ...],
codist) are the same as F = codistributed.false(m, n, ...) and
F = codistributed.false([m, n, ...]), respectively. You can also
use the optional arguments with this syntax.

Examples With four labs,

spmd(4)
F = false(1000, codistributor());

end

creates a 1000-by-1000 codistributed false array F, distributed by its
second dimension (columns). Each lab contains a 1000-by-250 local
piece of F.

spmd
codist = codistributor('1d', 2, 1:numlabs);
F = false(10, 10, codist);

end

creates a 10-by-10 codistributed false array F, distributed by its
columns. Each lab contains a 10-by-labindex local piece of F.

See Also false | codistributed.true | distributed.false
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Purpose Create codistributed array of Inf values

Syntax C = codistributed.Inf(n)
C = codistributed.Inf(m, n, ...)
C = codistributed.Inf([m, n, ...])
C = Inf(n, codist)
C = Inf(m, n, ..., codist)
C = Inf([m, n, ...], codist)

Description C = codistributed.Inf(n) creates an n-by-n codistributed matrix of
Inf values.

C = codistributed.Inf(m, n, ...) or C = codistributed.Inf([m,
n, ...]) creates an m-by-n-by-... codistributed array of Inf values.

Optional arguments to codistributed.Inf must be specified after the
required arguments, and in the following order:

• classname— Specifies the class of the codistributed array C. Valid
choices are the same as for the regular Inf function: 'double' (the
default), or 'single'.

• codist— A codistributor object specifying the distribution scheme
of the resulting array. If omitted, the array is distributed using
the default distribution scheme. For information on constructing
codistributor objects, see the reference pages for codistributor1d
and codistributor2dbc.

• 'noCommunication'— Specifies that no interworker communication
is to be performed when constructing the array, skipping some error
checking steps.

C = Inf(n, codist) is the same as C = codistributed.Inf(n,
codist). You can also use the optional arguments with this syntax. To
use the default distribution scheme, specify a codistributor constructor
without arguments. For example:

spmd
C = Inf(8, codistributor1d());
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end

C = Inf(m, n, ..., codist) and C = Inf([m, n, ...], codist)
are the same as C = codistributed.Inf(m, n, ...) and C =
codistributed.Inf([m, n, ...]), respectively. You can also use the
optional arguments with this syntax.

Examples With four labs,

spmd(4)
C = Inf(1000, codistributor())

end

creates a 1000-by-1000 codistributed double matrix C, distributed by
its second dimension (columns). Each lab contains a 1000-by-250 local
piece of C.

spmd(4)
codist = codistributor('1d', 2, 1:numlabs);
C = Inf(10, 10, 'single', codist);

end

creates a 10-by-10 codistributed single array C, distributed by its
columns. Each lab contains a 10-by-labindex local piece of C.

See Also Inf | codistributed.NaN | distributed.Inf
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Purpose Create codistributed array of Not-a-Number values

Syntax C = codistributed.NaN(n)
C = codistributed.NaN(m, n, ...)
C = codistributed.NaN([m, n, ...])
C = NaN(n, codist)
C = NaN(m, n, ..., codist)
C = NaN([m, n, ...], codist)

Description C = codistributed.NaN(n) creates an n-by-n codistributed matrix of
NaN values.

C = codistributed.NaN(m, n, ...) or C = codistributed.NaN([m,
n, ...]) creates an m-by-n-by-... codistributed array of NaN values.

Optional arguments to codistributed.NaN must be specified after the
required arguments, and in the following order:

• classname— Specifies the class of the codistributed array C. Valid
choices are the same as for the regular NaN function: 'double' (the
default), or 'single'.

• codist— A codistributor object specifying the distribution scheme
of the resulting array. If omitted, the array is distributed using
the default distribution scheme. For information on constructing
codistributor objects, see the reference pages for codistributor1d
and codistributor2dbc.

• 'noCommunication'— Specifies that no interworker communication
is to be performed when constructing the array, skipping some error
checking steps.

C = NaN(n, codist) is the same as C = codistributed.NaN(n,
codist). You can also use the optional arguments with this syntax. To
use the default distribution scheme, specify a codistributor constructor
without arguments. For example:

spmd
C = NaN(8, codistributor1d());
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end

C = NaN(m, n, ..., codist) and C = NaN([m, n, ...], codist)
are the same as C = codistributed.NaN(m, n, ...) and C =
codistributed.NaN([m, n, ...]), respectively. You can also use the
optional arguments with this syntax.

Examples With four labs,

spmd(4)
C = NaN(1000, codistributor())

end

creates a 1000-by-1000 codistributed double matrix C of NaN values,
distributed by its second dimension (columns). Each lab contains a
1000-by-250 local piece of C.

spmd(4)
codist = codistributor('1d', 2, 1:numlabs);
C = NaN(10, 10, 'single', codist);

end

creates a 10-by-10 codistributed single array C, distributed by its
columns. Each lab contains a 10-by-labindex local piece of C.

See Also NaN | codistributed.Inf | distributed.NaN
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Purpose Create codistributed array of ones

Syntax C = codistributed.ones(n)
C = codistributed.ones(m, n, ...)
C = codistributed.ones([m, n, ...])
C = ones(n, codist)
C = ones(m, n, codist)
C = ones([m, n], codist)

Description C = codistributed.ones(n) creates an n-by-n codistributed matrix of
ones of class double.

C = codistributed.ones(m, n, ...) or C =
codistributed.ones([m, n, ...]) creates an m-by-n-by-...
codistributed array of ones.

Optional arguments to codistributed.ones must be specified after the
required arguments, and in the following order:

• classname— Specifies the class of the codistributed array C. Valid
choices are the same as for the regular ones function: 'double' (the
default), 'single', 'int8', 'uint8', 'int16', 'uint16', 'int32',
'uint32', 'int64', and 'uint64'.

• codist— A codistributor object specifying the distribution scheme
of the resulting array. If omitted, the array is distributed using
the default distribution scheme. For information on constructing
codistributor objects, see the reference pages for codistributor1d
and codistributor2dbc.

• 'noCommunication'— Specifies that no interworker communication
is to be performed when constructing the array, skipping some error
checking steps.

C = ones(n, codist) is the same as C = codistributed.ones(n,
codist). You can also use the optional arguments with this syntax. To
use the default distribution scheme, specify a codistributor constructor
without arguments. For example:
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spmd
C = ones(8, codistributor1d());

end

C = ones(m, n, codist) and C = ones([m, n], codist) are
the same as C = codistributed.ones(m, n, ...) and C =
codistributed.ones([m, n, ...]), respectively. You can also use
the optional arguments with this syntax.

Examples With four labs,

spmd(4)
C = codistributed.ones(1000, codistributor());

end

creates a 1000-by-1000 codistributed double array of ones, C, distributed
by its second dimension (columns). Each lab contains a 1000-by-250
local piece of C.

spmd(4)

codist = codistributor('1d', 2, 1:numlabs);

C = ones(10, 10, 'uint16', codist);

end

creates a 10-by-10 codistributed uint16 array of ones, C, distributed by
its columns. Each lab contains a 10-by-labindex local piece of C.

See Also ones | codistributed.eye | codistributed.zeros |
distributed.ones
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Purpose Create codistributed array of uniformly distributed pseudo-random
numbers

Syntax R = codistributed.rand(n)
R = codistributed.rand(m, n, ...)
R = codistributed.rand([m, n, ...])
R = rand(n, codist)
R = rand(m, n, codist)
R = rand([m, n], codist)

Description R = codistributed.rand(n) creates an n-by-n codistributed array
of underlying class double.

R = codistributed.rand(m, n, ...) or R =
codistributed.rand([m, n, ...]) creates an m-by-n-by-...
codistributed array of underlying class double.

Optional arguments to codistributed.rand must be specified after the
required arguments, and in the following order:

• classname— Specifies the class of the codistributed array C. Valid
choices are the same as for the regular rand function: 'double' (the
default), 'single', 'int8', 'uint8', 'int16', 'uint16', 'int32',
'uint32', 'int64', and 'uint64'.

• codist— A codistributor object specifying the distribution scheme
of the resulting array. If omitted, the array is distributed using
the default distribution scheme. For information on constructing
codistributor objects, see the reference pages for codistributor1d
and codistributor2dbc.

• 'noCommunication'— Specifies that no interworker communication
is to be performed when constructing the array, skipping some error
checking steps.

R = rand(n, codist) is the same as R = codistributed.rand(n,
codist). You can also use the optional arguments with this syntax. To
use the default distribution scheme, specify a codistributor constructor
without arguments. For example:
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spmd
R = codistributed.rand(8, codistributor1d());

end

R = rand(m, n, codist) and R = rand([m, n], codist) are
the same as R = codistributed.rand(m, n, ...) and R =
codistributed.rand([m, n, ...]), respectively. You can also use
the optional arguments with this syntax.

Tips When you use rand on the workers in the MATLAB pool, or in a
distributed or parallel job (including pmode), each worker or lab sets its
random generator seed to a value that depends only on the lab index
or task ID. Therefore, the array on each lab is unique for that job.
However, if you repeat the job, you get the same random data.

Examples With four labs,

spmd(4)
R = codistributed.rand(1000, codistributor())

end

creates a 1000-by-1000 codistributed double array R, distributed by its
second dimension (columns). Each lab contains a 1000-by-250 local
piece of R.

spmd(4)

codist = codistributor('1d', 2, 1:numlabs);

R = codistributed.rand(10, 10, 'uint16', codist);

end

creates a 10-by-10 codistributed uint16 array R, distributed by its
columns. Each lab contains a 10-by-labindex local piece of R.

See Also rand | codistributed.randn | codistributed.sprand |
codistributed.sprandn | distributed.rand
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Purpose Create codistributed array of normally distributed random values

Syntax RN = codistributed.randn(n)
RN = codistributed.randn(m, n, ...)
RN = codistributed.randn([m, n, ...])
RN = randn(n, codist)
RN = randn(m, n, codist)
RN = randn([m, n], codist)

Description RN = codistributed.randn(n) creates an n-by-n codistributed array
of normally distributed random values with underlying class double.

RN = codistributed.randn(m, n, ...) and RN =
codistributed.randn([m, n, ...]) create an m-by-n-by-...
codistributed array of normally distributed random values.

Optional arguments to codistributed.randn must be specified after
the required arguments, and in the following order:

• classname— Specifies the class of the codistributed array C. Valid
choices are the same as for the regular rand function: 'double' (the
default), 'single', 'int8', 'uint8', 'int16', 'uint16', 'int32',
'uint32', 'int64', and 'uint64'.

• codist— A codistributor object specifying the distribution scheme
of the resulting array. If omitted, the array is distributed using
the default distribution scheme. For information on constructing
codistributor objects, see the reference pages for codistributor1d
and codistributor2dbc.

• 'noCommunication'— Specifies that no interworker communication
is to be performed when constructing the array, skipping some error
checking steps.

RN = randn(n, codist) is the same as RN =
codistributed.randn(n, codist). You can also use the optional
arguments with this syntax. To use the default distribution scheme,
specify a codistributor constructor without arguments. For example:
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spmd
RN = codistributed.randn(8, codistributor1d());

end

RN = randn(m, n, codist) and RN = randn([m, n], codist) are
the same as RN = codistributed.randn(m, n, ...) and RN =
codistributed.randn([m, n, ...]), respectively. You can also use
the optional arguments with this syntax.

Tips When you use randn on the workers in the MATLAB pool, or in a
distributed or parallel job (including pmode), each worker or lab sets its
random generator seed to a value that depends only on the lab index
or task ID. Therefore, the array on each lab is unique for that job.
However, if you repeat the job, you get the same random data.

Examples With four labs,

spmd(4)
RN = codistributed.randn(1000);

end

creates a 1000-by-1000 codistributed double array RN, distributed by its
second dimension (columns). Each lab contains a 1000-by-250 local
piece of RN.

spmd(4)

codist = codistributor('1d', 2, 1:numlabs);

RN = randn(10, 10, 'uint16', codist);

end

creates a 10-by-10 codistributed uint16 array RN, distributed by its
columns. Each lab contains a 10-by-labindex local piece of RN.

See Also randn | codistributed.rand | codistributed.sprand |
codistributed.sprandn | distributed.randn
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Purpose Allocate space for sparse codistributed matrix

Syntax SD = codistributed.spalloc(M, N, nzmax)
SD = spalloc(M, N, nzmax, codist)

Description SD = codistributed.spalloc(M, N, nzmax) creates an M-by-N
all-zero sparse codistributed matrix with room to hold nzmax nonzeros.

Optional arguments to codistributed.spalloc must be specified after
the required arguments, and in the following order:

• codist— A codistributor object specifying the distribution scheme
of the resulting array. If omitted, the array is distributed using
the default distribution scheme. The allocated space for nonzero
elements is consistent with the distribution of the matrix among the
labs according to the Partition of the codistributor.

• 'noCommunication' — Specifies that no communication is to be
performed when constructing the array, skipping some error checking
steps. You can also use this argument with SD = spalloc(M, N,
nzmax, codistr).

SD = spalloc(M, N, nzmax, codist) is the same as SD =
codistributed.spalloc(M, N, nzmax, codist). You can also use
the optional arguments with this syntax.

Examples Allocate space for a 1000-by-1000 sparse codistributed matrix with
room for up to 2000 nonzero elements. Use the default codistributor.
Define several elements of the matrix.

spmd % codistributed array created inside spmd statement
N = 1000;
SD = codistributed.spalloc(N, N, 2*N);
for ii=1:N-1

SD(ii,ii:ii+1) = [ii ii];
end

end
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See Also spalloc | sparse | distributed.spalloc
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Purpose Create codistributed sparse identity matrix

Syntax CS = codistributed.speye(n)
CS = codistributed.speye(m, n)
CS = codistributed.speye([m, n])
CS = speye(n, codist)
CS = speye(m, n, codist)
CS = speye([m, n], codist)

Description CS = codistributed.speye(n) creates an n-by-n sparse codistributed
array of underlying class double.

CS = codistributed.speye(m, n) or CS =
codistributed.speye([m, n]) creates an m-by-n sparse codistributed
array of underlying class double.

Optional arguments to codistributed.speye must be specified after
the required arguments, and in the following order:

• codist— A codistributor object specifying the distribution scheme
of the resulting array. If omitted, the array is distributed using
the default distribution scheme. For information on constructing
codistributor objects, see the reference pages for codistributor1d
and codistributor2dbc.

• 'noCommunication'— Specifies that no interworker communication
is to be performed when constructing the array, skipping some error
checking steps.

CS = speye(n, codist) is the same as CS =
codistributed.speye(n, codist). You can also use the optional
arguments with this syntax. To use the default distribution scheme,
specify a codistributor constructor without arguments. For example:

spmd
CS = codistributed.speye(8, codistributor1d());

end
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CS = speye(m, n, codist) and CS = speye([m, n], codist)
are the same as CS = codistributed.speye(m, n) and CS =
codistributed.speye([m, n]), respectively. You can also use the
optional arguments with this syntax.

Note To create a sparse codistributed array of underlying class logical,
first create an array of underlying class double and then cast it using
the logical function:

CLS = logical(speye(m, n, codistributor1d()))

Examples With four labs,

spmd(4)
CS = speye(1000, codistributor())

end

creates a 1000-by-1000 sparse codistributed double array CS, distributed
by its second dimension (columns). Each lab contains a 1000-by-250
local piece of CS.

spmd(4)
codist = codistributor1d(2, 1:numlabs);
CS = speye(10, 10, codist);

end

creates a 10-by-10 sparse codistributed double array CS, distributed by
its columns. Each lab contains a 10-by-labindex local piece of CS.

See Also speye | distributed.speye | sparse
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Purpose Create codistributed sparse array of uniformly distributed
pseudo-random values

Syntax CS = codistributed.sprand(m, n, density)
CS = sprand(n, codist)

Description CS = codistributed.sprand(m, n, density) creates an m-by-n
sparse codistributed array with approximately density*m*n uniformly
distributed nonzero double entries.

Optional arguments to codistributed.sprand must be specified after
the required arguments, and in the following order:

• codist— A codistributor object specifying the distribution scheme
of the resulting array. If omitted, the array is distributed using
the default distribution scheme. For information on constructing
codistributor objects, see the reference pages for codistributor1d
and codistributor2dbc.

• 'noCommunication'— Specifies that no interworker communication
is to be performed when constructing the array, skipping some error
checking steps.

CS = sprand(n, codist) is the same as CS =
codistributed.sprand(n, codist). You can also use the optional
arguments with this syntax. To use the default distribution scheme,
specify a codistributor constructor without arguments. For example:

spmd
CS = codistributed.sprand(8, 8, 0.2, codistributor1d());

end

Tips When you use sprand on the workers in the MATLAB pool, or in a
distributed or parallel job (including pmode), each worker or lab sets its
random generator seed to a value that depends only on the lab index
or task ID. Therefore, the array on each lab is unique for that job.
However, if you repeat the job, you get the same random data.
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Examples With four labs,

spmd(4)
CS = codistributed.sprand(1000, 1000, .001);

end

creates a 1000-by-1000 sparse codistributed double array CS with
approximately 1000 nonzeros. CS is distributed by its second dimension
(columns), and each lab contains a 1000-by-250 local piece of CS.

spmd(4)
codist = codistributor1d(2, 1:numlabs);
CS = sprand(10, 10, .1, codist);

end

creates a 10-by-10 codistributed double array CS with approximately
10 nonzeros. CS is distributed by its columns, and each lab contains a
10-by-labindex local piece of CS.

See Also sprand | codistributed.rand | distributed.sprandn
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Purpose Create codistributed sparse array of uniformly distributed
pseudo-random values

Syntax CS = codistributed.sprandn(m, n, density)
CS = sprandn(n, codist)

Description CS = codistributed.sprandn(m, n, density) creates an m-by-n
sparse codistributed array with approximately density*m*n normally
distributed nonzero double entries.

Optional arguments to codistributed.sprandn must be specified after
the required arguments, and in the following order:

• codist— A codistributor object specifying the distribution scheme
of the resulting array. If omitted, the array is distributed using
the default distribution scheme. For information on constructing
codistributor objects, see the reference pages for codistributor1d
and codistributor2dbc.

• 'noCommunication'— Specifies that no interworker communication
is to be performed when constructing the array, skipping some error
checking steps.

CS = sprandn(n, codist) is the same as CS =
codistributed.sprandn(n, codist). You can also use the optional
arguments with this syntax. To use the default distribution scheme,
specify a codistributor constructor without arguments. For example:

spmd
CS = codistributed.sprandn(8, 8, 0.2, codistributor1d());

end

Tips When you use sprandn on the workers in the MATLAB pool, or in a
distributed or parallel job (including pmode), each worker or lab sets its
random generator seed to a value that depends only on the lab index
or task ID. Therefore, the array on each lab is unique for that job.
However, if you repeat the job, you get the same random data.
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Examples With four labs,

spmd(4)
CS = codistributed.sprandn(1000, 1000, .001);

end

creates a 1000-by-1000 sparse codistributed double array CS with
approximately 1000 nonzeros. CS is distributed by its second dimension
(columns), and each lab contains a 1000-by-250 local piece of CS.

spmd(4)
codist = codistributor1d(2, 1:numlabs);
CS = sprandn(10, 10, .1, codist);

end

creates a 10-by-10 codistributed double array CS with approximately
10 nonzeros. CS is distributed by its columns, and each lab contains a
10-by-labindex local piece of CS.

See Also sprandn | codistributed.rand | codistributed.randn |
sparse | codistributed.speye | codistributed.sprand |
distributed.sprandn
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Purpose Create codistributed true array

Syntax T = codistributed.true(n)
T = codistributed.true(m, n, ...)
T = codistributed.true([m, n, ...])
T = true(n, codist)
T = true(m, n, ..., codist)
T = true([m, n, ...], codist)

Description T = codistributed.true(n) creates an n-by-n codistributed array
of logical ones.

T = codistributed.true(m, n, ...) or T =
codistributed.true([m, n, ...]) creates an m-by-n-by-...
codistributed array of logical ones.

Optional arguments to codistributed.true must be specified after the
required arguments, and in the following order:

• codist— A codistributor object specifying the distribution scheme
of the resulting array. If omitted, the array is distributed using
the default distribution scheme. For information on constructing
codistributor objects, see the reference pages for codistributor1d
and codistributor2dbc.

• 'noCommunication'— Specifies that no interworker communication
is to be performed when constructing the array, skipping some error
checking steps.

T = true(n, codist) is the same as T = codistributed.true(n,
codist). You can also use the optional arguments with this syntax. To
use the default distribution scheme, specify a codistributor constructor
without arguments. For example:

spmd
T = true(8, codistributor1d());

end
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T = true(m, n, ..., codist) and T = true([m, n, ...],
codist) are the same as T = codistributed.true(m, n, ...) and
T = codistributed.true([m, n, ...]), respectively. You can also
use the optional arguments with this syntax.

Examples With four labs,

spmd(4)
T = true(1000, codistributor());

end

creates a 1000-by-1000 codistributed true array T, distributed by its
second dimension (columns). Each lab contains a 1000-by-250 local
piece of T.

spmd(4)
codist = codistributor('1d', 2, 1:numlabs);
T = true(10, 10, codist);

end

creates a 10-by-10 codistributed true array T, distributed by its columns.
Each lab contains a 10-by-labindex local piece of T.

See Also true | codistributed.false | distributed.true
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Purpose Create codistributed array of zeros

Syntax C = codistributed.zeros(n)
C = codistributed.zeros(m, n, ...)
C = codistributed.zeros([m, n, ...])
C = zeros(n, codist)
C = zeros(m, n, codist)
C = zeros([m, n], codist)

Description C = codistributed.zeros(n) creates an n-by-n codistributed matrix
of zeros of class double.

C = codistributed.zeros(m, n, ...) or C =
codistributed.zeros([m, n, ...]) creates an m-by-n-by-...
codistributed array of zeros.

Optional arguments to codistributed.zeros must be specified after
the required arguments, and in the following order:

• classname— Specifies the class of the codistributed array C. Valid
choices are the same as for the regular zeros function: 'double' (the
default), 'single', 'int8', 'uint8', 'int16', 'uint16', 'int32',
'uint32', 'int64', and 'uint64'.

• codist— A codistributor object specifying the distribution scheme
of the resulting array. If omitted, the array is distributed using
the default distribution scheme. For information on constructing
codistributor objects, see the reference pages for codistributor1d
and codistributor2dbc.

• 'noCommunication'— Specifies that no interworker communication
is to be performed when constructing the array, skipping some error
checking steps.

C = zeros(n, codist) is the same as C = codistributed.zeros(n,
codist). You can also use the optional arguments with this syntax. To
use the default distribution scheme, specify a codistributor constructor
without arguments. For example:
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spmd
C = zeros(8, codistributor1d());

end

C = zeros(m, n, codist) and C = zeros([m, n], codist) are
the same as C = codistributed.zeros(m, n, ...) and C =
codistributed.zeros([m, n, ...]), respectively. You can also use
the optional arguments with this syntax.

Examples With four labs,

spmd(4)
C = codistributed.zeros(1000, codistributor());

end

creates a 1000-by-1000 codistributed double array of zeros, C,
distributed by its second dimension (columns). Each lab contains a
1000-by-250 local piece of C.

spmd(4)

codist = codistributor('1d', 2, 1:numlabs)

C = zeros(10, 10, 'uint16', codist);

end

creates a 10-by-10 codistributed uint16 array of zeros, C, distributed by
its columns. Each lab contains a 10-by-labindex local piece of C.

See Also zeros | codistributed.eye | codistributed.ones |
distributed.zeros
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Purpose Create codistributor object for codistributed arrays

Syntax codist = codistributor()
codist = codistributor('1d')
codist = codistributor('1d', dim)
codist = codistributor('1d', dim, part)
codist = codistributor('2dbc')
codist = codistributor('2dbc', lbgrid)
codist = codistributor('2dbc', lbgrid, blksize)

Description There are two schemes for distributing arrays. The scheme denoted by
the string '1d' distributes an array along a single specified subscript,
the distribution dimension, in a noncyclic, partitioned manner.
The scheme denoted by '2dbc', employed by the parallel matrix
computation software ScaLAPACK, applies only to two-dimensional
arrays, and varies both subscripts over a rectangular computational
grid of labs in a blocked, cyclic manner.

codist = codistributor(), with no arguments, returns a default
codistributor object with zero-valued or empty parameters, which
can then be used as an argument to other functions to indicate that
the function is to create a codistributed array if possible with default
distribution. For example,

Z = zeros(..., codistributor())
R = randn(..., codistributor())

codist = codistributor('1d') is the same as codist =
codistributor().

codist = codistributor('1d', dim) also forms a codistributor object
with codist.Dimension = dim and default partition.

codist = codistributor('1d', dim, part) also forms
a codistributor object with codist.Dimension = dim and
codist.Partition = part.
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codist = codistributor('2dbc') forms a 2-D block-cyclic
codistributor object. For more information about '2dbc' distribution,
see “2-Dimensional Distribution” on page 5-17.

codist = codistributor('2dbc', lbgrid) forms a 2-D block-cyclic
codistributor object with the lab grid defined by lbgrid and with
default block size.

codist = codistributor('2dbc', lbgrid, blksize) forms a 2-D
block-cyclic codistributor object with the lab grid defined by lbgrid and
with a block size defined by blksize.

codist = getCodistributor(D) returns the codistributor object of
codistributed array D.

Examples On four labs, create a 3-dimensional, 2-by-6-by-4 array with distribution
along the second dimension, and partition scheme [1 2 1 2]. In
other words, lab 1 contains a 2-by-1-by-4 segment, lab 2 a 2-by-2-by-4
segment, etc.

spmd
dim = 2; % distribution dimension
codist = codistributor('1d', dim, [1 2 1 2], [2 6 4]);
if mod(labindex, 2)

L = rand(2,1,4);
else

L = rand(2,2,4);
end
A = codistributed.build(L, codist)

end
A

On four labs, create a 20-by-5 codistributed array A, distributed by rows
(over its first dimension) with a uniform partition scheme.

spmd
dim = 1; % distribution dimension
partn = codistributor1d.defaultPartition(20);
codist = codistributor('1d', dim, partn, [20 5]);
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L = magic(5) + labindex;
A = codistributed.build(L, codist)

end
A

See Also codistributed | codistributor1d | codistributor2dbc |
getCodistributor | getLocalPart | redistribute
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Purpose Create 1-D codistributor object for codistributed arrays

Syntax codist = codistributor1d()
codist = codistributor1d(dim)
codist = codistributor1d(dim, part)
codist = codistributor1d(dim, part, gsize)

Description The 1-D codistributor distributes arrays along a single, specified
distribution dimension, in a noncyclic, partitioned manner.

codist = codistributor1d() forms a 1-D codistributor object using
default dimension and partition. The default dimension is the last
nonsingleton dimension of the codistributed array. The default partition
distributes the array along the default dimension as evenly as possible.

codist = codistributor1d(dim) forms a 1-D codistributor object for
distribution along the specified dimension: 1 distributes along rows, 2
along columns, etc.

codist = codistributor1d(dim, part) forms a 1-D codistributor
object for distribution according to the partition vector part. For
example C1 = codistributor1d(1, [1, 2, 3, 4]) describes the
distribution scheme for an array of ten rows to be codistributed by its
first dimension (rows), to four labs, with 1 row to the first, 2 rows to
the second, etc.

The resulting codistributor of any of the above syntax is incomplete
because its global size is not specified. A codistributor constructed
in this manner can be used as an argument to other functions as a
template codistributor when creating codistributed arrays.

codist = codistributor1d(dim, part, gsize) forms a codistributor
object with distribution dimension dim, distribution partition part, and
global size of its codistributed arrays gsize. The resulting codistributor
object is complete and can be used to build a codistributed array from
its local parts with codistributed.build. To use a default dimension,
specify codistributor1d.unsetDimension for that argument; the
distribution dimension is derived from gsize and is set to the last
non-singleton dimension. Similarly, to use a default partition, specify
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codistributor1d.unsetPartition for that argument; the partition
is then derived from the default for that global size and distribution
dimension.

The local part on lab labidx of a codistributed array using such a
codistributor is of size gsize in all dimensions except dim, where the
size is part(labidx). The local part has the same class and attributes
as the overall codistributed array. Conceptually, the overall global
array could be reconstructed by concatenating the various local parts
along dimension dim.

Examples Use a codistributor1d object to create an N-by-N matrix of ones,
distributed by rows.

N = 1000;
spmd

codistr = codistributor1d(1); % 1 spec 1st dimension (rows).
C = codistributed.ones(N, codistr);

end

Use a fully specified codistributor1d object to create a trivial N-by-N
codistributed matrix from its local parts. Then visualize which elements
are stored on lab 2.

N = 1000;
spmd

codistr = codistributor1d( ...
codistributor1d.unsetDimension, ...
codistributor1d.unsetPartition, ...
[N, N]);

myLocalSize = [N, N]; % start with full size on each lab
% then set myLocalSize to default part of whole array:
myLocalSize(codistr.Dimension) = codistr.Partition(labindex);
myLocalPart = labindex*ones(myLocalSize); % arbitrary values
D = codistributed.build(myLocalPart, codistr);

end
spy(D == 2);
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See Also codistributed | codistributor1d | codistributor2dbc |
redistribute
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Purpose Default partition for codistributed array

Syntax P = codistributor1d.defaultPartition(n)

Description P = codistributor1d.defaultPartition(n) is a vector with sum(P)
= n and length(P) = numlabs. The first rem(n,numlabs) elements
of P are equal to ceil(n/numlabs) and the remaining elements are
equal to floor(n/numlabs). This function is the basis for the default
distribution of codistributed arrays.

Examples If numlabs = 4, the following code returns the vector [3 3 2 2] on
all labs:

spmd
P = codistributor1d.defaultPartition(10)

end

See Also codistributed | codistributed.colon | codistributor1d
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Purpose Create 2-D block-cyclic codistributor object for codistributed arrays

Syntax codist = codistributor2dbc()
codist = codistributor2dbc(lbgrid)
codist = codistributor2dbc(lbgrid, blksize)
codist = codistributor2dbc(lbgrid, blksize, orient)
codist = codistributor2dbc(lbgrid, blksize, orient, gsize)

Description The 2-D block-cyclic codistributor can be used only for two-dimensional
arrays. It distributes arrays along two subscripts over a rectangular
computational grid of labs in a block-cyclic manner. For a complete
description of 2-D block-cyclic distribution, default parameters, and
the relationship between block size and lab grid, see “2-Dimensional
Distribution” on page 5-17. The 2-D block-cyclic codistributor is used by
the ScaLAPACK parallel matrix computation software library.

codist = codistributor2dbc() forms a 2-D block-cyclic codistributor
object using default lab grid and block size.

codist = codistributor2dbc(lbgrid) forms a 2-D block-cyclic
codistributor object using the specified lab grid and default block size.
lbgrid must be a two-element vector defining the rows and columns
of the lab grid, and the rows times columns must equal the number of
labs for the codistributed array.

codist = codistributor2dbc(lbgrid, blksize) forms a 2-D
block-cyclic codistributor object using the specified lab grid and block
size.

codist = codistributor2dbc(lbgrid, blksize, orient) allows an
orientation argument. Valid values for the orientation argument are
'row' for row orientation, and 'col' for column orientation of the lab
grid. The default is row orientation.

The resulting codistributor of any of the above syntax is incomplete
because its global size is not specified. A codistributor constructed
this way can be used as an argument to other functions as a template
codistributor when creating codistributed arrays.
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codist = codistributor2dbc(lbgrid, blksize, orient,
gsize) forms a codistributor object that distributes arrays
with the global size gsize. The resulting codistributor object
is complete and can therefore be used to build a codistributed
array from its local parts with codistributed.build. To use
the default values for lab grid, block size, and orientation,
specify them using codistributor2dbc.defaultLabGrid,
codistributor2dbc.defaultBlockSize, and
codistributor2dbc.defaultOrientation, respectively.

Examples Use a codistributor2dbc object to create an N-by-N matrix of ones.

N = 1000;
spmd

codistr = codistributor2dbc();
D = codistributed.ones(N, codistr);

end

Use a fully specified codistributor2dbc object to create a trivial N-by-N
codistributed matrix from its local parts. Then visualize which elements
are stored on lab 2.

N = 1000;
spmd

codistr = codistributor2dbc(...
codistributor2dbc.defaultLabGrid, ...
codistributor2dbc.defaultBlockSize, ...
'row', [N, N]);

myLocalSize = [length(codistr.globalIndices(1)), ...
length(codistr.globalIndices(2))];

myLocalPart = labindex*ones(myLocalSize);
D = codistributed.build(myLocalPart, codistr);

end
spy(D == 2);

See Also codistributed | codistributor1d | getLocalPart | redistribute
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Purpose Default computational grid for 2-D block-cyclic distributed arrays

Syntax grid = codistributor2dbc.defaultLabGrid()

Description grid = codistributor2dbc.defaultLabGrid() returns a vector, grid
= [nrow ncol], defining a computational grid of nrow-by-ncol labs in
the open MATLAB pool, such that numlabs = nrow x ncol.

The grid defined by codistributor2dbc.defaultLabGrid is as close to
a square as possible. The following rules define nrow and ncol:

• If numlabs is a perfect square, nrow = ncol = sqrt(numlabs).

• If numlabs is an odd power of 2, then nrow = ncol/2 =
sqrt(numlabs/2).

• nrow <= ncol.

• If numlabs is a prime, nrow = 1, ncol = numlabs.

• nrow is the greatest integer less than or equal to sqrt(numlabs) for
which ncol = numlabs/nrow is also an integer.

Examples View the computational grid layout of the default distribution scheme
for the open MATLAB pool.

spmd
grid = codistributor2dbc.defaultLabGrid

end

See Also codistributed | codistributor2dbc | numlabs
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Purpose Create Composite object

Syntax C = Composite()
C = Composite(nlabs)

Description C = Composite() creates a Composite object on the client using labs
from the MATLAB pool. The actual number of labs referenced by this
Composite object depends on the size of the MATLAB pool and any
existing Composite objects. Generally, you should construct Composite
objects outside any spmd statement.

C = Composite(nlabs) creates a Composite object on the parallel
resource set that matches the specified constraint. nlabs must be a
vector of length 1 or 2, containing integers or Inf. If nlabs is of length
1, it specifies the exact number of labs to use. If nlabs is of size 2, it
specifies the minimum and maximum number of labs to use. The actual
number of labs used is the maximum number of labs compatible with the
size of the MATLAB pool, and with other existing Composite objects. An
error is thrown if the constraints on the number of labs cannot be met.

A Composite object has one entry for each lab; initially each entry
contains no data. Use either indexing or an spmd block to define values
for the entries.

Examples Create a Composite object with no defined entries, then assign its
values:

c = Composite(); % One element per lab in the pool
for ii = 1:length(c)

% Set the entry for each lab to zero
c{ii} = 0; % Value stored on each lab

end

See Also matlabpool | spmd
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Purpose Create job object in scheduler and client

Syntax obj = createJob()
obj = createJob(scheduler)
obj = createJob(..., 'p1', v1, 'p2', v2, ...)
obj = createJob(..., 'configuration', 'ConfigurationName',

...)

Arguments obj The job object.

scheduler The scheduler object created by findResource.

p1, p2 Object properties configured at object creation.

v1, v2 Initial values for corresponding object properties.

Description obj = createJob() creates a job using the scheduler identified by the
default parallel configuration and sets the property values of the job as
specified in the default configuration.

obj = createJob(scheduler) creates a job object at the data location
for the identified scheduler, or in the job manager. When you specify a
scheduler without using the 'configuration' option, no configuration
is used, so no configuration properties are applied to the job object.

obj = createJob(..., 'p1', v1, 'p2', v2, ...) creates a job
object with the specified property values. For a listing of the valid
properties of the created object, see the job object reference page (if
using a job manager) or simplejob object reference page (if using a
third-party scheduler). If an invalid property name or property value is
specified, the object will not be created.

Note that the property value pairs can be in any format supported
by the set function, i.e., param-value string pairs, structures, and
param-value cell array pairs. If a structure is used, the structure field
names are job object property names and the field values specify the
property values.
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If you are using a third-party scheduler instead of a job manager,
the job’s data is stored in the location specified by the scheduler’s
DataLocation property.

obj = createJob(..., 'configuration', 'ConfigurationName',
...) creates a job object using the scheduler identified by the
configuration and sets the property values of the job as specified in that
configuration. For details about defining and applying configurations,
see “Parallel Configurations for Cluster Access” on page 6-14.

Examples Construct a job object using the default configuration.

obj = createJob();

Add tasks to the job.

for i = 1:10
createTask(obj, @rand, 1, {10});

end

Run the job.

submit(obj);

Wait for the job to finish running, and retrieve the job results.

waitForState(obj);
out = getAllOutputArguments(obj);

Display the random matrix returned from the third task.

disp(out{3});

Destroy the job.

destroy(obj);

See Also createParallelJob | createTask | findJob | findResource | submit
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Purpose Create MATLAB pool job

Syntax job = createMatlabPoolJob()
job = createMatlabPoolJob('p1', v1, 'p2', v2, ...)
job = createMatlabPoolJob(..., 'configuration',

'ConfigurationName',...)

Arguments job The job object.

p1, p2 Object properties configured at object creation.

v1, v2 Initial values for corresponding object properties.

Description job = createMatlabPoolJob() creates a MATLAB pool job using the
scheduler identified by the default parallel configuration.

job = createMatlabPoolJob('p1', v1, 'p2', v2, ...) creates a
MATLAB pool job with the specified property values. For a listing of
the valid properties of the created object, see the matlabpooljob object
reference page (if using a job manager) or simplematlabpooljob object
reference page (if using a third-party scheduler). If an invalid property
name or property value is specified, the object is not created. These
values override any values in the default configuration.

job = createMatlabPoolJob(..., 'configuration',
'ConfigurationName',...) creates a MATLAB pool job using the
scheduler identified by the configuration and sets the property values
of the job as specified in that configuration. For details about defining
and applying configurations, see “Parallel Configurations for Cluster
Access” on page 6-14.

Examples Construct a MATLAB pool job object.

j = createMatlabPoolJob('Name', 'testMatlabPooljob');

Add the task to the job.

createTask(j, @labindex, 1, {});
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Set the number of workers required for parallel execution.

j.MinimumNumberOfWorkers = 5;
j.MaximumNumberOfWorkers = 10;

Run the job.

submit(j)

Wait until the job is finished.

waitForState(j, 'finished');

Retrieve the job results.

out = getAllOutputArguments(j);

Display the output.

celldisp(out);

Destroy the job.

destroy(j);

See Also createParallelJob | createTask | defaultParallelConfig | submit
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Purpose Create parallel job object

Syntax pjob = createParallelJob()
pjob = createParallelJob(scheduler)
pjob = createParallelJob(..., 'p1', v1, 'p2', v2, ...)
pjob = createParallelJob(..., 'configuration',

'ConfigurationName',...)

Arguments pjob The parallel job object.

scheduler The scheduler object created by findResource.

p1, p2 Object properties configured at object creation.

v1, v2 Initial values for corresponding object properties.

Description pjob = createParallelJob() creates a parallel job using the
scheduler identified by the default parallel configuration and sets the
property values of the job as specified in the default configuration.

pjob = createParallelJob(scheduler) creates a parallel job object
at the data location for the identified scheduler, or in the job manager.
When you specify a scheduler without using the 'configuration'
option, no configuration is used, so no configuration properties are
applied to the job object.

pjob = createParallelJob(..., 'p1', v1, 'p2', v2, ...)
creates a parallel job object with the specified property values. For a
listing of the valid properties of the created object, see the paralleljob
object reference page (if using a job manager) or simpleparalleljob
object reference page (if using a third-party scheduler). If an invalid
property name or property value is specified, the object will not be
created.

Property value pairs can be in any format supported by the set function,
i.e., param-value string pairs, structures, and param-value cell array
pairs. Future modifications to the job object result in a remote call to
the job manager or modification to data at the scheduler’s data location.
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pjob = createParallelJob(..., 'configuration',
'ConfigurationName',...) creates a parallel job object
using the scheduler identified by the configuration and sets the property
values of the job as specified in that configuration. For details about
defining and applying configurations, see “Parallel Configurations for
Cluster Access” on page 6-14.

Examples Construct a parallel job object using the default configuration.

pjob = createParallelJob();

Add the task to the job.

createTask(pjob, 'rand', 1, {3});

Set the number of workers required for parallel execution.

set(pjob,'MinimumNumberOfWorkers',3);
set(pjob,'MaximumNumberOfWorkers',3);

Run the job.

submit(pjob);

Wait for the job to finish running, and retrieve the job results.

waitForState(pjob);
out = getAllOutputArguments(pjob);

Display the random matrices.

celldisp(out);
out{1} =

0.9501 0.4860 0.4565
0.2311 0.8913 0.0185
0.6068 0.7621 0.8214

out{2} =
0.9501 0.4860 0.4565
0.2311 0.8913 0.0185
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0.6068 0.7621 0.8214
out{3} =

0.9501 0.4860 0.4565
0.2311 0.8913 0.0185
0.6068 0.7621 0.8214

Destroy the job.

destroy(pjob);

See Also createJob | createTask | findJob | findResource | submit
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Purpose Create new task in job

Syntax t = createTask(j, F, N, {inputargs})
t = createTask(j, F, N, {C1,...,Cm})
t = createTask(..., 'p1',v1,'p2',v2,...)
t = createTask(...,'configuration', 'ConfigurationName',...)

Arguments t Task object or vector of task objects.

j The job that the task object is created in.

F A handle to the function that is called when
the task is evaluated, or an array of function
handles.

N The number of output arguments to be
returned from execution of the task function.
This is a double or array of doubles.

{inputargs} A row cell array specifying the input
arguments to be passed to the function F.
Each element in the cell array will be passed
as a separate input argument. If this is a
cell array of cell arrays, a task is created for
each cell array.

{C1,...,Cm} Cell array of cell arrays defining input
arguments to each of m tasks.

p1, p2 Task object properties configured at object
creation.

v1, v2 Initial values for corresponding task object
properties.

Description t = createTask(j, F, N, {inputargs}) creates a new task object
in job j, and returns a reference, t, to the added task object. This
task evaluates the function specified by a function handle or function
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name F, with the given input arguments {inputargs}, returning N
output arguments.

t = createTask(j, F, N, {C1,...,Cm}) uses a cell array of m cell
arrays to create m task objects in job j, and returns a vector, t, of
references to the new task objects. Each task evaluates the function
specified by a function handle or function name F. The cell array C1
provides the input arguments to the first task, C2 to the second task,
and so on, so that there is one task per cell array. Each task returns
N output arguments. If F is a cell array, each element of F specifies
a function for each task in the vector; it must have m elements. If N
is an array of doubles, each element specifies the number of output
arguments for each task in the vector. Multidimensional matrices of
inputs F, N and {C1,...,Cm} are supported; if a cell array is used for F,
or a double array for N, its dimensions must match those of the input
arguments cell array of cell arrays. The output t will be a vector with
the same number of elements as {C1,...,Cm}. Note that because a
parallel job has only one task, this form of vectorized task creation is
not appropriate for parallel jobs.

t = createTask(..., 'p1',v1,'p2',v2,...) adds a task object with
the specified property values. For a listing of the valid properties of
the created object, see the task object reference page (if using a job
manager) or simpletask object reference page (if using a third-party
scheduler). If an invalid property name or property value is specified,
the object will not be created.

Note that the property value pairs can be in any format supported
by the set function, i.e., param-value string pairs, structures, and
param-value cell array pairs. If a structure is used, the structure field
names are task object property names and the field values specify the
property values.

t = createTask(...,'configuration', 'ConfigurationName',...)
creates a task job object with the property values specified in the
configuration ConfigurationName. For details about defining and
applying configurations, see “Parallel Configurations for Cluster
Access” on page 6-14.
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Examples Create a job object.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm);

Add a task object which generates a 10-by-10 random matrix.

obj = createTask(j, @rand, 1, {10,10});

Run the job.

submit(j);

Wait for the job to finish running, and get the output from the task
evaluation.

waitForState(j);
taskoutput = get(obj, 'OutputArguments');

Show the 10-by-10 random matrix.

disp(taskoutput{1});

Create a job with three tasks, each of which generates a 10-by-10
random matrix.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm);
t = createTask(j, @rand, 1, {{10,10} {10,10} {10,10}});

See Also createJob | createParallelJob | findTask
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Purpose Default parallel computing configuration

Syntax [config, allconfigs] = defaultParallelConfig
[oldconfig, allconfigs] = defaultParallelConfig(newconfig)

Arguments config String indicating name of current default
configuration

allconfigs Cell array of strings indicating names of all
available configurations

oldconfig String indicating name of previous default
configuration

newconfig String specifying name of new default
configuration

Description The defaultParallelConfig function allows you to programmatically
get or set the default parallel configuration and obtain a list of all valid
configurations.

[config, allconfigs] = defaultParallelConfig returns the name
of the default parallel computing configuration, as well as a cell array
containing the names of all available configurations.

[oldconfig, allconfigs] = defaultParallelConfig(newconfig)
sets the default parallel computing configuration to newconfig and
returns the previous default configuration and a cell array containing
the names of all available configurations. The previous configuration is
provided so that you can reset the default configuration to its original
setting at the end of your session.

The settings specified for defaultParallelConfig are saved as a part
of your MATLAB preferences.

The cell array allconfigs always contains a configuration called
'local' for the local scheduler. The default configuration returned by
defaultParallelConfig is guaranteed to be found in allconfigs.
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If the default configuration has been deleted, or if it has never been set,
defaultParallelConfig returns 'local' as the default configuration.

Examples Read the name of the default parallel configuration that is currently in
effect, and get a listing of all available configurations.

[ConfigNow ConfigList] = defaultParallelConfig

Select the configuration named 'MyConfig' to be the default parallel
configuration.

defaultParallelConfig('MyConfig')

See Also findResource | importParallelConfig | matlabpool | pmode
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Purpose Demote job in job manager queue

Syntax demote(jm, job)

Arguments jm The job manager object that contains the job.

job Job object demoted in the job queue.

Description demote(jm, job) demotes the job object job that is queued in the job
manager jm.

If job is not the last job in the queue, demote exchanges the position
of job and the job that follows it in the queue.

Tips After a call to demote or promote, there is no change in the order of
job objects contained in the Jobs property of the job manager object.
To see the scheduled order of execution for jobs in the queue, use the
findJob function in the form [pending queued running finished]
= findJob(jm).

Examples Create and submit multiple jobs to the job manager identified by the
default parallel configuration:

jm = findResource();
j1 = createJob('name','Job A');
j2 = createJob('name','Job B');
j3 = createJob('name','Job C');
submit(j1);submit(j2);submit(j3);

Demote one of the jobs by one position in the queue:

demote(jm, j2)

Examine the new queue sequence:

[pjobs, qjobs, rjobs, fjobs] = findJob(jm);
get(qjobs, 'Name')
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'Job A'
'Job C'
'Job B'

See Also createJob | findJob | promote | submit
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Purpose Remove job or task object from parent and memory

Syntax destroy(obj)

Arguments obj Job or task object deleted from memory.

Description destroy(obj) removes the job object reference or task object reference
obj from the local session, and removes the object from the job manager
memory. When obj is destroyed, it becomes an invalid object. You can
remove an invalid object from the workspace with the clear command.

If multiple references to an object exist in the workspace, destroying
one reference to that object invalidates all the remaining references to
it. You should remove these remaining references from the workspace
with the clear command.

The task objects contained in a job will also be destroyed when a job
object is destroyed. This means that any references to those task objects
will also be invalid.

Tips Because its data is lost when you destroy an object, destroy should be
used after output data has been retrieved from a job object.

Examples Destroy a job and its tasks.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm, 'Name', 'myjob');
t = createTask(j, @rand, 1, {10});
destroy(j);
clear t
clear j

Note that task t is also destroyed as part of job j.

See Also createJob | createTask
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Purpose Evaluate function using cluster

Syntax [y1,...,ym] = dfeval(F, x1,...,xn)
y = dfeval( ..., 'P1',V1,'P2',V2,...)
[y1,...,ym] = dfeval(F, x1,...,xn, ... 'configuration',

'ConfigurationName',...)

Arguments F Function name, function handle, or cell array
of function names or handles.

x1, ..., xn Cell arrays of input arguments to the functions.

y1, ..., ym Cell arrays of output arguments; each element
of a cell array corresponds to each task of the
job.

'P1', V1, 'P2',
V2, ...

Property name/property value pairs for the
created job object; can be name/value pairs or
structures.

Description [y1,...,ym] = dfeval(F, x1,...,xn) performs the equivalent of
an feval in a cluster of machines using Parallel Computing Toolbox
software. dfeval evaluates the function F, with arguments provided
in the cell arrays x1,...,xn. F can be a function handle, a function
name, or a cell array of function handles/function names where the
length of the cell array is equal to the number of tasks to be executed.
x1,...,xn are the inputs to the function F, specified as cell arrays in
which the number of elements in the cell array equals the number of
tasks to be executed. The first task evaluates function F using the first
element of each cell array as input arguments; the second task uses the
second element of each cell array, and so on. The sizes of x1,...,xn
must all be the same.

The results are returned to y1,...,ym, which are column-based cell
arrays, each of whose elements corresponds to each task that was
created. The number of cell arrays (m) is equal to the number of output
arguments returned from each task. For example, if the job has 10
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tasks that each generate three output arguments, the results of dfeval
are three cell arrays of 10 elements each. When evaluation is complete,
dfeval destroys the job.

y = dfeval( ..., 'P1',V1,'P2',V2,...) accepts additional
arguments for configuring different properties associated with the job.
Valid properties and property values are

• Job object property value pairs, specified as name/value pairs or
structures. (Properties of other object types, such as scheduler, task,
or worker objects are not permitted. Use a configuration to set
scheduler and task properties.)

• 'JobManager','JobManagerName'. This specifies the job manager
on which to run the job. If you do not use this property to specify a
job manager, the default is to run the job on the first job manager
returned by findResource.

• 'LookupURL','host:port'. This makes a unicast call to the job
manager lookup service at the specified host and port. The job
managers available for this job are those accessible from this lookup
service. For more detail, see the description of this option on the
findResource reference page.

• 'StopOnError',true|{false}. You may also set the value to logical
1 (true) or 0 (false). If true (1), any error that occurs during
execution in the cluster will cause the job to stop executing. The
default value is 0 (false), which means that any errors that occur
will produce a warning but will not stop function execution.

[y1,...,ym] = dfeval(F, x1,...,xn, ... 'configuration',
'ConfigurationName',...) evaluates the function F in a
cluster by using all the properties defined in the configuration
ConfigurationName. The configuration settings are used to find and
initialize a scheduler, create a job, and create tasks. For details about
defining and applying configurations, see “Parallel Configurations for
Cluster Access” on page 6-14. Note that configurations enable you to
use dfeval with any type of scheduler.
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Note that dfeval runs synchronously (sync); that is, it does not return
the MATLAB prompt until the job is completed. For further discussion
of the usage of dfeval, see “Evaluate Functions Synchronously” on
page 7-2.

Examples Create three tasks that return a 1-by-1, a 2-by-2, and a 3-by-3 random
matrix.

y = dfeval(@rand,{1 2 3})
y =

[ 0.9501]
[2x2 double]
[3x3 double]

Create two tasks that return random matrices of size 2-by-3 and 1-by-4.

y = dfeval(@rand,{2 1},{3 4});
y{1}
ans =

0.8132 0.1389 0.1987
0.0099 0.2028 0.6038

y{2}
ans =

0.6154 0.9218 0.1763 0.9355

Create two tasks, where the first task creates a 1-by-2 random array
and the second task creates a 3-by-4 array of zeros.

y = dfeval({@rand @zeros},{1 3},{2 4});
y{1}
ans =

0.0579 0.3529
y{2}
ans =

0 0 0 0
0 0 0 0
0 0 0 0
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Create five random 2-by-4 matrices using MyJobManager to execute
tasks, where the tasks time out after 10 seconds, and the function will
stop if an error occurs while any of the tasks are executing.

y = dfeval(@rand,{2 2 2 2 2},{4 4 4 4 4}, ...
'JobManager','MyJobManager','Timeout',10,'StopOnError',true);

Evaluate the user function myFun using the cluster as defined in the
configuration myConfig.

y = dfeval(@myFun, {task1args, task2args, task3args}, ...
'configuration', 'myConfig', ...
'FileDependencies', {'myFun.m'});

See Also dfevalasync | feval | findResource
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Purpose Evaluate function asynchronously using cluster

Syntax Job = dfevalasync(F, numArgOut, x1,...,xn, 'P1',V1,'P2',V2,
...)

Job = dfevalasync(F, numArgOut, x1,...,xn,
... 'configuration', 'ConfigurationName',...)

Arguments Job Job object created to evaluation the
function.

F Function name, function handle, or cell
array of function names or handles.

numArgOut Number of output arguments from each
task’s execution of function F.

x1, ..., xn Cell arrays of input arguments to the
functions.

'P1', V1, 'P2',
V2,...

Property name/property value pairs for the
created job object; can be name/value pairs
or structures.

Description Job = dfevalasync(F, numArgOut, x1,...,xn,
'P1',V1,'P2',V2,...) is equivalent to dfeval, except that
it runs asynchronously (async), returning to the prompt immediately
with a single output argument containing the job object that it has
created and sent to the cluster. You have immediate access to the
job object before the job is completed. You can use waitForState to
determine when the job is completed, and getAllOutputArguments to
retrieve your results.

Job = dfevalasync(F, numArgOut, x1,...,xn, ...
'configuration', 'ConfigurationName',...) evaluates the function
F in a cluster by using all the properties defined in the configuration
ConfigurationName. The configuration settings are used to find and
initialize a scheduler, create a job, and create tasks. For details about
defining and applying configurations, see “Parallel Configurations

14-78



dfevalasync

for Cluster Access” on page 6-14. Configurations enable you to use
dfevalasync with any type of scheduler.

For further discussion on the usage of dfevalasync, see “Evaluate
Functions Asynchronously” on page 7-8.

Examples Execute a sum function distributed in three tasks.

job = dfevalasync(@sum,1,{[1,2],[3,4],[5,6]}, ...
'jobmanager','MyJobManager');

When the job is finished, you can obtain the results associated with
the job.

waitForState(job);
data = getAllOutputArguments(job)
data =

[ 3]
[ 7]
[11]

data is an M-by-numArgOut cell array, where M is the number of tasks.

See Also dfeval | feval | getAllOutputArguments | waitForState
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Purpose Display or save Command Window text of batch job

Syntax diary(job)
diary(job, 'filename')

Arguments job Job from which to view Command Window output
text.

'filename' File to append with Command Window output text
from batch job

Description diary(job) displays the Command Window output from the batch job
in the MATLAB Command Window. The Command Window output will
be captured only if the batch command included the 'CaptureDiary'
argument with a value of true.

diary(job, 'filename') causes the Command Window output from
the batch job to be appended to the specified file.

See Also diary | batch | load
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Purpose Create distributed array from data in client workspace

Syntax D = distributed(X)

Description D = distributed(X) creates a distributed array from X. X is an array
stored on the MATLAB client, and D is a distributed array stored in
parts on the workers of the open MATLAB pool.

Constructing a distributed array from local data this way is appropriate
only if the MATLAB client can store the entirety of X in its memory. To
construct large distributed arrays, use one of the static constructor
methods such as distributed.ones, distributed.zeros, etc.

If the input argument is already a distributed array, the result is the
same as the input.

Examples Create a small array and distribute it:

Nsmall = 50;
D1 = distributed(magic(Nsmall));

Create a large distributed array using a static build method:

Nlarge = 1000;
D2 = distributed.rand(Nlarge);
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Purpose Create distributed cell array

Syntax D = distributed.cell(n)
D = distributed.cell(m, n, p, ...)
D = distributed.cell([m, n, p, ...])

Description D = distributed.cell(n) creates an n-by-n distributed array of
underlying class cell.

D = distributed.cell(m, n, p, ...) or D =
distributed.cell([m, n, p, ...]) create an m-by-n-by-p-by-...
distributed array of underlying class cell.

Examples Create a distributed 1000-by-1000 cell array:

D = distributed.cell(1000)

See Also cell | codistributed.cell
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Purpose Create distributed identity matrix

Syntax D = distributed.eye(n)
D = distributed.eye(m, n)
D = distributed.eye([m, n])
D = distributed.eye(..., classname)

Description D = distributed.eye(n) creates an n-by-n distributed identity matrix
of underlying class double.

D = distributed.eye(m, n) or D = distributed.eye([m, n])
creates an m-by-n distributed matrix of underlying class double with 1’s
on the diagonal and 0’s elsewhere.

D = distributed.eye(..., classname) specifies the class of the
distributed array D. Valid choices are the same as for the regular eye
function: 'double' (the default), 'single', 'int8', 'uint8', 'int16',
'uint16', 'int32', 'uint32', 'int64', and 'uint64'.

Examples Create a 1000-by-1000 distributed identity matrix of class double:

D = distributed.eye(1000)

See Also eye | codistributed.eye | distributed.ones | distributed.speye
| distributed.zeros
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Purpose Create distributed false array

Syntax F = distributed.false(n)
F = distributed.false(m, n, ...)
F = distributed.false([m, n, ...])

Description F = distributed.false(n) creates an n-by-n distributed array of
logical zeros.

F = distributed.false(m, n, ...) or F = distributed.false([m,
n, ...]) creates an m-by-n-by-... distributed array of logical zeros.

Examples Create a 1000-by-1000 distributed false array.

F = distributed.false(1000);

See Also false | codistributed.false | distributed.true
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Purpose Create distributed array of Inf values

Syntax D = distributed.Inf(n)
D = distributed.Inf(m, n, ...)
D = distributed.Inf([m, n, ...])
D = distributed.Inf(..., classname)

Description D = distributed.Inf(n) creates an n-by-n distributed matrix of Inf
values.

D = distributed.Inf(m, n, ...) or D = distributed.Inf([m, n,
...]) creates an m-by-n-by-... distributed array of Inf values.

D = distributed.Inf(..., classname) specifies the class of the
distributed array D. Valid choices are the same as for the regular Inf
function: 'double' (the default), or 'single'.

Examples Create a 1000-by-1000 distributed matrix of Inf values:

D = distributed.Inf(1000)

See Also Inf | codistributed.Inf | distributed.NaN
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Purpose Create distributed array of Not-a-Number values

Syntax D = distributed.NaN(n)
D = distributed.NaN(m, n, ...)
D = distributed.NaN([m, n, ...])
D = distributed.NaN(..., classname)

Description D = distributed.NaN(n) creates an n-by-n distributed matrix of NaN
values.

D = distributed.NaN(m, n, ...) or D = distributed.NaN([m, n,
...]) creates an m-by-n-by-... distributed array of NaN values.

D = distributed.NaN(..., classname) specifies the class of the
distributed array D. Valid choices are the same as for the regular NaN
function: 'double' (the default), or 'single'.

Examples Create a 1000-by-1000 distributed matrix of NaN values of class double:

D = distributed.NaN(1000)

See Also Inf | codistributed.NaN | distributed.Inf
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Purpose Create distributed array of ones

Syntax D = distributed.ones(n)
D = distributed.ones(m, n, ...)
D = distributed.ones([m, n, ...])
D = distributed.ones(..., classname)

Description D = distributed.ones(n) creates an n-by-n distributed matrix of ones
of class double.

D = distributed.ones(m, n, ...) or D = distributed.ones([m,
n, ...]) creates an m-by-n-by-... distributed array of ones.

D = distributed.ones(..., classname) specifies the class of the
distributed array D. Valid choices are the same as for the regular ones
function: 'double' (the default), 'single', 'int8', 'uint8', 'int16',
'uint16', 'int32', 'uint32', 'int64', and 'uint64'.

Examples Create a 1000-by-1000 distributed matrix of ones of class double:

D = distributed.ones(1000);

See Also ones | codistributed.ones | distributed.eye | distributed.zeros
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Purpose Create distributed array of uniformly distributed pseudo-random
numbers

Syntax R = distributed.rand(n)
R = distributed.rand(m, n, ...)
R = distributed.rand([m, n, ...])
R = distributed.rand(..., classname)

Description R = distributed.rand(n) creates an n-by-n distributed array of
underlying class double.

R = distributed.rand(m, n, ...) or R = distributed.rand([m,
n, ...]) creates an m-by-n-by-... distributed array of underlying class
double.

R = distributed.rand(..., classname) specifies the class of the
distributed array R. Valid choices are the same as for the regular rand
function: 'double' (the default), 'single', 'int8', 'uint8', 'int16',
'uint16', 'int32', 'uint32', 'int64', and 'uint64'.

Tips When you use rand on the workers in the MATLAB pool, or in a
distributed or parallel job (including pmode), each worker or lab sets its
random generator seed to a value that depends only on the lab index
or task ID. Therefore, the array on each lab is unique for that job.
However, if you repeat the job, you get the same random data.

Examples Create a 1000-by-1000 distributed matrix of random values of class
double:

R = distributed.rand(1000);

See Also rand | codistributed.rand | distributed.randn |
distributed.sprand | distributed.sprandn
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Purpose Create distributed array of normally distributed random values

Syntax RN = distributed.randn(n)
RN = distributed.randn(m, n, ...)
RN = distributed.randn([m, n, ...])
RN = distributed.randn(..., classname)

Description RN = distributed.randn(n) creates an n-by-n distributed array of
normally distributed random values with underlying class double.

RN = distributed.randn(m, n, ...) and RN =
distributed.randn([m, n, ...]) create an m-by-n-by-...
distributed array of normally distributed random values.

RN = distributed.randn(..., classname) specifies the class of the
distributed array D. Valid choices are the same as for the regular randn
function: 'double' (the default), 'single', 'int8', 'uint8', 'int16',
'uint16', 'int32', 'uint32', 'int64', and 'uint64'.

Tips When you use randn on the workers in the MATLAB pool, or in a
distributed or parallel job (including pmode), each worker or lab sets its
random generator seed to a value that depends only on the lab index
or task ID. Therefore, the array on each lab is unique for that job.
However, if you repeat the job, you get the same random data.

Examples Create a 1000-by-1000 distributed matrix of normally distributed
random values of class double:

RN = distributed.randn(1000);

See Also randn | codistributed.randn | distributed.rand |
distributed.speye | distributed.sprand | distributed.sprandn
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Purpose Allocate space for sparse distributed matrix

Syntax SD = distributed.spalloc(M, N, nzmax)

Description SD = distributed.spalloc(M, N, nzmax) creates an M-by-N all-zero
sparse distributed matrix with room to hold nzmax nonzeros.

Examples Allocate space for a 1000-by-1000 sparse distributed matrix with room
for up to 2000 nonzero elements, then define several elements:

N = 1000;
SD = distributed.spalloc(N, N, 2*N);
for ii=1:N-1

SD(ii,ii:ii+1) = [ii ii];
end

See Also spalloc | codistributed.spalloc | sparse
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Purpose Create distributed sparse identity matrix

Syntax DS = distributed.speye(n)
DS = distributed.speye(m, n)
DS = distributed.speye([m, n])

Description DS = distributed.speye(n) creates an n-by-n sparse distributed
array of underlying class double.

DS = distributed.speye(m, n) or DS = distributed.speye([m,
n]) creates an m-by-n sparse distributed array of underlying class
double.

Examples Create a distributed 1000-by-1000 sparse identity matrix:

N = 1000;
DS = distributed.speye(N);

See Also speye | codistributed.speye | distributed.eye
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Purpose Create distributed sparse array of uniformly distributed pseudo-random
values

Syntax DS = distributed.sprand(m, n, density)

Description DS = distributed.sprand(m, n, density) creates an m-by-n
sparse distributed array with approximately density*m*n uniformly
distributed nonzero double entries.

Tips When you use sprand on the workers in the MATLAB pool, or in a
distributed or parallel job (including pmode), each worker or lab sets its
random generator seed to a value that depends only on the lab index
or task ID. Therefore, the array on each lab is unique for that job.
However, if you repeat the job, you get the same random data.

Examples Create a 1000-by-1000 sparse distributed double array DS with
approximately 1000 nonzeros.

DS = distributed.sprand(1000, 1000, .001);

See Also sprand | codistributed.sprand | distributed.rand
| distributed.randn | sparse | distributed.speye |
distributed.sprandn
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Purpose Create distributed sparse array of normally distributed pseudo-random
values

Syntax DS = distributed.sprandn(m, n, density)

Description DS = distributed.sprandn(m, n, density) creates an m-by-n
sparse distributed array with approximately density*m*n normally
distributed nonzero double entries.

Tips When you use sprandn on the workers in the MATLAB pool, or in a
distributed or parallel job (including pmode), each worker or lab sets its
random generator seed to a value that depends only on the lab index
or task ID. Therefore, the array on each lab is unique for that job.
However, if you repeat the job, you get the same random data.

Examples Create a 1000-by-1000 sparse distributed double array DS with
approximately 1000 nonzeros.

DS = distributed.sprandn(1000, 1000, .001);

See Also sprandn | codistributed.sprandn | distributed.rand
| distributed.randn | sparse | distributed.speye |
distributed.sprand
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Purpose Create distributed true array

Syntax T = distributed.true(n)
T = distributed.true(m, n, ...)
T = distributed.true([m, n, ...])

Description T = distributed.true(n) creates an n-by-n distributed array of
logical ones.

T = distributed.true(m, n, ...) or T = distributed.true([m,
n, ...]) creates an m-by-n-by-... distributed array of logical ones.

Examples Create a 1000-by-1000 distributed true array.

T = distributed.true(1000);

See Also true | codistributed.true | distributed.false
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Purpose Create distributed array of zeros

Syntax D = distributed.zeros(n)
D = distributed.zeros(m, n, ...)
D = distributed.zeros([m, n, ...])
D = distributed.zeros(..., classname)

Description D = distributed.zeros(n) creates an n-by-n distributed matrix of
zeros of class double.

D = distributed.zeros(m, n, ...) or D = distributed.zeros([m,
n, ...]) creates an m-by-n-by-... distributed array of zeros.

D = distributed.zeros(..., classname) specifies the class of the
distributed array D. Valid choices are the same as for the regular zeros
function: 'double' (the default), 'single', 'int8', 'uint8', 'int16',
'uint16', 'int32', 'uint32', 'int64', and 'uint64'.

Examples Create a 1000-by-1000 distributed matrix of zeros using default class:

D = distributed.zeros(1000);

See Also zeros | codistributed.zeros | distributed.eye |
distributed.ones

14-95



dload

Purpose Load distributed arrays and Composite objects from disk

Syntax dload
dload filename
dload filename X
dload filename X Y Z ...
dload -scatter ...
[X, Y, Z, ...] = dload('filename', 'X', 'Y', 'Z', ...)

Description dload without any arguments retrieves all variables from the binary
file named matlab.mat. If matlab.mat is not available, the command
generates an error.

dload filename retrieves all variables from a file given a full pathname
or a relative partial pathname. If filename has no extension, dload
looks for filename.mat. dload loads the contents of distributed arrays
and Composite objects onto MATLAB pool workers, other data types are
loaded directly into the workspace of the MATLAB client.

dload filename X loads only variable X from the file. dload filename
X Y Z ... loads only the specified variables. dload does not support
wildcards, nor the -regexp option. If any requested variable is not
present in the file, a warning is issued.

dload -scatter ... distributes nondistributed data if possible. If the
data cannot be distributed, a warning is issued.

[X, Y, Z, ...] = dload('filename', 'X', 'Y', 'Z', ...)
returns the specified variables as separate output arguments (rather
than a structure, which the load function returns). If any requested
variable is not present in the file, an error occurs.

When loading distributed arrays, the data is distributed over the
available MATLAB pool workers using the default distribution scheme.
It is not necessary to have the same size MATLAB pool open when
loading as when saving using dsave.

When loading Composite objects, the data is sent to the available
MATLAB pool workers. If the Composite is too large to fit on the current
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MATLAB pool, the data is not loaded. If the Composite is smaller than
the current MATLAB pool, a warning is issued.

Examples Load variables X, Y, and Z from the file fname.mat:

dload fname X Y Z

Use the function form of dload to load distributed arrays P and Q from
file fname.mat:

[P, Q] = dload('fname.mat', 'P', 'Q');

See Also load | Composite | distributed | dsave | matlabpool
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Purpose Save workspace distributed arrays and Composite objects to disk

Syntax dsave
dsave filename
dsave filename X
dsave filename X Y Z

Description dsave without any arguments creates the binary file named matlab.mat
and writes to the file all workspace variables, including distributed
arrays and Composite objects. You can retrieve the variable data using
dload.

dsave filename saves all workspace variables to the binary file named
filename.mat. If you do not specify an extension for filename, it
assumes the extension .mat.

dsave filename X saves only variable X to the file.

dsave filename X Y Z saves X, Y, and Z. dsave does not support
wildcards, nor the -regexp option.

dsave does not support saving sparse distributed arrays.

Examples With a MATLAB pool open, create and save several variables to
mydatafile.mat:

D = distributed.rand(1000); % Distributed array
C = Composite(); %
C{1} = magic(20); % Data on lab 1 only
X = rand(40); % Client workspace only
dsave mydatafile D C X % Save all three variables

See Also save | Composite | distributed | dload | matlabpool
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Purpose Check whether Composite is defined on labs

Syntax h = exist(C, labidx)
h = exist(C)

Description h = exist(C, labidx) returns true if the entry in Composite C has a
defined value on the lab with labindex labidx, false otherwise. In the
general case where labidx is an array, the output h is an array of the
same size as labidx, and h(i) indicates whether the Composite entry
labidx(i) has a defined value.

h = exist(C) is equivalent to h = exist(C, 1:length(C)).

If exist(C, labidx) returns true, C(labidx) does not throw an error,
provided that the values of C on those labs are serializable. The function
throws an error if the lab indices are invalid.

Examples Define a variable on a random number of labs. Check on which labs the
Composite entries are defined, and get all those values:

spmd
if rand() > 0.5

c = labindex;
end

end
ind = exist(c);
cvals = c(ind);

See Also Composite
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Purpose Evaluate kernel on GPU

Syntax feval(KERN, x1, ..., xn)
[y1, ..., ym] = feval(KERN, x1, ..., xn)

Description feval(KERN, x1, ..., xn) evaluates the CUDA kernel KERN with
the given arguments x1, ..., xn. The number of input arguments,
n, must equal the value of the NumRHSArguments property of KERN, and
their types must match the description in the ArgumentTypes property
of KERN. The input data can be regular MATLAB data, GPU arrays, or a
mixture of the two.

[y1, ..., ym] = feval(KERN, x1, ..., xn) returns multiple
output arguments from the evaluation of the kernel. Each output
argument corresponds to the value of the non-const pointer inputs to
the CUDA kernel after it has executed. The output from feval running
a kernel on the GPU is always GPUArray type, even if all the inputs are
data from the MATLAB workspace. The number of output arguments, m,
must not exceed the value of the MaxNumLHSArguments property of KERN.

Examples If the CUDA kernel within a CU file has the following signature:

void myKernel(const float * pIn, float * pInOut1, float * pInOut2)

The corresponding kernel object in MATLAB then has the properties:

MaxNumLHSArguments: 2
NumRHSArguments: 3

ArgumentTypes: {'in single vector' ...
'inout single vector' 'inout single vector'}

You can use feval on this code’s kernel (KERN) with the syntax:

[y1, y2] = feval(KERN, x1, x2, x3)

The three input arguments, x1, x2, and x3, correspond to the three
arguments that are passed into the CUDA function. The output
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arguments, y1 and y2, are GPUArray types, and correspond to the
values of pInOut1 and pInOut2 after the CUDA kernel has executed.

See Also arrayfun | gather | gpuArray | parallel.gpu.CUDAKernel
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Purpose Find job objects stored in scheduler

Syntax out = findJob(sched)
[pending queued running completed] = findJob(sched)
out = findJob(sched,'p1',v1,'p2',v2,...)

Arguments sched Scheduler object in which to find the job.

pending Array of jobs whose State is pending in
scheduler sched.

queued Array of jobs whose State is queued in
scheduler sched.

running Array of jobs whose State is running in
scheduler sched.

completed Array of jobs that have completed running,
i.e., whose State is finished or failed in
scheduler sched.

out Array of jobs found in scheduler sched.

p1, p2 Job object properties to match.

v1, v2 Values for corresponding object properties.

Description out = findJob(sched) returns an array, out, of all job objects stored
in the scheduler sched. Jobs in the array are ordered by the ID property
of the jobs, indicating the sequence in which they were created.

[pending queued running completed] = findJob(sched) returns
arrays of all job objects stored in the scheduler sched, by state. Within
pending, running, and completed, the jobs are returned in sequence
of creation. Jobs in the array queued are in the order in which they
are queued, with the job at queued(1) being the next to execute. The
completed jobs include those that failed. Jobs that are destroyed or
whose status is unavailable are not returned by this function.
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out = findJob(sched,'p1',v1,'p2',v2,...) returns an array, out,
of job objects whose property names and property values match those
passed as parameter-value pairs, p1, v1, p2, v2.

Note that the property value pairs can be in any format supported
by the set function, i.e., param-value string pairs, structures, and
param-value cell array pairs. If a structure is used, the structure
field names are job object property names and the field values are the
appropriate property values to match.

When a property value is specified, it must use the same exact value
that the get function returns, including letter case. For example, if get
returns the Name property value as MyJob, then findJob will not find
that object while searching for a Name property value of myjob.

See Also createJob | findResource | findTask | submit
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Purpose Find available parallel computing resources

Syntax out = findResource()
out = findResource('scheduler', ... 'configuration',

'ConfigurationName')
out = findResource('scheduler', 'type', 'SchedType')
out = findResource('scheduler', 'type', 'jobmanager',

'LookupURL', 'host:port')
out = findResource('scheduler', 'type', 'hpcserver')
out = findResource('scheduler', 'type', 'hpcserver',

'SchedulerHostname', 'headNode')
out = findResource('worker')
out = findResource('worker', 'LookupURL', 'host:port')
out = findResource(... ,'p1', v1, 'p2', v2,...)

Arguments out Object or array of objects returned.

'configuration' Literal string to indicate usage of a
configuration.

'ConfigurationName' Name of configuration to use.

'scheduler' Literal string specifying that you are finding
a scheduler, which can be a job manager or a
third-party scheduler.

'SchedType' Specifies the type of scheduler: 'jobmanager',
'local', 'hpcserver', 'LSF', 'pbspro',
'torque', 'mpiexec', or any string that
starts with 'generic'.

'worker' Literal string specifying that you are finding
a worker.

'LookupURL' Literal string to indicate usage of a remote
lookup service.

'host:port' Host name and (optionally) port of remote
lookup service to use.
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'SchedulerHostname' Literal string to indicate that the next
argument identifies the head node for the
HPC Server scheduler. Ignored if scheduler
type is not 'hpcserver'.

'headNode' String specifying the HPC Server head node
name.

p1, p2 Object properties to match.

v1, v2 Values for corresponding object properties.

Description out = findResource() returns a scheduler object , out, representing
the scheduler identified by the default parallel configuration, with
the scheduler object properties set to the values defined in that
configuration.

out = findResource('scheduler', ... 'configuration',
'ConfigurationName') returns a scheduler object , out,
representing the scheduler identified by the parallel configuration
ConfigurationName, with the scheduler object properties set to the
values defined in that configuration. For details about defining and
applying parallel configurations, see “Parallel Configurations for
Cluster Access” on page 6-14.

Note If you specify the 'scheduler' option without the
'configuration' option, no configuration is used, so no configuration
properties are applied to the object.

out = findResource('scheduler', 'type', 'SchedType')
returns an array, out, containing objects representing all available
parallel computing schedulers of the given type. SchedType can be
'jobmanager', 'local', 'hpcserver', 'LSF', 'pbspro', 'torque',
'mpiexec', or any string starting with 'generic'. A 'local' scheduler
queues jobs for running on workers that it will start on your local client
machine. You can use different scheduler types starting with 'generic'
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to identify one generic scheduler or configuration from another. You can
have multiple scheduler objects to simultaneously support several job
managers or generic schedulers, but you cannot create more than one
object for each type of fully supported third-party scheduler or the local
scheduler. For third-party and generic schedulers, job data is stored in
the location specified by the scheduler object’s DataLocation property.

out = findResource('scheduler', 'type', 'jobmanager',
'LookupURL', 'host:port') uses the lookup process of the job
manager running at a specific location. The lookup process is part of a
job manager. By default, findResource uses all the lookup processes
that are available to the local machine via multicast. If you specify
'LookupURL' with a host, findResource uses the job manager lookup
process running at that location. The port is optional, and is necessary
only if the lookup process was configured to use a port other than the
default BASEPORT setting of the mdce_def file. This URL is where the
lookup is performed from, it is not necessarily the host running the job
manager or worker. This unicast call is useful when you want to find
resources that might not be available via multicast or in a network
that does not support multicast.

Notes Although Version 5 of the Parallel Computing Toolbox and
MATLAB Distributed Computing Server products continue to support
multicast communications between their processes, multicast is not
recommended and might not be supported in future releases.

findResource ignores LookupURL when finding third-party schedulers.

out = findResource('scheduler', 'type', 'hpcserver') searches
your environment variables and Active Directory to find the HPC
Server cluster head node. If more than one HPC Server cluster head
node is found in the Active Directory, an error is thrown listing the
names of all the head nodes found.

out = findResource('scheduler', 'type', 'hpcserver',
'SchedulerHostname', 'headNode') uses the HPC Server scheduler
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with the specified head node. SchedulerHostname is ignored for all
scheduler types other than 'hpcserver'.

out = findResource('worker') or out = findResource('worker',
'LookupURL', 'host:port') returns an array of worker objects
representing all found workers or those that match the search criteria.

out = findResource(... ,'p1', v1, 'p2', v2,...) returns an
array, out, of resources whose property names and property values
match those passed as parameter-value pairs, p1, v1, p2, v2.

Note that the property value pairs can be in any format supported by
the set function.

When a property value is specified, it must use the same exact value
that the get function returns, including letter case. For example,
if get returns the Name property value as 'MyJobManager', then
findResource will not find that object if searching for a Name property
value of 'myjobmanager'.

Tips You are allowed to use parameter-value string pairs, structures,
parameter-value cell array pairs, and configurations in the same call to
findResource.

Examples Find a particular job manager by its name.

jm1 = findResource('scheduler','type','jobmanager', ...
'Name', 'ClusterQueue1');

Find all job managers. In this example, there are four.

all_job_managers = findResource('scheduler','type','jobmanager')

all_job_managers =

distcomp.jobmanager: 1-by-4
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Find all job managers accessible from the lookup service on a particular
host.

jms = findResource('scheduler','type','jobmanager', ...
'LookupURL','host234');

Find a particular job manager accessible from the lookup service on
a particular host. In this example, subnet2.hostalpha port 6789 is
where the lookup is performed, but the job manager named SN2Jmgr
might be running on another machine.

jm = findResource('scheduler','type','jobmanager', ...

'LookupURL', 'subnet2.hostalpha:6789', 'Name', 'SN2JMgr');

Find the Platform LSF scheduler on the network.

lsf_sched = findResource('scheduler','type','LSF')

Create a local scheduler that will start workers on the client machine
for running your job.

local_sched = findResource('scheduler','type','local')

Find the scheduler identified by the default parallel configuration,
with the scheduler object properties set to the values defined in that
configuration.

sched = findResource();

See Also findJob | findTask
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Purpose Task objects belonging to job object

Syntax tasks = findTask(obj)
[pending running completed] = findTask(obj)
tasks = findTask(obj,'p1',v1,'p2',v2,...)

Arguments obj Job object.

tasks Returned task objects.

pending Array of tasks in job obj whose State is
pending.

running Array of tasks in job obj whose State is
running.

completed Array of completed tasks in job obj, i.e., those
whose State is finished or failed.

p1, p2 Task object properties to match.

v1, v2 Values for corresponding object properties.

Description tasks = findTask(obj) gets a 1-by-N array of task objects belonging
to a job object obj Tasks in the array are ordered by the ID property of
the tasks, indicating the sequence in which they were created.

[pending running completed] = findTask(obj) returns arrays of
all task objects stored in the job object obj, sorted by state. Within each
array (pending, running, and completed), the tasks are returned in
sequence of creation.

tasks = findTask(obj,'p1',v1,'p2',v2,...) gets a 1-by-N array
of task objects belonging to a job object obj. The returned task objects
will be only those having the specified property-value pairs.

Note that the property value pairs can be in any format supported
by the set function, i.e., param-value string pairs, structures, and
param-value cell array pairs. If a structure is used, the structure
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field names are object property names and the field values are the
appropriate property values to match.

When a property value is specified, it must use the same exact value
that the get function returns, including letter case. For example, if get
returns the Name property value as MyTask, then findTask will not find
that object while searching for a Name property value of mytask.

Tips If obj is contained in a remote service, findTask will result in a call to
the remote service. This could result in findTask taking a long time to
complete, depending on the number of tasks retrieved and the network
speed. Also, if the remote service is no longer available, an error will
be thrown.

Examples Create a job object.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

obj = createJob(jm);

Add a task to the job object.

createTask(obj, @rand, 1, {10})

Create the task object t, which refers to the task we just added to obj.

t = findTask(obj)

See Also createJob | createTask | findJob
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Purpose for-loop over distributed range

Syntax FOR variable = drange(colonop)
statement
...
statement

end

Description The general format is

FOR variable = drange(colonop)
statement
...
statement

end

The colonop is an expression of the form start:increment:finish
or start:finish. The default value of increment is 1. The colonop
is partitioned by codistributed.colon into numlabs contiguous
segments of nearly equal length. Each segment becomes the iterator for
a conventional for-loop on an individual lab.

The most important property of the loop body is that each iteration must
be independent of the other iterations. Logically, the iterations can be
done in any order. No communication with other labs is allowed within
the loop body. The functions that perform communication are gop, gcat,
gplus, codistributor, codistributed, gather, and redistribute.

It is possible to access portions of codistributed arrays that are local to
each lab, but it is not possible to access other portions of codistributed
arrays.

The break statement can be used to terminate the loop prematurely.
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Examples Find the rank of magic squares. Access only the local portion of a
codistributed array.

r = zeros(1, 40, codistributor());
for n = drange(1:40)

r(n) = rank(magic(n));
end
r = gather(r);

Perform Monte Carlo approximation of pi. Each lab is initialized to a
different random number state.

m = 10000;
for p = drange(1:numlabs)

z = rand(m, 1) + i*rand(m, 1);
c = sum(abs(z) < 1)

end
k = gplus(c)
p = 4*k/(m*numlabs);

Attempt to compute Fibonacci numbers. This will not work, because the
loop bodies are dependent.

f = zeros(1, 50, codistributor());
f(1) = 1;
f(2) = 2;
for n = drange(3:50)

f(n) = f(n - 1) + f(n - 2)
end

See Also for | numlabs | parfor
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Purpose Transfer distributed array data or GPUArray to local workspace

Syntax X = gather(A)
X = gather(C, lab)

Description X = gather(A) can operate inside an spmd statement, pmode, or
parallel job to gather together the data of a codistributed array, or
outside an spmd statement to gather the data of a distributed array.
If you execute this inside an spmd statement, pmode, or parallel job,
X is replicated array with all the data of the array on every lab. If
you execute this outside an spmd statement, X is an array in the local
workspace, with the data transferred from the multiple labs.

X = gather(distributed(X)) or X = gather(codistributed(X))
returns the original array X.

X = gather(C, lab) converts a codistributed array C to a variant
array X, such that all of the data is contained on lab lab, and X is a
0-by-0 empty double on all other labs.

For a GPUArray input, X = gather(A) transfers the data from the
GPU to the local workspace.

If the input argument to gather is not a distributed, a codistributed, or
a GPUArray, the output is the same as the input.

Tips Note that gather assembles the codistributed or distributed array in
the workspaces of all the labs on which it executes, or on the MATLAB
client, respectively, but not both. If you are using gather within an
spmd statement, the gathered array is accessible on the client via its
corresponding Composite object; see “Accessing Data with Composites”
on page 3-7. If you are running gather in a parallel job, you can return
the gathered array to the client as an output argument from the task.

As the gather function requires communication between all the labs,
you cannot gather data from all the labs onto a single lab by placing the
function inside a conditional statement such as if labindex == 1.

14-113



gather

Examples Distribute a magic square across your labs, then gather the whole
matrix onto every lab and then onto the client. This code results in the
equivalent of M = magic(n) on all labs and the client.

n = 10;
spmd

C = codistributed(magic(n));
M = gather(C) % Gather data on all labs

end
S = gather(C) % Gather data on client

Gather all of the data in C onto lab 1, for operations that cannot be
performed across distributed arrays.

n = 10;
spmd

C = codistributed(magic(n));
out = gather(C, 1);
if labindex == 1

% Characteristic sum for this magic square:
characteristicSum = sum(1:n^2)/n;
% Ensure that the diagonal sums are equal to the
% characteristic sum:
areDiagonalsEqual = isequal ...

(trace(out), trace(flipud(out)), characteristicSum)
end

end
Lab 1:

areDiagonalsEqual =
1

Gather all of the data from a distributed array into D on the client.

n = 10;
D = distributed(magic(n)); % Distribute data to labs
M = gather(D) % Return data to client

Gather the results of a GPU operation to the local workspace.
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G = gpuArray(rand(1024,1));
F = sqrt(G); %input and output both GPUArray
W = gather(G); % Return data to client
whos
Name Size Bytes Class

F 1024x1 108 parallel.gpu.GPUArray
G 1024x1 108 parallel.gpu.GPUArray
W 1024x1 8192 double

See Also arrayfun | codistributed | distributed | gpuArray | pmode
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Purpose Global concatenation

Syntax Xs = gcat(X)
Xs = gcat(X, dim)
Xs = gcat(X, dim, targetlab)

Description Xs = gcat(X) concatenates the variant array X from each lab in the
second dimension. The result is replicated on all labs.

Xs = gcat(X, dim) concatenates the variant array X from each lab in
the dimension indicated by dim.

Xs = gcat(X, dim, targetlab) performs the reduction, and places
the result into res only on the lab indicated by targetlab. res is set to
[] on all other labs.

Examples With four labs,

Xs = gcat(labindex)

returns Xs = [1 2 3 4] on all four labs.

See Also cat | gop | labindex | numlabs
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Purpose Object properties

Syntax get(obj)
out = get(obj)
out = get(obj,'PropertyName')

Arguments obj An object or an array of objects.

'PropertyName' A property name or a cell array of property names.

out A single property value, a structure of property
values, or a cell array of property values.

Description get(obj) returns all property names and their current values to the
command line for obj.

out = get(obj) returns the structure out where each field name is the
name of a property of obj, and each field contains the value of that
property.

out = get(obj,'PropertyName') returns the value out of the property
specified by PropertyName for obj. If PropertyName is replaced by a
1-by-n or n-by-1 cell array of strings containing property names, then
get returns a 1-by-n cell array of values to out. If obj is an array of
objects, then out will be an m-by-n cell array of property values where m
is equal to the length of obj and n is equal to the number of properties
specified.

Tips When specifying a property name, you can do so without regard to case,
and you can make use of property name completion. For example, if jm
is a job manager object, then these commands are all valid and return
the same result.

out = get(jm,'HostAddress');
out = get(jm,'hostaddress');
out = get(jm,'HostAddr');
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Examples This example illustrates some of the ways you can use get to return
property values for the job object j1.

get(j1,'State')
ans =
pending

get(j1,'Name')
ans =
MyJobManager_job

out = get(j1);
out.State
ans =
pending

out.Name
ans =
MyJobManager_job

two_props = {'State' 'Name'};
get(j1, two_props)
ans =

'pending' 'MyJobManager_job'

See Also inspect | set
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Purpose Output arguments from evaluation of all tasks in job object

Syntax data = getAllOutputArguments(obj)

Arguments obj Job object whose tasks generate output arguments.

data M-by-N cell array of job results.

Description data = getAllOutputArguments(obj) returns data, the output data
contained in the tasks of a finished job. If the job has M tasks, each row
of the M-by-N cell array data contains the output arguments for the
corresponding task in the job. Each row has N columns, where N is the
greatest number of output arguments from any one task in the job. The
N elements of a row are arrays containing the output arguments from
that task. If a task has less than N output arguments, the excess arrays
in the row for that task are empty. The order of the rows in data will be
the same as the order of the tasks contained in the job.

Tips If you are using a job manager, getAllOutputArguments results in
a call to a remote service, which could take a long time to complete,
depending on the amount of data being retrieved and the network speed.
Also, if the remote service is no longer available, an error will be thrown.

Note that issuing a call to getAllOutputArguments will not remove the
output data from the location where it is stored. To remove the output
data, use the destroy function to remove the individual task or their
parent job object.

The same information returned by getAllOutputArguments can be
obtained by accessing the OutputArguments property of each task in
the job.

Examples Create a job to generate a random matrix.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');
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j = createJob(jm, 'Name', 'myjob');
t = createTask(j, @rand, 1, {10});
submit(j);
data = getAllOutputArguments(j);

Display the 10-by-10 random matrix.

disp(data{1});
destroy(j);

See Also submit
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Purpose Codistributor object for existing codistributed array

Syntax codist = getCodistributor(D)

Description codist = getCodistributor(D) returns the codistributor object
of codistributed array D. Properties of the object are Dimension
and Partition for 1-D distribution; and BlockSize, LabGrid, and
Orientation for 2-D block cyclic distribution. For any one codistributed
array, getCodistributor returns the same values on all labs. The
returned codistributor object is complete, and therefore suitable as an
input argument for codistributed.build.

Examples Get the codistributor object for a 1-D codistributed array that uses
default distribution on 4 labs:

spmd (4)
I1 = codistributed.eye(64, codistributor1d());
codist1 = getCodistributor(I1)
dim = codist1.Dimension
partn = codist1.Partition

end

Get the codistributor object for a 2-D block cyclic codistributed array
that uses default distribution on 4 labs:

spmd (4)
I2 = codistributed.eye(128, codistributor2dbc());
codist2 = getCodistributor(I2)
blocksz = codist2.BlockSize
partn = codist2.LabGrid
ornt = codist2.Orientation

end

Demonstrate that these codistributor objects are complete:

spmd (4)
isComplete(codist1)
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isComplete(codist2)
end

See Also codistributed | codistributed.build | getLocalPart |
redistribute
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Purpose Job object whose task is currently being evaluated

Syntax job = getCurrentJob

Arguments job The job object that contains the task currently being
evaluated by the worker session.

Description job = getCurrentJob returns the job object that is the Parent of the
task currently being evaluated by the worker session.

Tips If the function is executed in a MATLAB session that is not a worker,
you get an empty result.

See Also getCurrentJobmanager | getCurrentTask | getCurrentWorker |
getFileDependencyDir
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Purpose Job manager object that scheduled current task

Syntax jm = getCurrentJobmanager

Arguments jm The job manager object that scheduled the task currently
being evaluated by the worker session.

Description jm = getCurrentJobmanager returns the job manager object that has
sent the task currently being evaluated by the worker session. jm is the
Parent of the task’s parent job.

Tips If the function is executed in a MATLAB session that is not a worker,
you get an empty result.

If your tasks are scheduled by a third-party scheduler instead of a job
manager, getCurrentJobmanager returns a distcomp.taskrunner
object.

See Also getCurrentJob | getCurrentTask | getCurrentWorker |
getFileDependencyDir
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Purpose Task object currently being evaluated in this worker session

Syntax task = getCurrentTask

Arguments task The task object that the worker session is currently
evaluating.

Description task = getCurrentTask returns the task object that is currently being
evaluated by the worker session.

Tips If the function is executed in a MATLAB session that is not a worker,
you get an empty result.

See Also getCurrentJob | getCurrentJobmanager | getCurrentWorker |
getFileDependencyDir
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Purpose Worker object currently running this session

Syntax worker = getCurrentWorker

Arguments worker The worker object that is currently evaluating the task
that contains this function.

Description worker = getCurrentWorker returns the worker object representing
the session that is currently evaluating the task that calls this function.

Tips If the function is executed in a MATLAB session that is not a worker
or if you are using a third-party scheduler instead of a job manager,
you get an empty result.

Examples Create a job with one task, and have the task return the name of the
worker that evaluates it.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm);
t = createTask(j, @() get(getCurrentWorker,'Name'), 1, {});
submit(j)
waitForState(j)
get(t,'OutputArgument')
ans =

'c5_worker_43'

The function of the task t is an anonymous function that first executes
getCurrentWorker to get an object representing the worker that is
evaluating the task. Then the task function uses get to examine
the Name property value of that object. The result is placed in the
OutputArgument property of the task.

See Also getCurrentJob | getCurrentJobmanager | getCurrentTask |
getFileDependencyDir
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Purpose Read output messages from job run by supported third-party or local
scheduler

Syntax str = getDebugLog(sched, job_or_task)

Arguments str Variable to which messages are returned as a
string expression.

sched Scheduler object referring to mpiexec, Microsoft
Windows HPC Server (or CCS), Platform LSF,
PBS Pro, or TORQUE scheduler, created by
findResource.

job_or_task Object identifying job, parallel job, or task whose
messages you want.

Description str = getDebugLog(sched, job_or_task) returns any output written
to the standard output or standard error stream by the job or task
identified by job_or_task, being run by the scheduler identified by
sched. You cannot use this function to retrieve messages from a task if
the scheduler is mpiexec.

Examples Construct a scheduler object so you can create a parallel job. Assume
that you have already defined a configuration called mpiexec to define
the properties of the scheduler object.

mpiexecObj = findResource('scheduler', 'Configuration', 'mpiexec');

Create and submit a parallel job.

job = createParallelJob(mpiexecObj);
createTask(job, @labindex, 1, {});
submit(job);
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Look at the debug log.

getDebugLog(mpiexecObj, job);

See Also findResource | createJob | createParallelJob | createTask
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Purpose Directory where FileDependencies are written on worker machine

Syntax depdir = getFileDependencyDir

Arguments depdir String indicating directory where FileDependencies
are placed.

Description depdir = getFileDependencyDir returns a string, which is the path
to the local directory into which FileDependencies are written. This
function will return an empty array if it is not called on a MATLAB
worker.

Examples Find the current directory for FileDependencies.

ddir = getFileDependencyDir;

Change to that directory to invoke an executable.

cdir = cd(ddir);

Invoke the executable.

[OK, output] = system('myexecutable');

Change back to the original directory.

cd(cdir);

See Also getCurrentJob | getCurrentJobmanager | getCurrentTask |
getCurrentWorker | FileDependencies
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Purpose Get specific user data for job on generic scheduler

Syntax userdata = getJobSchedulerData(sched, job)

Arguments userdata Information that was previously stored for this job.

sched Scheduler object identifying the generic third-party
scheduler running the job.

job Job object identifying the job for which to retrieve data.

Description userdata = getJobSchedulerData(sched, job) returns data
stored for the job job that was derived from the generic scheduler
sched. The information was originally stored with the function
setJobSchedulerData. For example, it might be useful to store the
third-party scheduler’s external ID for this job, so that the function
specified in GetJobStateFcn can later query the scheduler about the
state of the job.

To use this feature, you should call the function setJobSchedulerData
in the submit function (identified by the SubmitFcn property) and
call getJobSchedulerData in any of the functions identified by
the properties GetJobStateFcn, DestroyJobFcn, DestroyTaskFcn,
CancelJobFcn, or CancelTaskFcn.

For more information and examples on using these functions and
properties, see “Manage Jobs with Generic Scheduler” on page 8-50.

See Also setJobSchedulerData
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Purpose Local portion of codistributed array

Syntax L = getLocalPart(A)

Description L = getLocalPart(A) returns the local portion of a codistributed array.

Examples With four labs,

A = magic(4); %replicated on all labs
D = codistributed(A, codistributor1d(1));
L = getLocalPart(D)

returns

Lab 1: L = [16 2 3 13]
Lab 2: L = [ 5 11 10 8]
Lab 3: L = [ 9 7 6 12]
Lab 4: L = [ 4 14 15 1]

See Also codistributed | codistributor
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Purpose Global indices for local part of codistributed array

Syntax K = globalIndices(R, dim)
K = globalIndices(R, dim, lab)
[E,F] = globalIndices(R, dim)
[E,F] = globalIndices(R, dim, lab)
K = codist.globalIndices(dim, lab)
[E,F] = codist.globalIndices(dim, lab)

Description globalIndices tell you the relationship between indices on a local
part and the corresponding index range in a given dimension on the
distributed array. The globalIndices method on a codistributor object
allows you to get this relationship without actually creating the array.

K = globalIndices(R, dim) or K = globalIndices(R, dim, lab)
returns a vector K so that getLocalPart(R) = R(...,K,...) in the
specified dimension dim on the specified lab. If the lab argument is
omitted, the default is labindex.

[E,F] = globalIndices(R, dim) or [E,F] = globalIndices(R,
dim, lab) returns two integers E and F so that getLocalPart(R) =
R(...,E:F,...) in the specified dimension dim on the specified lab. If
the lab argument is omitted, the default is labindex.

K = codist.globalIndices(dim, lab) is the same as K =
globalIndices(R, dim, lab), where codist is the codistributor for R,
or codist = getCodistributor(R). This allows you to get the global
indices for a codistributed array without having to create the array
itself.

[E,F] = codist.globalIndices(dim, lab) is the same as [E,F] =
globalIndices(R, dim, lab), where codist is the codistributor for R,
or codist = getCodistributor(R). This allows you to get the global
indices for a codistributed array without having to create the array
itself.

Examples Create a 2-by-22 codistributed array among four labs, and view the
global indices on each lab:
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spmd

C = codistributed.zeros(2, 22, codistributor1d(2,[6 6 5 5]));

if labindex == 1

K = globalIndices(C, 2); % returns K = 1:6.

elseif labindex == 2

[E,F] = globalIndices(C, 2); % returns E = 7, F = 12.

end

K = globalIndices(C, 2, 3); % returns K = 13:17.

[E,F] = globalIndices(C, 2, 4); % returns E = 18, F = 22.

end

Use globalIndices to load data from a file and construct a codistributed
array distributed along its columns, i.e., dimension 2. Notice how
globalIndices makes the code not specific to the number of labs and
alleviates you from calculating offsets or partitions.

spmd
siz = [1000, 1000];
codistr = codistributor1d(2, [], siz);

% Use globalIndices to figure out which columns
% each lab should load.
[firstCol, lastCol] = codistr.globalIndices(2);

% Call user-defined function readRectangleFromFile to
% load all the values that should go into
% the local part for this lab.
labLocalPart = readRectangleFromFile(fileName, ...

1, siz(1), firstCol, lastCol);

% With the local part and codistributor,
% construct the corresponding codistributed array.
C = codistributed.build(labLocalPart, codistr);

end

See Also getLocalPart | labindex
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Purpose Global operation across all labs

Syntax res = gop(@F, x)
res = gop(@F, x, targetlab)

Arguments F Function to operate across labs.

x Argument to function F, should be same variable on all
labs, but can have different values.

res Variable to hold reduction result.

targetlab Lab to which reduction results are returned.

Description res = gop(@F, x) is the reduction via the function F of the quantities
x from each lab. The result is duplicated on all labs.

The function F(x,y) should accept two arguments of the same type and
produce one result of that type, so it can be used iteratively, that is,

F(F(x1,x2),F(x3,x4))

The function F should be associative, that is,

F(F(x1, x2), x3) = F(x1, F(x2, x3))

res = gop(@F, x, targetlab) performs the reduction, and places the
result into res only on the lab indicated by targetlab. res is set to
[] on all other labs.

Examples Calculate the sum of all labs’ value for x.

res = gop(@plus,x)

Find the maximum value of x among all the labs.

res = gop(@max,x)
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Perform the horizontal concatenation of x from all labs.

res = gop(@horzcat,x)

Calculate the 2-norm of x from all labs.

res = gop(@(a1,a2)norm([a1 a2]),x)

See Also labBarrier | numlabs
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Purpose Global addition

Syntax S = gplus(X)
S = gplus(X, targetlab)

Description S = gplus(X) returns the addition of the variant array X from each lab.
The result S is replicated on all labs.

S = gplus(X, targetlab) performs the addition, and places the result
into S only on the lab indicated by targetlab. S is set to [] on all
other labs.

Examples With four labs,

S = gplus(labindex)

returns S = 1 + 2 + 3 + 4 = 10 on all four labs.

See Also gop | labindex
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Purpose Create array on GPU

Syntax G = gpuArray(X)

Description G = gpuArray(X) copies the numeric data X to the GPU, and returns
a GPUArray object. You can operate on this data by passing it to the
feval method of a CUDA kernel object, or by using one of the methods
defined for GPUArray objects in “Using GPUArray” on page 10-4.

The MATLAB data X must be numeric (for example: single, double,
int8, etc.) or logical, and the GPU device must have sufficient free
memory to store the data. X must be a full matrix, not sparse.

If the input argument is already a GPUArray, the output is the same
as the input.

Examples Transfer a 10-by-10 matrix of random single-precision values to the
GPU, then use the GPU to square each element.

X = rand(10, 'single');
G = gpuArray(X);
isequal(gather(G), X) % Returns true
classUnderlying(G) % Returns 'single'
G2 = G .* G % Uses times method defined for

% GPUArray objects

See Also arrayfun | feval | gather | parallel.gpu.CUDAKernel

14-137



gpuDevice

Purpose Query or select GPU device

Syntax D = gpuDevice
D = gpuDevice(IDX)

Description D = gpuDevice returns an object representing the currently selected
GPU device.

D = gpuDevice(IDX) selects the GPU device specified by index IDX.
IDX must be in the range of 1 to gpuDeviceCount. A warning or error
might occur if the specified GPU device is not supported.

Examples Create an object representing the default GPU device.

g = gpuDevice

Query the compute capabilities of all available GPU devices.

for ii = 1:gpuDeviceCount
g = gpuDevice(ii);
fprintf(1, 'Device %i has ComputeCapability %s \n', ...

g.Index, g.ComputeCapability)
end

See Also arrayfun | feval | gpuDeviceCount | parallel.gpu.CUDAKernel
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Purpose Number of GPU devices present

Syntax n = gpuDeviceCount

Description n = gpuDeviceCount returns the number of GPU devices present in
your computer.

Examples Determine how many GPU devices you have available in your computer
and examine the properties of each.

n = gpuDeviceCount;
for ii = 1:n

gpuDevice(ii)
end

See Also arrayfun | feval | gpuDevice | parallel.gpu.CUDAKernel
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Purpose Help for toolbox functions in Command Window

Syntax help class/function

Arguments class A Parallel Computing Toolbox object class:
distcomp.jobmanager, distcomp.job, or
distcomp.task.

function A function for the specified class. To see what
functions are available for a class, see the methods
reference page.

Description help class/function returns command-line help for the specified
function of the given class.

If you do not know the class for the function, use class(obj), where
function is of the same class as the object obj.

Examples Get help on functions from each of the Parallel Computing Toolbox
object classes.

help distcomp.jobmanager/createJob
help distcomp.job/cancel
help distcomp.task/waitForState

class(j1)
ans =
distcomp.job
help distcomp.job/createTask

See Also methods
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Purpose Import parallel configuration .mat file

Syntax configname = importParallelConfig(filename)

Description The importParallelConfig function allows you to import a
configuration that was stored in a .mat file.

configname = importParallelConfig(filename) imports the
configuration stored in the specified file and returns the name of
the imported configuration as a string assigned to configname. If a
configuration with the same name already exists in your MATLAB
session, an extension is added to the name of the imported configuration.
If filename has no extension, .mat is assumed. Each configuration
.mat file contains only one configuration.

You can use the imported configuration with any functions that support
configurations. importParallelConfig does not set the imported
configuration as the default; you can set it as the default configuration
with the defaultParallelConfig function.

To export a configuration, use the Configurations Manager, which
you can open by selecting Parallel > Manage Configurations.
Configurations exported from earlier versions of the product are
upgraded during the import.

Configurations that you import with importParallelConfig are saved
as a part of your MATLAB preferences, so these configurations are
available in your subsequent MATLAB sessions without importing
them again.

Examples Import a configuration from the file Config01.mat and use it to open a
pool of MATLAB workers:

conf_1 = importParallelConfig('Config01')
matlabpool('open', conf_1)

Import a configuration from the file ConfigMaster.mat and set it as
the default parallel configuration:
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def_config = importParallelConfig('ConfigMaster')
defaultParallelConfig(def_config)

See Also defaultParallelConfig

14-142



inspect

Purpose Open Property Inspector

Syntax inspect(obj)

Arguments obj An object or an array of objects.

Description inspect(obj) opens the Property Inspector and allows you to inspect
and set properties for the object obj.

Tips You can also open the Property Inspector via the Workspace browser by
double-clicking an object.

The Property Inspector does not automatically update its display. To
refresh the Property Inspector, open it again.

Note that properties that are arrays of objects are expandable. In
the figure of the example below, the Tasks property is expanded to
enumerate the individual task objects that make up this property.
These individual task objects can also be expanded to display their
own properties.
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Examples Open the Property Inspector for the job object j1.

inspect(j1)

See Also get | set
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Purpose True if distributed array’s underlying elements are of specified class

Syntax TF = isaUnderlying(D, 'classname')

Description TF = isaUnderlying(D, 'classname') returns true if the elements of
distributed or codistributed array D are either an instance of classname
or an instance of a class derived from classname. isaUnderlying
supports the same values for classname as the MATLAB isa function
does.

Examples N = 1000;
D_uint8 = distributed.ones(1, N, 'uint8');
D_cell = distributed.cell(1, N);
isUint8 = isaUnderlying(D_uint8, 'uint8') % returns true
isDouble = isaUnderlying(D_cell, 'double') % returns false

See Also isa
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Purpose True for codistributed array

Syntax tf = iscodistributed(X)

Description tf = iscodistributed(X) returns true for a codistributed array,
or false otherwise. For a description of codistributed arrays, see
“Nondistributed Versus Distributed Arrays” on page 5-2.

Examples With an open MATLAB pool,

spmd
L = ones(100, 1);
D = codistributed.ones(100, 1);
iscodistributed(L) % returns false
iscodistributed(D) % returns true

end

See Also isdistributed

14-146



isComplete

Purpose True if codistributor object is complete

Syntax tf = isComplete(codist)

Description tf = isComplete(codist) returns true if codist is a completely
defined codistributor, or false otherwise. For a description of
codistributed arrays, see “Nondistributed Versus Distributed Arrays”
on page 5-2.

See Also codistributed | codistributor

14-147



isdistributed

Purpose True for distributed array

Syntax tf = isdistributed(X)

Description tf = isdistributed(X) returns true for a distributed array, or false
otherwise. For a description of a distributed array, see “Nondistributed
Versus Distributed Arrays” on page 5-2.

Examples With an open MATLAB pool,

L = ones(100, 1);
D = distributed.ones(100, 1);
isdistributed(L) % returns false
isdistributed(D) % returns true

See Also iscodistributed
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Purpose True for replicated array

Syntax tf = isreplicated(X)

Description tf = isreplicated(X) returns true for a replicated array, or false
otherwise. For a description of a replicated array, see “Nondistributed
Versus Distributed Arrays” on page 5-2. isreplicated also returns
true for a Composite X if all its elements are identical.

Tips isreplicated(X) requires checking for equality of the array X across
all labs. This might require extensive communication and time.
isreplicated is most useful for debugging or error checking small
arrays. A codistributed array is not replicated.

Examples With an open MATLAB pool,

spmd
A = magic(3);
t = isreplicated(A) % returns t = true
B = magic(labindex);
f = isreplicated(B) % returns f = false

end

See Also iscodistributed | isdistributed
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Purpose File for user-defined options to run when job starts

Syntax jobStartup(job)

Arguments job The job for which this startup is being executed.

Description jobStartup(job) runs automatically on a worker the first time that
worker evaluates a task for a particular job. You do not call this
function from the client session, nor explicitly as part of a task function.

You add MATLAB code to the jobStartup.m file to define job
initialization actions on the worker. The worker looks for jobStartup.m
in the following order, executing the one it finds first:

1 Included in the job’s FileDependencies property.

2 In a folder included in the job’s PathDependencies property.

3 In the worker’s MATLAB installation at the location

matlabroot/toolbox/distcomp/user/jobStartup.m

To create a version of jobStartup.m for FileDependencies or
PathDependencies, copy the provided file and modify it as required.
For further details on jobStartup and its implementation, see the text
in the installed jobStartup.m file.

See Also poolStartup | taskFinish | taskStartup | FileDependencies |
PathDependencies
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Purpose Block execution until all labs reach this call

Syntax labBarrier

Description labBarrier blocks execution of a parallel algorithm until all labs have
reached the call to labBarrier. This is useful for coordinating access to
shared resources such as file I/O.

For a demonstration that uses labSend, labReceive, labBarrier,
and labSendReceive, see the demo Profiling Explicit Parallel
Communication.

Examples In this example, all labs know the shared data filename.

fname = 'c:\data\datafile.mat';

Lab 1 writes some data to the file, which all other labs will read.

if labindex == 1

data = randn(100, 1);

save(fname, 'data');

pause(5) %allow time for file to become available to other labs

end

All labs wait until all have reached the barrier; this ensures that no lab
attempts to load the file until lab 1 writes to it.

labBarrier;
load(fname);

See Also labBroadcast | labReceive | labSend | labSendReceive
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Purpose Send data to all labs or receive data sent to all labs

Syntax shared_data = labBroadcast(senderlab, data)
shared_data = labBroadcast(senderlab)

Arguments senderlab The labindex of the lab sending the broadcast.

data The data being broadcast. This argument is
required only for the lab that is broadcasting.
The absence of this argument indicates that a
lab is receiving.

shared_data The broadcast data as it is received on all other
labs.

Description shared_data = labBroadcast(senderlab, data) sends the specified
data to all executing labs. The data is broadcast from the lab with
labindex == senderlab, and received by all other labs.

shared_data = labBroadcast(senderlab) receives on each executing
lab the specified shared_data that was sent from the lab whose
labindex is senderlab.

If labindex is not senderlab, then you do not include the data
argument. This indicates that the function is to receive data, not
broadcast it. The received data, shared_data, is identical on all labs.

This function blocks execution until the lab’s involvement in the
collective broadcast operation is complete. Because some labs may
complete their call to labBroadcast before others have started, use
labBarrier to guarantee that all labs are at the same point in a
program.

Examples In this case, the broadcaster is the lab whose labindex is 1.

broadcast_id = 1;
if labindex == broadcast_id

data = randn(10);
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shared_data = labBroadcast(broadcast_id, data);
else

shared_data = labBroadcast(broadcast_id);
end

See Also labBarrier | labindex | labSendReceive
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Purpose Index of this lab

Syntax id = labindex

Description id = labindex returns the index of the lab currently executing the
function. labindex is assigned to each lab when a job begins execution,
and applies only for the duration of that job. The value of labindex
spans from 1 to n, where n is the number of labs running the current
job, defined by numlabs.

See Also numlabs
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Purpose Test to see if messages are ready to be received from other lab

Syntax is_data_available = labProbe
is_data_available = labProbe(source)
is_data_available = labProbe('any',tag)
is_data_available = labProbe(source,tag)
[is_data_available, source, tag] = labProbe

Arguments source labindex of a particular lab from which to
test for a message.

tag Tag defined by the sending lab’s labSend
function to identify particular data.

'any' String to indicate that all labs should be
tested for a message.

is_data_available Boolean indicating if a message is ready to
be received.

Description is_data_available = labProbe returns a logical value indicating
whether any data is available for this lab to receive with the labReceive
function.

is_data_available = labProbe(source) tests for a message only
from the specified lab.

is_data_available = labProbe('any',tag) tests only for a message
with the specified tag, from any lab.

is_data_available = labProbe(source,tag) tests for a message
from the specified lab and tag.

[is_data_available, source, tag] = labProbe returns labindex
and tag of ready messages. If no data is available, source and tag
are returned as [].

See Also labindex | labReceive | labSend | labSendReceive
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Purpose Receive data from another lab

Syntax data = labReceive
data = labReceive(source)
data = labReceive('any',tag)
data = labReceive(source,tag)
[data, source, tag] = labReceive

Arguments source labindex of a particular lab from which to
receive data.

tag Tag defined by the sending lab’s labSend
function to identify particular data.

'any' String to indicate that data can come from any
lab.

data Data sent by the sending lab’s labSend function.

Description data = labReceive receives data from any lab with any tag.

data = labReceive(source) receives data from the specified lab with
any tag

data = labReceive('any',tag) receives data from any lab with the
specified tag.

data = labReceive(source,tag) receives data from only the specified
lab with the specified tag.

[data, source, tag] = labReceive returns the source and tag with
the data.

Tips This function blocks execution in the lab until the corresponding call to
labSend occurs in the sending lab.

For a demonstration that uses labSend, labReceive, labBarrier,
and labSendReceive, see the demo Profiling Explicit Parallel
Communication.
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See Also labBarrier | labindex | labProbe | labSend | labSendReceive
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Purpose Send data to another lab

Syntax labSend(data, destination)
labSend(data, destination, tag)

Arguments data Data sent to the other lab; any MATLAB data
type.

destination labindex of receiving lab.

tag Nonnegative integer to identify data.

Description labSend(data, destination) sends the data to the specified
destination, with a tag of 0.

labSend(data, destination, tag) sends the data to the specified
destination with the specified tag. data can be any MATLAB data
type. destination identifies the labindex of the receiving lab, and
must be either a scalar or a vector of integers between 1 and numlabs;
it cannot be labindex (i.e., the current lab). tag can be any integer
from 0 to 32767.

Tips This function might return before the corresponding labReceive
completes in the receiving lab.

For a demonstration that uses labSend, labReceive, labBarrier,
and labSendReceive, see the demo Profiling Explicit Parallel
Communication.

See Also labBarrier | labindex | labProbe | labReceive | labSendReceive
| numlabs
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Purpose Simultaneously send data to and receive data from another lab

Syntax received = labSendReceive(labTo, labFrom, data)
received = labSendReceive(labTo, labFrom, data, tag)

Arguments data Data on the sending lab that is sent to the
receiving lab; any MATLAB data type.

received Data accepted on the receiving lab.

labTo labindex of the lab to which data is sent.

labFrom labindex of the lab from which data is received.

tag Nonnegative integer to identify data.

Description received = labSendReceive(labTo, labFrom, data) sends data to
the lab whose labindex is labTo, and receives received from the lab
whose labindex is labFrom. labTo and labFrom must be scalars. This
function is conceptually equivalent to the following sequence of calls:

labSend(data, labTo);
received = labReceive(labFrom);

with the important exception that both the sending and receiving of
data happens concurrently. This can eliminate deadlocks that might
otherwise occur if the equivalent call to labSend would block.

If labTo is an empty array, labSendReceive does not send data, but
only receives. If labFrom is an empty array, labSendReceive does not
receive data, but only sends.

received = labSendReceive(labTo, labFrom, data, tag) uses
the specified tag for the communication. tag can be any integer from
0 to 32767.

For a demonstration that uses labSend, labReceive, labBarrier,
and labSendReceive, see the demo Profiling Explicit Parallel
Communication.

14-159



labSendReceive

Examples Create a unique set of data on each lab, and transfer each lab’s data one
lab to the right (to the next higher labindex).

First use magic to create a unique value for the variant array mydata
on each lab.

mydata = magic(labindex)
Lab 1:

mydata =
1

Lab 2:
mydata =

1 3
4 2

Lab 3:
mydata =

8 1 6
3 5 7
4 9 2

Define the lab on either side, so that each lab will receive data from the
lab on the “left” while sending data to the lab on the “right,” cycling
data from the end lab back to the beginning lab.

labTo = mod(labindex, numlabs) + 1; % one lab to the right

labFrom = mod(labindex - 2, numlabs) + 1; % one lab to the left

Transfer the data, sending each lab’s mydata into the next lab’s
otherdata variable, wrapping the third lab’s data back to the first lab.

otherdata = labSendReceive(labTo, labFrom, mydata)
Lab 1:

otherdata =
8 1 6
3 5 7
4 9 2

Lab 2:
otherdata =
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1
Lab 3:

otherdata =
1 3
4 2

Transfer data to the next lab without wrapping data from the last lab
to the first lab.

if labindex < numlabs; labTo = labindex + 1; else labTo = []; end;

if labindex > 1; labFrom = labindex - 1; else labFrom = []; end;

otherdata = labSendReceive(labTo, labFrom, mydata)

Lab 1:

otherdata =

[]

Lab 2:

otherdata =

1

Lab 3:

otherdata =

1 3

4 2

See Also labBarrier | labindex | labProbe | labReceive | labSend | numlabs
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Purpose Length of object array

Syntax length(obj)

Arguments obj An object or an array of objects.

Description length(obj) returns the length of obj. It is equivalent to the command
max(size(obj)).

Examples Examine how many tasks are in the job j1.

length(j1.Tasks)
ans =

9

See Also size
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Purpose Load workspace variables from batch job

Syntax load(job)
load(job, 'X')
load(job, 'X', 'Y', 'Z*')
load(job, '-regexp', 'PAT1', 'PAT2')
S = load(job ...)

Arguments job Job from which to load workspace variables.

'X' , 'Y',
'Z*'

Variables to load from the job. Wildcards allow
pattern matching in MAT-file style.

'-regexp' Indication to use regular expression pattern
matching.

S Struct containing the variables after loading.

Description load(job) retrieves all variables from a batch job and assigns them
into the current workspace. load throws an error if the batch runs
a function (instead of a script), the job is not finished, or the job
encountered an error while running, .

load(job, 'X') loads only the variable named X from the job.

load(job, 'X', 'Y', 'Z*') loads only the specified variables. The
wildcard '*' loads variables that match a pattern (MAT-file only).

load(job, '-regexp', 'PAT1', 'PAT2') can be used to load all
variables matching the specified patterns using regular expressions.
For more information on using regular expressions, type doc regexp
at the command prompt.

S = load(job ...) returns the contents of job into variable S, which
is a struct containing fields matching the variables retrieved.
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Examples Run a batch job and load its results into your client workspace.

j = batch('myScript');
wait(j)
load(j)

Load only variables whose names start with 'a'.

load(job, 'a*')

Load only variables whose names contain any digits.

load(job, '-regexp', '\d')

See Also batch | getAllOutputArguments
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Purpose Open or close pool of MATLAB sessions for parallel computation

Syntax matlabpool
matlabpool open
matlabpool open poolsize
matlabpool open configname
matlabpool open configname poolsize
matlabpool poolsize
matlabpool(poolsize)
matlabpool configname
matlabpool configname poolsize
matlabpool(schedobj)
matlabpool(schedobj, 'open')
matlabpool(schedobj, 'open', ...)
matlabpool(schedobj, poolsize)
matlabpool close
matlabpool close force
matlabpool close force configname
matlabpool size
matlabpool('open', ...)
matlabpool('close', ...)
matlabpool('open',..., 'FileDependencies', filecell)
matlabpool('addfiledependencies', filecell)
matlabpool updatefiledependencies

Description matlabpool enables the parallel language features in the MATLAB
language (e.g., parfor) by starting a parallel job that connects this
MATLAB client with a number of labs.

matlabpool or matlabpool open starts a worker pool using the default
parallel configuration, with the pool size specified by that configuration.
(For information about setting up and selecting parallel configurations,
see “Parallel Configurations for Cluster Access” on page 6-14.) You can
also specify the pool size using matlabpool open poolsize, but most
schedulers have a maximum number of processes that they can start (12
for a local scheduler). If the configuration specifies a job manager as the
scheduler, matlabpool reserves its workers from among those already
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running and available under that job manager. If the configuration
specifies a third-party scheduler, matlabpool instructs the scheduler
to start the workers.

matlabpool open configname or matlabpool open configname
poolsize starts a worker pool using the Parallel Computing Toolbox
user configuration identified by configname rather than the default
configuration to locate a scheduler. If the pool size is specified, it
overrides the maximum and minimum number of workers specified in
the configuration, and starts a pool of exactly that number of workers,
even if it has to wait for them to be available.

Without specifying open or close, the command default is open.
So, matlabpool poolsize, matlabpool(poolsize), matlabpool
configname, and matlabpool configname poolsize operate as
matlabpool open ..., and are provided for convenience.

matlabpool(schedobj) or matlabpool(schedobj, 'open') is the
same as matlabpool open, except that the worker pool is started on
the scheduler specified by the object schedobj.

matlabpool(schedobj, 'open', ...) is the same as
matlabpool('open', ...) except that the worker pool is started on
the scheduler specified by the object schedobj.

matlabpool(schedobj, poolsize) is the same as matlabpool
poolsize except that the worker pool is started on the scheduler
specified by the object schedobj.

matlabpool close stops the worker pool, destroys the parallel job, and
makes all parallel language features revert to using the MATLAB client
for computing their results.

matlabpool close force destroys all parallel jobs created by
matlabpool for the current user under the scheduler specified by the
default configuration, including any jobs currently running.

matlabpool close force configname destroys all parallel jobs being
run under the scheduler specified in the configuration configname.
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matlabpool size returns the size of the worker pool if it is open, or 0
if the pool is closed.

matlabpool('open', ...) and matlabpool('close', ...) can be
invoked as functions with optional arguments, such as configuration
name and pool size. The default is 'open'. For example, the following
are equivalent:

matlabpool open MyConfig 4
matlabpool('MyConfig', 4)

matlabpool('open',..., 'FileDependencies', filecell) starts a
worker pool and allows you to specify file dependencies so that you can
pass necessary files to the workers in the pool. The cell array filecell
is appended to the FileDependencies specified in the configuration
used for startup. The 'FileDependencies' property name is case
sensitive, and must appear as shown. (Note: This form of the command
does not allow you to directly specify any other job property-value pairs
when opening a pool.)

matlabpool('addfiledependencies', filecell) allows you to add
extra file dependencies to an already running pool. filecell is a cell
array of strings, identical in form to those you use when adding file
dependencies to a job or when you open a MATLAB pool. Each string
can specify either absolute or relative files, directories, or a file on
the MATLAB path. The command transfers the files to each worker,
placing the files in the file dependencies directory, exactly the same as
if you set them at the time the pool was opened.

matlabpool updatefiledependencies checks all the file dependencies
of the current pool to see if they have changed, and replicates any
changes to each of the labs in the pool. In this way, you can send code
changes out to remote labs. This checks dependencies that you added
with the matlabpool addfiledependencies command as well as
those you specified when the pool was started (by a configuration or
command-line argument).

Tips When a pool of workers is open, the following commands entered in the
client’s Command Window also execute on all the workers:
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• cd

• addpath

• rmpath

This enables you to set the working directory and the path on all the
workers, so that a subsequent parfor-loop executes in the proper
context.

If any of these commands does not work on the client, it is not executed
on the workers either. For example, if addpath specifies a directory that
the client cannot see or access, the addpath command is not executed on
the workers. However, if the working directory or path can be set on the
client, but cannot be set as specified on any of the workers, you do not
get an error message returned to the client Command Window.

This slight difference in behavior is an issue especially in a
mixed-platform environment where the client is not the same platform
as the workers, where directories local to or mapped from the client
are not available in the same way to the workers, or where directories
are in a nonshared file system. For example, if you have a MATLAB
client running on a Microsoft Windows operating system while the
MATLAB workers are all running on Linux® operating systems, the
same argument to addpath cannot work on both. In this situation, you
can use the function pctRunOnAll to assure that a command runs on
all the workers.

Another difference between client and workers is that any addpath
arguments that are part of the matlabroot folder are not set on the
workers. The assumption is that the MATLAB install base is already
included in the workers’ paths. The rules for addpath regarding
workers in the pool are:

• Subfolders of the matlabroot folder are not sent to the workers.

• Any folders that appear before the first occurrence of a matlabroot
folder are added to the top of the path on the workers.
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• Any folders that appear after the first occurrence of a matlabroot
folder are added after the matlabroot group of folders on the
workers’ paths.

For example, suppose that matlabroot on the client is
C:\Applications\matlab\. With an open MATLAB pool, execute the
following to set the path on the client and all workers:

addpath('P1',
'P2',
'C:\Applications\matlab\T3',
'C:\Applications\matlab\T4',
'P5',
'C:\Applications\matlab\T6',
'P7',
'P8');

Because T3, T4, and T6 are subfolders of matlabroot, they are not set
on the workers’ paths. So on the workers, the pertinent part of the path
resulting from this command is:

P1
P2
<worker original matlabroot folders...>
P5
P7
P8

Examples Start a pool using the default configuration to define the number of labs:

matlabpool

Start a pool of 16 labs using a configuration called myConf:

matlabpool open myConf 16

Start a pool of 2 labs using the local configuration:

matlabpool local 2
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Run matlabpool as a function to check whether the worker pool is
currently open:

isOpen = matlabpool('size') > 0

Start a pool with the default configuration, and pass two code files to
the workers:

matlabpool('open', 'FileDependencies', {'mod1.m', 'mod2.m'})

Start a MATLAB pool with the scheduler and pool size determined by
the default configuration:

schd = findResource('scheduler', ...
'configuration', defaultParallelConfig);

matlabpool(schd)

See Also defaultParallelConfig | pctRunOnAll | parfor
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Purpose List functions of object class

Syntax methods(obj)
out = methods(obj)

Arguments obj An object or an array of objects.

out Cell array of strings.

Description methods(obj) returns the names of all methods for the class of which
obj is an instance.

out = methods(obj) returns the names of the methods as a cell array
of strings.

Examples Create job manager, job, and task objects, and examine what methods
are available for each.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

methods(jm)
Methods for class distcomp.jobmanager:
createJob demote pause resume
createParallelJob findJob promote

j1 = createJob(jm);
methods(j1)
Methods for class distcomp.job:
cancel destroy getAllOutputArguments waitForState
createTask findTask submit

t1 = createTask(j1, @rand, 1, {3});
methods(t1)
Methods for class distcomp.task:
cancel destroy waitForState
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See Also help | get
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Purpose Location of MPI implementation

Syntax [primaryLib, extras] = mpiLibConf

Arguments primaryLib MPI implementation library used by a parallel
job.

extras Cell array of other required library names.

Description [primaryLib, extras] = mpiLibConf returns the MPI
implementation library to be used by a parallel job. primaryLib is the
name of the shared library file containing the MPI entry points. extras
is a cell array of other library names required by the MPI library.

To supply an alternative MPI implementation, create a file
named mpiLibConf.m, and place it on the MATLAB path. The
recommended location is matlabroot/toolbox/distcomp/user. Your
mpiLibConf.m file must be higher on the cluster workers’ path than
matlabroot/toolbox/distcomp/mpi. (Sending mpiLibConf.m as a file
dependency for this purpose does not work.)

Tips Under all circumstances, the MPI library must support all MPI-1
functions. Additionally, the MPI library must support null arguments
to MPI_Init as defined in section 4.2 of the MPI-2 standard. The
library must also use an mpi.h header file that is fully compatible
with MPICH2.

When used with the MathWorks job manager or the local scheduler, the
MPI library must support the following additional MPI-2 functions:

• MPI_Open_port

• MPI_Comm_accept

• MPI_Comm_connect
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When used with any third-party scheduler, it is important to launch the
workers using the version of mpiexec corresponding to the MPI library
being used. Also, you might need to launch the corresponding process
management daemons on the cluster before invoking mpiexec.

Examples Use the mpiLibConf function to view the current MPI implementation
library:

mpiLibConf
mpich2.dll
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Purpose Profile parallel communication and execution times

Syntax mpiprofile
mpiprofile on <options>
mpiprofile off
mpiprofile resume
mpiprofile clear
mpiprofile status
mpiprofile reset
mpiprofile info
mpiprofile viewer
mpiprofile('viewer', <profinfoarray>)

Description mpiprofile enables or disables the parallel profiler data collection on
a MATLAB worker running a parallel job. mpiprofile aggregates
statistics on execution time and communication times. The statistics
are collected in a manner similar to running the profile command on
each MATLAB worker. By default, the parallel profiling extensions
include array fields that collect information on communication with
each of the other labs. This command in general should be executed in
pmode or as part of a task in a parallel job.

mpiprofile on <options> starts the parallel profiler and clears
previously recorded profile statistics.

mpiprofile takes the following options.

Option Description

-detail mmex

-detail builtin

This option specifies the set of
functions for which profiling
statistics are gathered. -detail
mmex (the default) records
information about functions,
subfunctions, and MEX-functions.
-detail builtin additionally
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Option Description

records information about built-in
functions such as eig or labReceive.

-messagedetail default

-messagedetail simplified

This option specifies the detail at
which communication information
is stored.

-messagedetail default collects
information on a per-lab instance.

-messagedetail simplified turns
off collection for *PerLab data
fields, which reduces the profiling
overhead. If you have a very
large cluster, you might want to
use this option; however, you will
not get all the detailed inter-lab
communication plots in the viewer.

For information about the structure
of returned data, see mpiprofile
info below.

-history

-nohistory

-historysize <size>

mpiprofile supports these options
in the same way as the standard
profile.

No other profile options are
supported by mpiprofile. These
three options have no effect on
the data displayed by mpiprofile
viewer.

mpiprofile off stops the parallel profiler. To reset the state of the
profiler and disable collecting communication information, you should
also call mpiprofile reset.

14-176



mpiprofile

mpiprofile resume restarts the profiler without clearing previously
recorded function statistics. This works only in pmode or in the same
MATLAB worker session.

mpiprofile clear clears the profile information.

mpiprofile status returns a valid status when it runs on the worker.

mpiprofile reset turns off the parallel profiler and resets the data
collection back to the standard profiler. If you do not call reset,
subsequent profile commands will collect MPI information.

mpiprofile info returns a profiling data structure with additional
fields to the one provided by the standard profile info in the
FunctionTable entry. All these fields are recorded on a per-function
and per-line basis, except for the *PerLab fields.

Field Description

BytesSent Records the quantity of data sent

BytesReceived Records the quantity of data received

TimeWasted Records communication waiting time

CommTime Records the communication time

CommTimePerLab Vector of communication receive time for
each lab

TimeWastedPerLab Vector of communication waiting time for
each lab

BytesReceivedPerLab Vector of data received from each lab

The three *PerLab fields are collected only on a per-function basis, and
can be turned off by typing the following command in pmode:

mpiprofile on -messagedetail simplified

mpiprofile viewer is used in pmode after running user code with
mpiprofile on. Calling the viewer stops the profiler and opens the
graphical profile browser with parallel options. The output is an HTML
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report displayed in the profiler window. The file listing at the bottom
of the function profile page shows several columns to the left of each
line of code. In the summary page:

• Column 1 indicates the number of calls to that line.

• Column 2 indicates total time spent on the line in seconds.

• Columns 3–6 contain the communication information specific to the
parallel profiler

mpiprofile('viewer', <profinfoarray>) in function form can be
used from the client. A structure <profinfoarray> needs be passed
in as the second argument, which is an array of mpiprofile info
structures. See pInfoVector in the Examples section below.

mpiprofile does not accept -timer clock options, because the
communication timer clock must be real.

For more information and examples on using the parallel profiler, see
“Profiling Parallel Code” on page 6-35.

Examples In pmode, turn on the parallel profiler, run your function in parallel,
and call the viewer:

mpiprofile on;
% call your function;
mpiprofile viewer;

If you want to obtain the profiler information from a parallel job outside
of pmode (i.e., in the MATLAB client), you need to return output
arguments of mpiprofile info by using the functional form of the
command. Define your function foo(), and make it the task function
in a parallel job:

function [pInfo, yourResults] = foo
mpiprofile on
initData = (rand(100, codistributor()) ...

* rand(100, codistributor()));
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pInfo = mpiprofile('info');
yourResults = gather(initData,1)

After the job runs and foo() is evaluated on your cluster, get the data
on the client:

A = getAllOutputArguments(yourJob);

Then view parallel profile information:

pInfoVector = [A{:, 1}];
mpiprofile('viewer', pInfoVector);

See Also profile | mpiSettings | pmode
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Purpose Configure options for MPI communication

Syntax mpiSettings('DeadlockDetection','on')
mpiSettings('MessageLogging','on')
mpiSettings('MessageLoggingDestination','CommandWindow')
mpiSettings('MessageLoggingDestination','stdout')
mpiSettings('MessageLoggingDestination','File','filename')

Description mpiSettings('DeadlockDetection','on') turns on deadlock detection
during calls to labSend and labReceive. If deadlock is detected, a call
to labReceive might cause an error. Although it is not necessary to
enable deadlock detection on all labs, this is the most useful option. The
default value is 'off' for parallel jobs, and 'on' inside pmode sessions
or spmd statements. Once the setting has been changed within a pmode
session or an spmd statement, the setting stays in effect until either the
pmode session ends or the MATLAB pool is closed.

mpiSettings('MessageLogging','on') turns on MPI message logging.
The default is 'off'. The default destination is the MATLAB Command
Window.

mpiSettings('MessageLoggingDestination','CommandWindow') sends
MPI logging information to the MATLAB Command Window. If
the task within a parallel job is set to capture Command Window
output, the MPI logging information will be present in the task’s
CommandWindowOutput property.

mpiSettings('MessageLoggingDestination','stdout') sends MPI
logging information to the standard output for the MATLAB process.
If you are using a job manager, this is the mdce service log file; if you
are using an mpiexec scheduler, this is the mpiexec debug log, which
you can read with getDebugLog.

mpiSettings('MessageLoggingDestination','File','filename')
sends MPI logging information to the specified file.

Tips Setting the MessageLoggingDestination does not automatically enable
message logging. A separate call is required to enable message logging.
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mpiSettings has to be called on the lab, not the client. That is, it
should be called within the task function, within jobStartup.m, or
within taskStartup.m.

Examples Set deadlock detection for a parallel job inside the jobStartup.m file
for that job:

% Inside jobStartup.m for the parallel job

mpiSettings('DeadlockDetection', 'on');

myLogFname = sprintf('%s_%d.log', tempname, labindex);

mpiSettings('MessageLoggingDestination', 'File', myLogFname);

mpiSettings('MessageLogging', 'on');

Turn off deadlock detection for all subsequent spmd statements that use
the same MATLAB pool:

spmd; mpiSettings('DeadlockDetection', 'off'); end
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Purpose Total number of labs operating in parallel on current job

Syntax n = numlabs

Description n = numlabs returns the total number of labs currently operating on
the current job. This value is the maximum value that can be used with
labSend and labReceive.

See Also labindex | labReceive | labSend
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Purpose Create GPU CUDA kernel object from PTX and CU code

Syntax KERN = parallel.gpu.CUDAKernel(PTXFILE, CPROTO)
KERN = parallel.gpu.CUDAKernel(PTXFILE, CPROTO, FUNC)
KERN = parallel.gpu.CUDAKernel(PTXFILE, CUFILE)
KERN = parallel.gpu.CUDAKernel(PTXFILE, CUFILE, FUNC)

Description KERN = parallel.gpu.CUDAKernel(PTXFILE, CPROTO) and KERN =
parallel.gpu.CUDAKernel(PTXFILE, CPROTO, FUNC) create a kernel
object that you can use to call a CUDA kernel on the GPU. PTXFILE is
the name of the file that contains the PTX code, or the contents of a PTX
file as a string; and CPROTO is the C prototype for the kernel call that
KERN represents. If specified, FUNC must be a string that unambiguously
defines the appropriate kernel entry name in the PTX file. If FUNC is
omitted, the PTX file must contain only a single entry point.

KERN = parallel.gpu.CUDAKernel(PTXFILE, CUFILE) and KERN
= parallel.gpu.CUDAKernel(PTXFILE, CUFILE, FUNC) read the
CUDA source file CUFILE, and look for a kernel definition starting with
'__global__' to find the function prototype for the CUDA kernel that
is defined in PTXFILE.

Examples If simpleEx.cu contains the following:

/*

* Add a constant to a vector.

*/

__global__ void addToVector(float * pi, float c, int vecLen) {

int idx = blockIdx.x * blockDim.x + threadIdx.x;

if (idx < vecLen) {

pi[idx] += c;

}

and simpleEx.ptx contains the PTX resulting from compiling
simpleEx.cu into PTX, both of the following statements return a kernel
object that you can use to call the addToVector CUDA kernel.

kern = parallel.gpu.CUDAKernel('simpleEx.ptx', ...
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'simpleEx.cu');
kern = parallel.gpu.CUDAKernel('simpleEx.ptx', ...

'float *, float, int');

See Also arrayfun | feval | gpuArray
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Purpose Execute code loop in parallel

Syntax parfor loopvar = initval:endval, statements, end
parfor (loopvar = initval:endval, M), statements, end

Description parfor loopvar = initval:endval, statements, end allows you to
write a loops for a statement or block of code that executes in parallel
on a cluster of workers, which are identified and reserved with the
matlabpool command. initval and endval must evaluate to finite
integer values, or the range must evaluate to a value that can be
obtained by such an expression, that is, an ascending row vector of
consecutive integers.

The following table lists some ranges that are not valid.

Invalid parfor Range Reason Range Not Valid

parfor i = 1:2:25 1, 3, 5,... are not consecutive.

parfor i = -7.5:7.5 -7.5, -6.5,... are not integers.

A = [3 7 -2 6 4 -4 9 3
7];

parfor i = find(A>0)

The resulting range, 1, 2, 4,...,
has nonconsecutive integers.

parfor i = [5;6;7;8] [5;6;7;8] is a column vector, not a
row vector.

You can enter a parfor-loop on multiple lines, but if you put more
than one segment of the loop statement on the same line, separate the
segments with commas or semicolons:

parfor i = range; <loop body>; end

parfor (loopvar = initval:endval, M), statements, end uses
M to specify the maximum number of MATLAB workers that will
evaluate statements in the body of the parfor-loop. M must be a
nonnegative integer. By default, MATLAB uses as many workers as it
finds available. If you specify an upper limit, MATLAB employs no
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more than that number, even if additional workers are available. If
you request more resources than are available, MATLAB uses the
maximum number available at the time of the call.

If the parfor-loop cannot run on workers in a MATLAB pool (for
example, if no workers are available or M is 0), MATLAB executes the
loop on the client in a serial manner. In this situation, the parfor
semantics are preserved in that the loop iterations can execute in any
order.

Note Because of independence of iteration order, execution of parfor
does not guarantee deterministic results.

The maximum amount of data that can be transferred in a single
chunk between client and workers in the execution of a parfor-loop
is determined by the JVM memory allocation limit. For details, see
“Object Data Size Limitations” on page 6-48.

For a detailed description of parfor-loops, see Chapter 2, “Parallel
for-Loops (parfor)”.

Examples Suppose that f is a time-consuming function to compute, and that you
want to compute its value on each element of array A and place the
corresponding results in array B:

parfor i = 1:length(A)
B(i) = f(A(i));

end

Because the loop iteration occurs in parallel, this evaluation can
complete much faster than it would in an analogous for-loop.

Next assume that A, B, and C are variables and that f, g, and h are
functions:

parfor i = 1:n
t = f(A(i));
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u = g(B(i));
C(i) = h(t, u);

end

If the time to compute f, g, and h is large, parfor will be significantly
faster than the corresponding for statement, even if n is relatively
small. Although the form of this statement is similar to a for statement,
the behavior can be significantly different. Notably, the assignments
to the variables i, t, and u do not affect variables with the same name
in the context of the parfor statement. The rationale is that the body
of the parfor is executed in parallel for all values of i, and there is
no deterministic way to say what the “final” values of these variables
are. Thus, parfor is defined to leave these variables unaffected in the
context of the parfor statement. By contrast, the variable C has a
different element set for each value of i, and these assignments do
affect the variable C in the context of the parfor statement.

Another important use of parfor has the following form:

s = 0;
parfor i = 1:n

if p(i) % assume p is a function
s = s + 1;

end
end

The key point of this example is that the conditional adding of 1 to
s can be done in any order. After the parfor statement has finished
executing, the value of s depends only on the number of iterations for
which p(i) is true. As long as p(i) depends only upon i, the value of
s is deterministic. This technique generalizes to functions other than
plus (+).

Note that the variable s does refer to the variable in the context of the
parfor statement. The general rule is that the only variables in the
context of a parfor statement that can be affected by it are those like s
(combined by a suitable function like +) or those like C in the previous
example (set by indexed assignment).
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See Also for | matlabpool | pmode | numlabs
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Purpose Pause job manager queue

Syntax pause(jm)

Arguments jm Job manager object whose queue is paused.

Description pause(jm) pauses the job manager’s queue so that jobs waiting in the
queued state will not run. Jobs that are already running also pause,
after completion of tasks that are already running. No further jobs or
tasks will run until the resume function is called for the job manager.

The pause function does nothing if the job manager is already paused.

See Also resume | waitForState
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Purpose Configure settings for Parallel Computing Toolbox client session

Syntax pctconfig('p1', v1, ...)
config = pctconfig('p1', v1, ...)
config = pctconfig()

Arguments p1 Property to configure. Supported properties are
'portrange', 'hostname'.

v1 Value for corresponding property.

config Structure of configuration value.

Description pctconfig('p1', v1, ...) sets the client configuration property p1
with the value v1.

Note that the property value pairs can be in any format supported
by the set function, i.e., param-value string pairs, structures, and
param-value cell array pairs. If a structure is used, the structure field
names are the property names and the field values specify the property
values.

If the property is 'portrange', the specified value is used to set the
range of ports to be used by the client session of Parallel Computing
Toolbox software. This is useful in environments with a limited choice
of ports. The value of 'portrange' should either be a 2-element vector
[minport, maxport] specifying the range, or 0 to specify that the
client session should use ephemeral ports. By default, the client session
searches for available ports to communicate with the other sessions of
MATLAB Distributed Computing Server software.

If the property is 'hostname', the specified value is used to set the
hostname for the client session of Parallel Computing Toolbox software.
This is useful when the client computer is known by more than one
hostname. The value you should use is the hostname by which the
cluster nodes can contact the client computer. The toolbox supports
both short hostnames and fully qualified domain names.
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config = pctconfig('p1', v1, ...) returns a structure to config.
The field names of the structure reflect the property names, while the
field values are set to the property values.

config = pctconfig(), without any input arguments, returns all the
current values as a structure to config. If you have not set any values,
these are the defaults.

Tips The values set by this function do not persist between MATLAB
sessions. To guarantee its effect, call pctconfig before calling any
other Parallel Computing Toolbox functions.

Examples View the current settings for hostname and ports.

config = pctconfig()
config =

portrange: [27370 27470]
hostname: 'machine32'

Set the current client session port range to 21000-22000 with hostname
fdm4.

pctconfig('hostname', 'fdm4', 'portrange', [21000 22000]);

Set the client hostname to a fully qualified domain name.

pctconfig('hostname', 'desktop24.subnet6.companydomain.com');
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Purpose Clean up after deployed parallel applications

Syntax pctRunDeployedCleanup

Description pctRunDeployedCleanup performs necessary cleanup so that the
client JVM can properly terminate when the deployed application
exits. All deployed applications that use Parallel Computing Toolbox
functionality need to call pctRunDeployedCleanup after the last call to
Parallel Computing Toolbox functionality.

After calling pctRunDeployedCleanup, you should not use any further
Parallel Computing Toolbox functionality in the current MATLAB
session.
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Purpose Run command on client and all workers in matlabpool

Syntax pctRunOnAll command

Description pctRunOnAll command runs the specified command on all the workers
of the matlabpool as well as the client, and prints any command-line
output back to the client Command Window. The specified command
runs in the base workspace of the workers and does not have any return
variables. This is useful if there are setup changes that need to be
performed on all the labs and the client.

Note If you use pctRunOnAll to run a command such as addpath in a
mixed-platform environment, it can generate a warning on the client
while executing properly on the labs. For example, if your labs are all
running on Linux operating systems and your client is running on
a Microsoft Windows operating system, an addpath argument with
Linux-based paths will warn on the Windows-based client.

Examples Clear all loaded functions on all labs:

pctRunOnAll clear functions

Change the directory on all workers to the project directory:

pctRunOnAll cd /opt/projects/c1456

Add some directories to the paths of all the labs:

pctRunOnAll addpath({'/usr/share/path1' '/usr/share/path2'})

See Also matlabpool
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Purpose Load file into parallel session

Syntax pload(fileroot)

Arguments fileroot Part of filename common to all saved files being loaded.

Description pload(fileroot) loads the data from the files named [fileroot
num2str(labindex)] into the labs running a parallel job. The files
should have been created by the psave command. The number of
labs should be the same as the number of files. The files should be
accessible to all the labs. Any codistributed arrays are reconstructed
by this function. If fileroot contains an extension, the character
representation of the labindex will be inserted before the extension.
Thus, pload('abc') attempts to load the file abc1.mat on lab 1,
abc2.mat on lab 2, and so on.

Examples Create three variables — one replicated, one variant, and one
codistributed. Then save the data.

clear all;
rep = speye(numlabs);
var = magic(labindex);
D = eye(numlabs,codistributor());
psave('threeThings');

This creates three files (threeThings1.mat, threeThings2.mat,
threeThings3.mat) in the current working directory.

Clear the workspace on all the labs and confirm there are no variables.

clear all
whos
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Load the previously saved data into the labs. Confirm its presence.

pload('threeThings');
whos
isreplicated(rep)
iscodistributed(D)

See Also load | save | labindex | numlabs | pmode | psave
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Purpose Interactive Parallel Command Window

Syntax pmode start
pmode start numlabs
pmode start conf numlabs
pmode quit
pmode exit
pmode client2lab clientvar labs labvar
pmode lab2client labvar lab clientvar
pmode cleanup conf

Description pmode allows the interactive parallel execution of MATLAB commands.
pmode achieves this by defining and submitting a parallel job, and
opening a Parallel Command Window connected to the labs running the
job. The labs then receive commands entered in the Parallel Command
Window, process them, and send the command output back to the
Parallel Command Window. Variables can be transferred between the
MATLAB client and the labs.

pmode start starts pmode, using the default configuration to
define the scheduler and number of labs. (The initial default
configuration is local; you can change it by using the function
defaultParallelConfig.) You can also specify the number of labs
using pmode start numlabs, but note that the local scheduler allows
for only up to twelve labs.

pmode start conf numlabs starts pmode using the Parallel Computing
Toolbox configuration conf to locate the scheduler, submits a parallel
job with the number of labs identified by numlabs, and connects the
Parallel Command Window with the labs. If the number of labs is
specified, it overrides the minimum and maximum number of workers
specified in the configuration.

pmode quit or pmode exit stops the parallel job, destroys it, and closes
the Parallel Command Window. You can enter this command at the
MATLAB prompt or the pmode prompt.

pmode client2lab clientvar labs labvar copies the variable
clientvar from the MATLAB client to the variable labvar on the labs
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identified by labs. If labvar is omitted, the copy is named clientvar.
labs can be either a single lab index or a vector of lab indices. You can
enter this command at the MATLAB prompt or the pmode prompt.

pmode lab2client labvar lab clientvar copies the variable labvar
from the lab identified by lab, to the variable clientvar on the
MATLAB client. If clientvar is omitted, the copy is named labvar.
You can enter this command at the MATLAB prompt or the pmode
prompt. Note: If you use this command in an attempt to transfer a
codistributed array to the client, you get a warning, and only the local
portion of the array on the specified lab is transferred. To transfer an
entire codistributed array, first use the gather function to assemble the
whole array into the labs’ workspaces.

pmode cleanup conf destroys all parallel jobs created by pmode for the
current user running under the scheduler specified in the configuration
conf, including jobs that are currently running. The configuration is
optional; the default configuration is used if none is specified. You can
enter this command at the MATLAB prompt or the pmode prompt.

You can invoke pmode as either a command or a function, so the
following are equivalent.

pmode start conf 4
pmode('start', 'conf', 4)

Examples In the following examples, the pmode prompt (P>>) indicates commands
entered in the Parallel Command Window. Other commands are
entered in the MATLAB Command Window.

Start pmode using the default configuration to identify the scheduler
and number of labs.

pmode start

Start pmode using the local configuration with four local labs.

pmode start local 4
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Start pmode using the configuration myconfig and eight labs on the
cluster.

pmode start myconfig 8

Execute a command on all labs.

P>> x = 2*labindex;

Copy the variable x from lab 7 to the MATLAB client.

pmode lab2client x 7

Copy the variable y from the MATLAB client to labs 1 to 8.

pmode client2lab y 1:8

Display the current working directory of each lab.

P>> pwd

See Also createParallelJob | defaultParallelConfig | findResource
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Purpose File for user-defined options to run on each worker when MATLAB
pool starts

Syntax poolStartup

Description poolStartup runs automatically on a worker each time the worker
forms part of a MATLAB pool. You do not call this function from the
client session, nor explicitly as part of a task function.

You add MATLAB code to the poolStartup.m file to define pool
initialization on the worker. The worker looks for poolStartup.m in the
following order, executing the one it finds first:

1 Included in the job’s FileDependencies property.

2 In a folder included in the job’s PathDependencies property.

3 In the worker’s MATLAB installation at the location

matlabroot/toolbox/distcomp/user/poolStartup.m

To create a version of poolStartup.m for FileDependencies or
PathDependencies, copy the provided file and modify it as required. .

poolStartup is the ideal location for startup code required for parallel
execution on the MATLAB pool. For example, you might want to include
code for using mpiSettings. Because jobStartup and taskStartup
execute before poolStartup, they are not suited to pool-specific code.
In other words, you should use taskStartup for setup code on your
worker regardless of whether the task is from a distributed job, parallel
job, or using a MATLAB pool; while poolStartup is for setup code for
pool usage only.

For further details on poolStartup and its implementation, see the text
in the installed poolStartup.m file.

See Also jobStartup | taskFinish | taskStartup | FileDependencies |
PathDependencies
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Purpose Promote job in job manager queue

Syntax promote(jm, job)

Arguments jm The job manager object that contains the job.

job Job object promoted in the queue.

Description promote(jm, job) promotes the job object job, that is queued in the
job manager jm.

If job is not the first job in the queue, promote exchanges the position
of job and the previous job.

Tips After a call to promote or demote, there is no change in the order of
job objects contained in the Jobs property of the job manager object.
To see the scheduled order of execution for jobs in the queue, use the
findJob function in the form [pending queued running finished]
= findJob(jm).

Examples Create and submit multiple jobs to the scheduler identified by the
default parallel configuration:

j1 = createJob('name','Job A');
j2 = createJob('name','Job B');
j3 = createJob('name','Job C');
submit(j1);submit(j2);submit(j3);

Assuming that the default parallel configuration uses a job manager,
create an object for that job manager, and promote Job C by one
position in its queue:

jm = findResource();
promote(jm, j3)

Examine the new queue sequence:
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[pjobs, qjobs, rjobs, fjobs] = findJob(jm);
get(qjobs, 'Name')

'Job A'
'Job C'
'Job B'

See Also createJob | demote | findJob | submit
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Purpose Save data from parallel job session

Syntax psave(fileroot)

Arguments fileroot Part of filename common to all saved files.

Description psave(fileroot) saves the data from the labs’ workspace into the
files named [fileroot num2str(labindex)]. The files can be loaded
by using the pload command with the same fileroot, which should
point to a directory accessible to all the labs. If fileroot contains an
extension, the character representation of the labindex is inserted
before the extension. Thus, psave('abc') creates the files 'abc1.mat',
'abc2.mat', etc., one for each lab.

Examples Create three variables — one replicated, one variant, and one
codistributed. Then save the data.

clear all;
rep = speye(numlabs);
var = magic(labindex);
D = eye(numlabs,codistributor());
psave('threeThings');

This creates three files (threeThings1.mat, threeThings2.mat,
threeThings3.mat) in the current working directory.

Clear the workspace on all the labs and confirm there are no variables.

clear all
whos
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Load the previously saved data into the labs. Confirm its presence.

pload('threeThings');
whos
isreplicated(rep)
iscodistributed(D)

See Also load | save | labindex | numlabs | pmode | pload
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Purpose Redistribute codistributed array with another distribution scheme

Syntax D2 = redistribute(D1, codist)

Description D2 = redistribute(D1, codist) redistributes a codistributed array
D1 and returns D2 using the distribution scheme defined by the
codistributor object codist.

Examples Redistribute an array according to the distribution scheme of another
array.

spmd

% First, create a magic square distributed by columns:

M = codistributed(magic(10), codistributor1d(2, [1 2 3 4]));

% Create a pascal matrix distributed by rows (first dimension):

P = codistributed(pascal(10), codistributor1d(1));

% Redistribute the pascal matrix according to the

% distribution (partition) scheme of the magic square:

R = redistribute(P, getCodistributor(M));

end

See Also codistributed | codistributor |
codistributor1d.defaultPartition
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Purpose Resume processing queue in job manager

Syntax resume(jm)

Arguments jm Job manager object whose queue is resumed.

Description resume(jm) resumes processing of the job manager’s queue so that
jobs waiting in the queued state will be run. This call will do nothing
if the job manager is not paused.

See Also pause | waitForState
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Purpose Configure or display object properties

Syntax set(obj)
props = set(obj)
set(obj,'PropertyName')
props = set(obj,'PropertyName')
set(obj,'PropertyName',PropertyValue,...)
set(obj,PN,PV)
set(obj,S)
set(obj,'configuration', 'ConfigurationName',...)

Arguments obj An object or an array of objects.

'PropertyName' A property name for obj.

PropertyValue A property value supported by
PropertyName.

PN A cell array of property names.

PV A cell array of property values.

props A structure array whose field names are the
property names for obj.

S A structure with property names and
property values.

'configuration' Literal string to indicate usage of a
configuration.

'ConfigurationName' Name of the configuration to use.

Description set(obj) displays all configurable properties for obj. If a property has
a finite list of possible string values, these values are also displayed.

props = set(obj) returns all configurable properties for obj and their
possible values to the structure props. The field names of props are the
property names of obj, and the field values are cell arrays of possible
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property values. If a property does not have a finite set of possible
values, its cell array is empty.

set(obj,'PropertyName') displays the valid values for PropertyName
if it possesses a finite list of string values.

props = set(obj,'PropertyName') returns the valid values for
PropertyName to props. props is a cell array of possible string values
or an empty cell array if PropertyName does not have a finite list of
possible values.

set(obj,'PropertyName',PropertyValue,...) configures one or
more property values with a single command.

set(obj,PN,PV) configures the properties specified in the cell array of
strings PN to the corresponding values in the cell array PV. PN must be a
vector. PV can be m-by-n, where m is equal to the number of objects in
obj and n is equal to the length of PN.

set(obj,S) configures the named properties to the specified values for
obj. S is a structure whose field names are object properties, and whose
field values are the values for the corresponding properties.

set(obj,'configuration', 'ConfigurationName',...) sets
the object properties with values specified in the configuration
ConfigurationName. For details about defining and applying
configurations, see “Parallel Configurations for Cluster Access” on page
6-14.

Tips You can use any combination of property name/property value pairs,
structure arrays, and cell arrays in one call to set. Additionally, you
can specify a property name without regard to case, and you can make
use of property name completion. For example, if j1 is a job object, the
following commands are all valid and have the same result:

set(j1,'Timeout',20)
set(j1,'timeout',20)
set(j1,'timeo',20)

14-207



set

Examples This example illustrates some of the ways you can use set to configure
property values for the job object j1.

set(j1,'Name','Job_PT109','Timeout',60);

props1 = {'Name' 'Timeout'};
values1 = {'Job_PT109' 60};
set(j1, props1, values1);

S.Name = 'Job_PT109';
S.Timeout = 60;
set(j1,S);

See Also get | inspect

14-208



setJobSchedulerData

Purpose Set specific user data for job on generic scheduler

Syntax setJobSchedulerData(sched, job, userdata)

Arguments sched Scheduler object identifying the generic third-party
scheduler running the job.

job Job object identifying the job for which to store data.

userdata Information to store for this job.

Description setJobSchedulerData(sched, job, userdata) stores data for the job
job that is running under the generic scheduler sched. You can later
retrieve the information with the function getJobSchedulerData. For
example, it might be useful to store the third-party scheduler’s external
ID for this job, so that the function specified in GetJobStateFcn can
later query the scheduler about the state of the job. Or the stored data
might be an array with the scheduler’s ID for each task in the job.

You should call the function setJobSchedulerData in the
submit function (identified by the SubmitFcn property) and call
getJobSchedulerData in any of the functions identified by the
properties GetJobStateFcn, DestroyJobFcn, DestroyTaskFcn,
CancelJobFcn, or CancelTaskFcn.

For more information and examples on using these functions and
properties, see “Manage Jobs with Generic Scheduler” on page 8-50.

See Also getJobSchedulerData
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Purpose Set options for submitting parallel jobs to scheduler

Syntax setupForParallelExecution(sched, 'pc')
setupForParallelExecution(sched, 'pcNoDelegate')
setupForParallelExecution(sched, 'unix')

Arguments sched Platform LSF, PBS Pro, or TORQUE
scheduler object.

'pc',
'pcNoDelegate',
'unix'

Setting for parallel execution.

Description setupForParallelExecution(sched, 'pc') sets up the scheduler
to expect workers running on Microsoft Windows operating systems,
and selects the wrapper script which expects to be able to call
"mpiexec -delegate" on the workers. Note that you still need to supply
SubmitArguments that ensure that the LSF or PBS Pro scheduler runs
your job only on PC-based workers. For example, for LSF, including '-R
type==NTX86' in your SubmitArguments causes the scheduler to select
only workers on 32-bit Windows operating systems.

setupForParallelExecution(sched, 'pcNoDelegate') is similar to
the 'pc' mode, except that the wrapper script does not attempt to call
"mpiexec -delegate", and so assumes that you have installed some
other means of achieving authentication without passwords.

setupForParallelExecution(sched, 'unix') sets up the scheduler
to expect workers running on UNIX operating systems, and selects
the default wrapper script for UNIX-based workers. You still need to
supply SubmitArguments to ensure that the LSF, PBS Pro, or TORQUE
scheduler runs your job only on UNIX-based workers. For example, for
LSF, including '-R type==LINUX64' in your SubmitArguments causes
the scheduler to select only 64-bit Linux-based workers.

This function sets the values for the properties
ParallelSubmissionWrapperScript and ClusterOsType.
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Examples From any client, set up the scheduler to run parallel jobs only on
Windows-based (PC) workers.

lsf_sched = findResource('scheduler', 'Type', 'lsf');
setupForParallelExecution(lsf_sched, 'pc');
set(lsf_sched, 'SubmitArguments', '-R type==NTX86');

From any client, set up the scheduler to run parallel jobs only on
UNIX-based workers.

lsf_sched = findResource('scheduler', 'Type', 'lsf');
setupForParallelExecution(lsf_sched, 'unix');
set(lsf_sched, 'SubmitArguments', '-R type==LINUX64');

See Also createParallelJob | findResource
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Purpose Size of object array

Syntax d = size(obj)
[m,n] = size(obj)
[m1,m2,m3,...,mn] = size(obj)
m = size(obj,dim)

Arguments obj An object or an array of objects.

dim The dimension of obj.

d The number of rows and columns in obj.

m The number of rows in obj, or the length of the
dimension specified by dim.

n The number of columns in obj.

m1,m2,m3,...,mn The lengths of the first n dimensions of obj.

Description d = size(obj) returns the two-element row vector d containing the
number of rows and columns in obj.

[m,n] = size(obj) returns the number of rows and columns in
separate output variables.

[m1,m2,m3,...,mn] = size(obj) returns the length of the first n
dimensions of obj.

m = size(obj,dim) returns the length of the dimension specified by
the scalar dim. For example, size(obj,1) returns the number of rows.

See Also length
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Purpose Create sparse distributed or codistributed matrix

Syntax SD = sparse(FD)
SC = sparse(m, n, codist)
SC = sparse(m, n, codist, 'noCommunication')

Description SD = sparse(FD) converts a full distributed or codistributed array FD
to a sparse distributed or codistributed (respectively) array SD.

SC = sparse(m, n, codist) creates an m-by-n sparse codistributed
array of underlying class double, distributed according to the scheme
defined by the codistributor codist. For information on constructing
codistributor objects, see the reference pages for codistributor1d and
codistributor2dbc. This form of the syntax is most useful inside spmd,
pmode, or a parallel job.

SC = sparse(m, n, codist, 'noCommunication') creates an m-by-n
sparse codistributed array in the manner specified above, but does not
perform any global communication for error checking when constructing
the array. This form of the syntax is most useful inside spmd, pmode,
or a parallel job.

Note To create a sparse codistributed array of underlying class logical,
first create an array of underlying class double and then cast it using
the logical function:

spmd
SC = logical(sparse(m, n, codistributor1d()));

end

Examples With four labs,

spmd(4)
C = sparse(1000, 1000, codistributor1d())

end
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creates a 1000-by-1000 codistributed sparse double array C. C is
distributed by its second dimension (columns), and each lab contains a
1000-by-250 local piece of C.

spmd(4)
codist = codistributor1d(2, 1:numlabs)
C = sparse(10, 10, codist);

end

creates a 10-by-10 codistributed sparse double array C, distributed by
its columns. Each lab contains a 10-by-labindex local piece of C.

Convert a distributed array into a sparse distributed array:

R = distributed.rand(1000);
D = floor(2*R); % D also is distributed
SD = sparse(D); % SD is sparse distributed

See Also sparse | distributed.spalloc | codistributed.spalloc
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Purpose Execute code in parallel on MATLAB pool

Syntax spmd, statements, end
spmd(n), statements, end
spmd(m, n), statements, end

Description The general form of an spmd (single program, multiple data) statement
is:

spmd
statements

end

spmd, statements, end defines an spmd statement on a single line.
MATLAB executes the spmd body denoted by statements on several
MATLAB workers simultaneously. The spmd statement can be used
only if you have Parallel Computing Toolbox. To execute the statements
in parallel, you must first open a pool of MATLAB workers using
matlabpool.

Inside the body of the spmd statement, each MATLAB worker has a
unique value of labindex, while numlabs denotes the total number of
workers executing the block in parallel. Within the body of the spmd
statement, communication functions for parallel jobs (such as labSend
and labReceive) can transfer data between the workers.

Values returning from the body of an spmd statement are converted to
Composite objects on the MATLAB client. A Composite object contains
references to the values stored on the remote MATLAB workers, and
those values can be retrieved using cell-array indexing. The actual
data on the workers remains available on the workers for subsequent
spmd execution, so long as the Composite exists on the client and the
MATLAB pool remains open.

By default, MATLAB uses as many workers as it finds available in the
pool. When there are no MATLAB workers available, MATLAB executes
the block body locally and creates Composite objects as necessary.
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spmd(n), statements, end uses n to specify the exact number of
MATLAB workers to evaluate statements, provided that n workers
are available from the MATLAB pool. If there are not enough workers
available, an error is thrown. If n is zero, MATLAB executes the block
body locally and creates Composite objects, the same as if there is no
pool available.

spmd(m, n), statements, end uses a minimum of m and a maximum
of n workers to evaluate statements. If there are not enough workers
available, an error is thrown. m can be zero, which allows the block to
run locally if no workers are available.

For more information about spmd and Composite objects, see Chapter 3,
“Single Program Multiple Data (spmd)”.

Tips For information about restrictions and limitations when using spmd, see
“Limitations” on page 3-15.

Examples Perform a simple calculation in parallel, and plot the results:

matlabpool(3)
spmd

% build magic squares in parallel
q = magic(labindex + 2);

end
for ii=1:length(q)

% plot each magic square
figure, imagesc(q{ii});

end
matlabpool close

See Also batch | Composite | labindex | matlabpool | numlabs | parfor
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Purpose Queue job in scheduler

Syntax submit(obj)

Arguments obj Job object to be queued.

Description submit(obj) queues the job object, obj, in the scheduler queue. The
scheduler used for this job was determined when the job was created.

Tips When a job contained in a scheduler is submitted, the job’s State
property is set to queued, and the job is added to the list of jobs waiting
to be executed.

The jobs in the waiting list are executed in a first in, first out manner;
that is, the order in which they were submitted, except when the
sequence is altered by promote, demote, cancel, or destroy.

Examples Find the job manager named jobmanager1 using the lookup service
on host JobMgrHost.

jm1 = findResource('scheduler','type','jobmanager', ...
'name','jobmanager1','LookupURL','JobMgrHost');

Create a job object.

j1 = createJob(jm1);

Add a task object to be evaluated for the job.

t1 = createTask(j1, @myfunction, 1, {10, 10});

Queue the job object in the job manager.

submit(j1);

See Also createJob | findJob
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Purpose Subscripted assignment for Composite

Syntax C(i) = {B}
C(1:end) = {B}
C([i1, i2]) = {B1, B2}
C{i} = B

Description subsasgn assigns remote values to Composite objects. The values reside
on the labs in the current MATLAB pool.

C(i) = {B} sets the entry of C on lab i to the value B.

C(1:end) = {B} sets all entries of C to the value B.

C([i1, i2]) = {B1, B2} assigns different values on labs i1 and i2.

C{i} = B sets the entry of C on lab i to the value B.

See Also subsasgn | Composite | subsref
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Purpose Subscripted reference for Composite

Syntax B = C(i)
B = C([i1, i2, ...])
B = C{i}
[B1, B2, ...] = C{[i1, i2, ...]}

Description subsref retrieves remote values of a Composite object from the labs in
the current MATLAB pool.

B = C(i) returns the entry of Composite C from lab i as a cell array.

B = C([i1, i2, ...]) returns multiple entries as a cell array.

B = C{i} returns the value of Composite C from lab i as a single entry.

[B1, B2, ...] = C{[i1, i2, ...]} returns multiple entries.

See Also subsref | Composite | subsasgn
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Purpose File for user-defined options to run when task finishes

Syntax taskFinish(task)

Arguments task The task being evaluated by the worker.

Description taskFinish(task) runs automatically on a worker each time the
worker finishes evaluating a task for a particular job. You do not call
this function from the client session, nor explicitly as part of a task
function.

You add MATLAB code to the taskFinish.m file to define anything you
want executed on the worker when a task is finished. The worker looks
for taskFinish.m in the following order, executing the one it finds first:

1 Included in the job’s FileDependencies property.

2 In a folder included in the job’s PathDependencies property.

3 In the worker’s MATLAB installation at the location

matlabroot/toolbox/distcomp/user/taskFinish.m

To create a version of taskFinish.m for FileDependencies or
PathDependencies, copy the provided file and modify it as required.
For further details on taskFinish and its implementation, see the text
in the installed taskFinish.m file.

See Also jobStartup | poolStartup | taskStartup | FileDependencies |
PathDependencies
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Purpose File for user-defined options to run when task starts

Syntax taskStartup(task)

Arguments task The task being evaluated by the worker.

Description taskStartup(task) runs automatically on a worker each time the
worker evaluates a task for a particular job. You do not call this
function from the client session, nor explicitly as part of a task function.

You add MATLAB code to the taskStartup.m file to define task
initialization on the worker. The worker looks for taskStartup.m in the
following order, executing the one it finds first:

1 Included in the job’s FileDependencies property.

2 In a folder included in the job’s PathDependencies property.

3 In the worker’s MATLAB installation at the location

matlabroot/toolbox/distcomp/user/taskStartup.m

To create a version of taskStartup.m for FileDependencies or
PathDependencies, copy the provided file and modify it as required.
For further details on taskStartup and its implementation, see the text
in the installed taskStartup.m file.

See Also jobStartup | poolStartup | taskFinish | FileDependencies |
PathDependencies
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Purpose Wait for job to finish or change state

Syntax wait(obj)
wait(obj, 'state')
wait(obj, 'state', timeout)

Arguments obj Job object whose change in state to wait for.

'state' Value of the job object’s State property to wait for.

timeout Maximum time to wait, in seconds.

Description wait(obj) blocks execution in the client session until the job identified
by the object obj reaches the 'finished' state or fails. This occurs
when all the job’s tasks are finished processing on remote workers.

wait(obj, 'state') blocks execution in the client session until the
specified job object changes state to the value of 'state'. The valid
states to wait for are 'queued', 'running', and 'finished'.

If the object is currently or has already been in the specified state,
a wait is not performed and execution returns immediately. For
example, if you execute wait(job, 'queued') for a job already in the
'finished' state, the call returns immediately.

wait(obj, 'state', timeout) blocks execution until either the job
reaches the specified 'state', or timeout seconds elapse, whichever
happens first.

Note Simulink models cannot run while a MATLAB session is blocked
by wait. If you must run Simulink from the MATLAB client while also
running distributed or parallel jobs, you cannot use wait.

Examples Submit a job to the queue, and wait for it to finish running before
retrieving its results.
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submit(job);
wait(job, 'finished')
results = getAllOutputArguments(job)

Submit a batch job and wait for it to finish before retrieving its variables.

job = batch('myScript');
wait(job)
load(job)

See Also pause | resume | waitForState
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Purpose Wait for object to change state

Syntax waitForState(obj)
waitForState(obj, 'state')
waitForState(obj, 'state', timeout)
OK = waitForState(..., timeout)

Arguments obj Job or task object whose change in state to wait for.

'state' Value of the object’s State property to wait for.

timeout Maximum time to wait, in seconds.

OK Boolean true if wait succeeds, false if times out.

Description waitForState(obj) blocks execution in the client session until the
job or task identified by the object obj reaches the 'finished' state
or fails. For a job object, this occurs when all its tasks are finished
processing on remote workers.

waitForState(obj, 'state') blocks execution in the client session
until the specified object changes state to the value of 'state'. For a
job object, the valid states to wait for are 'queued', 'running', and
'finished'. For a task object, the valid states are 'running' and
'finished'.

If the object is currently or has already been in the specified state, a
wait is not performed and execution returns immediately. For example,
if you execute waitForState(job, 'queued') for a job already in the
'finished' state, the call returns immediately.

waitForState(obj, 'state', timeout) blocks execution until either
the object reaches the specified 'state', or timeout seconds elapse,
whichever happens first.

OK = waitForState(..., timeout) returns a value of true to OK if
the awaited state occurs, or false if the wait times out.
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Note Simulink models cannot run while a MATLAB session is blocked
by waitForState. If you must run Simulink from the MATLAB
client while also running distributed or parallel jobs, you cannot use
waitForState.

Examples Submit a job to the queue, and wait for it to finish running before
retrieving its results.

submit(job)
waitForState(job, 'finished')
results = getAllOutputArguments(job)

See Also pause | resume | wait
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15

Property Reference

Job Manager (p. 15-2) Control job manager objects

Schedulers (p. 15-3) Control scheduler objects

Jobs (p. 15-5) Control job objects

Tasks (p. 15-7) Control task objects

Workers (p. 15-8) Control worker objects



15 Property Reference

Job Manager
BusyWorkers Workers currently running tasks

ClusterOsType Specify operating system of nodes on
which scheduler will start workers

ClusterSize Number of workers available to
scheduler

Configuration Specify configuration to apply to
object or toolbox function

HostAddress IP address of host running job
manager or worker session

Hostname Name of host running job manager
or worker session

IdleWorkers Idle workers available to run tasks

IsUsingSecureCommunication True if job manager and workers use
secure communication

Jobs Jobs contained in job manager
service or in scheduler’s data
location

Name Name of job manager, job, or worker
object

NumberOfBusyWorkers Number of workers currently
running tasks

NumberOfIdleWorkers Number of idle workers available to
run tasks

PromptForPassword Specify if system should prompt for
password when authenticating user

SecurityLevel Security level controlling access to
job manager and its jobs

State Current state of task, job, job
manager, or worker

Type Type of scheduler object
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UserData Specify data to associate with object

UserName User who created job or job manager
object

Schedulers
CancelJobFcn Specify function to run when

canceling job on generic scheduler

CancelTaskFcn Specify function to run when
canceling task on generic scheduler

ClusterMatlabRoot Specify MATLAB root for cluster

ClusterName Name of Platform LSF cluster

ClusterOsType Specify operating system of nodes on
which scheduler will start workers

ClusterSize Number of workers available to
scheduler

ClusterVersion Version of HPC Server scheduler

Configuration Specify configuration to apply to
object or toolbox function

DataLocation Specify directory where job data is
stored

DestroyJobFcn Specify function to run when
destroying job on generic scheduler

DestroyTaskFcn Specify function to run when
destroying task on generic scheduler

EnvironmentSetMethod Specify means of setting
environment variables for mpiexec
scheduler

GetJobStateFcn Specify function to run when
querying job state on generic
scheduler
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HasSharedFilesystem Specify whether nodes share data
location

JobDescriptionFile Name of XML job description file
for Microsoft Windows HPC Server
scheduler

Jobs Jobs contained in job manager
service or in scheduler’s data
location

JobTemplate Name of job template for HPC Server
2008 scheduler

MasterName Name of Platform LSF master node

MatlabCommandToRun MATLAB command that generic
scheduler runs to start lab

MpiexecFileName Specify pathname of executable
mpiexec command

ParallelSubmissionWrapperScript Script that scheduler runs to start
labs

ParallelSubmitFcn Specify function to run when parallel
job submitted to generic scheduler

RcpCommand Command to copy files from client

ResourceTemplate Resource definition for PBS Pro or
TORQUE scheduler

RshCommand Remote execution command used on
worker nodes during parallel job

SchedulerHostname Name of host running Microsoft
Windows HPC Server scheduler

ServerName Name of current PBS Pro or
TORQUE server machine

SubmitArguments Specify additional arguments to use
when submitting job to Platform
LSF, PBS Pro, TORQUE, or mpiexec
scheduler
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SubmitFcn Specify function to run when job
submitted to generic scheduler

Type Type of scheduler object

UserData Specify data to associate with object

UseSOAJobSubmission Allow service-oriented architecture
(SOA) submission on HPC Server
2008 cluster

WorkerMachineOsType Specify operating system of nodes on
which mpiexec scheduler will start
labs

Jobs
AuthorizedUsers Specify users authorized to access

job

Configuration Specify configuration to apply to
object or toolbox function

CreateTime When task or job was created

FileDependencies Directories and files that worker can
access

FinishedFcn Specify callback to execute after task
or job runs

FinishTime When task or job finished

ID Object identifier

JobData Data made available to all workers
for job’s tasks

MaximumNumberOfWorkers Specify maximum number of
workers to perform job tasks

MinimumNumberOfWorkers Specify minimum number of workers
to perform job tasks
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Name Name of job manager, job, or worker
object

Parent Parent object of job or task

PathDependencies Specify directories to add to
MATLAB worker path

QueuedFcn Specify function file to execute when
job is submitted to job manager
queue

RestartWorker Specify whether to restart MATLAB
workers before evaluating job tasks

RunningFcn Specify function file to execute when
job or task starts running

StartTime When job or task started

State Current state of task, job, job
manager, or worker

SubmitArguments Specify additional arguments to use
when submitting job to Platform
LSF, PBS Pro, TORQUE, or mpiexec
scheduler

SubmitTime When job was submitted to queue

Tag Specify label to associate with job
object

Task First task contained in MATLAB
pool job object

Tasks Tasks contained in job object

Timeout Specify time limit to complete task
or job

UserData Specify data to associate with object

UserName User who created job or job manager
object
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Tasks
AttemptedNumberOfRetries Number of times failed task was

rerun

CaptureCommandWindowOutput Specify whether to return Command
Window output

CommandWindowOutput Text produced by execution of task
object’s function

Configuration Specify configuration to apply to
object or toolbox function

CreateTime When task or job was created

Error Task error information

ErrorIdentifier Task error identifier

ErrorMessage Message from task error

FailedAttemptInformation Information returned from failed
task

FinishedFcn Specify callback to execute after task
or job runs

FinishTime When task or job finished

Function Function called when evaluating
task

ID Object identifier

InputArguments Input arguments to task object

MaximumNumberOfRetries Specify maximum number of times
to rerun failed task

NumberOfOutputArguments Number of arguments returned by
task function

OutputArguments Data returned from execution of task

Parent Parent object of job or task

RunningFcn Specify function file to execute when
job or task starts running
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StartTime When job or task started

State Current state of task, job, job
manager, or worker

Timeout Specify time limit to complete task
or job

UserData Specify data to associate with object

Worker Worker session that performed task

Workers
Computer Information about computer on

which worker is running

CurrentJob Job whose task this worker session
is currently evaluating

CurrentTask Task that worker is currently
running

HostAddress IP address of host running job
manager or worker session

Hostname Name of host running job manager
or worker session

JobManager Job manager that this worker is
registered with

Name Name of job manager, job, or worker
object

PreviousJob Job whose task this worker
previously ran

PreviousTask Task that this worker previously ran

State Current state of task, job, job
manager, or worker
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AttemptedNumberOfRetries

Purpose Number of times failed task was rerun

Description If a task reruns because of certain system failures, the task property
AttemptedNumberOfRetries stores a count of the number of attempted
reruns.

Note The AttemptedNumberOfRetries property is available only when
using the MathWorks job manager as your scheduler.

Characteristics Usage Task object

Read-only Always

Data type Double

See Also Properties

FailedAttemptInformation, MaximumNumberOfRetries
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Purpose Specify users authorized to access job

Description The AuthorizedUsers property value is a cell array of strings which
identify the users who are allowed to access the job. This controls who
can set properties on the job, add tasks, destroy the job, etc. The person
identified as the owner by the job’s UserName property does not have to
be listed in the AuthorizedUsers property value.

The following table explains the effect of AuthorizedUsers at different
security levels.

Security
Level

Effect of AuthorizedUsers

0 No effect. All users can access the job without
hindrance.

1 For users included in the property value, the
system suppresses the dialog box that requires
acknowledgment that the job belongs to another user.
All other users must acknowledge job ownership every
time they access the job.

2 and 3 Only users who are authenticated in this session and
are listed in AuthorizedUsers can access the job.

Note The AuthorizedUsers property is available only when using the
MathWorks job manager as your scheduler.

Characteristics Usage Job object

Read-only Never

Data type Cell array of strings
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Values You can populate AuthorizedUsers with the names of any users. At
security levels 1–3, the users must be recognized by the job manager as
authenticated in the session in which you are setting the property.

Examples This example creates a job named Job33, then adds the users sammy and
bob to the job’s AuthorizedUsers.

jm = findResource('scheduler', 'Configuration', defaultparallelconfig);

j = createJob(jm, 'Name', 'Job33');

set(j, 'AuthorizedUsers', {'sammy', 'bob'})

See Also Properties

SecurityLevel, UserName
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Purpose Block size of codistributor2dbc object

Description blksz = dist.BlockSize returns the block size of codistributor2dbc
object dist. The default value is 64. You can read this property only by
using dot-notation; not the get function.

For more information on 2dbc distribution and the block size of
distributed arrays, see “2-Dimensional Distribution” on page 5-17.

Characteristics Usage codistributor2dbc object

Read-only Always

Data type Double

See Also Functions

codistributor2dbc

Properties

LabGrid, Orientation
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BusyWorkers

Purpose Workers currently running tasks

Description The BusyWorkers property value indicates which workers are currently
running tasks for the job manager.

Characteristics Usage Job manager object

Read-only Always

Data type Array of worker objects

Values As workers complete tasks and assume new ones, the lists of workers
in BusyWorkers and IdleWorkers can change rapidly. If you examine
these two properties at different times, you might see the same worker
on both lists if that worker has changed its status between those times.

If a worker stops unexpectedly, the job manager’s knowledge of that as
a busy or idle worker does not get updated until the job manager runs
the next job and tries to send a task to that worker.

Examples Examine the workers currently running tasks for a particular job
manager.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

workers_running_tasks = get(jm, 'BusyWorkers')

See Also Properties

ClusterSize, IdleWorkers, MaximumNumberOfWorkers,
MinimumNumberOfWorkers, NumberOfBusyWorkers,
NumberOfIdleWorkers
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CancelJobFcn

Purpose Specify function to run when canceling job on generic scheduler

Description CancelJobFcn specifies a function to run when you call cancel for a job
running on a generic scheduler. This function lets you communicate
with the scheduler, to provide any instructions beyond the normal
toolbox action of changing the state of the job. To identify the job for the
scheduler, the function should include a call to getJobSchedulerData.

For more information and examples on using these functions and
properties, see “Manage Jobs with Generic Scheduler” on page 8-50.

Characteristics Usage Generic scheduler object

Read-only Never

Data type Function handle

Values You can set CancelJobFcn to any valid function handle or a cell array
whose first element is a function handle.

See Also Functions

cancel, getJobSchedulerData, setJobSchedulerData

Properties

CancelTaskFcn, DestroyJobFcn, DestroyTaskFcn
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CancelTaskFcn

Purpose Specify function to run when canceling task on generic scheduler

Description CancelTaskFcn specifies a function to run when you call cancel
for a task running on a generic scheduler. This function lets you
communicate with the scheduler, to provide any instructions beyond
the normal toolbox action of changing the state of the task. To identify
the task for the scheduler, the function should include a call to
getJobSchedulerData.

For more information and examples on using these functions and
properties, see “Manage Jobs with Generic Scheduler” on page 8-50.

Characteristics Usage Generic scheduler object

Read-only Never

Data type Function handle

Values You can set CancelTaskFcn to any valid function handle or a cell array
whose first element is a function handle.

See Also Functions

cancel, getJobSchedulerData, setJobSchedulerData

Properties

CancelJobFcn, DestroyJobFcn, DestroyTaskFcn
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CaptureCommandWindowOutput

Purpose Specify whether to return Command Window output

Description CaptureCommandWindowOutput specifies whether to return command
window output for the evaluation of a task object’s Function property.

If CaptureCommandWindowOutput is set true (or logical 1), the command
window output will be stored in the CommandWindowOutput property of
the task object. If the value is set false (or logical 0), the task does not
retain command window output.

Characteristics Usage Task object

Read-only While task is running or finished

Data type Logical

Values The value of CaptureCommandWindowOutput can be set to true (or
logical 1) or false (or logical 0). When you perform get on the property,
the value returned is logical 1 or logical 0. The default value is logical
0 to save network bandwidth in situations where the output is not
needed; except for batch jobs, whose default is 1 (true).

Examples Set all tasks in a job to retain any command window output generated
during task evaluation.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm);
createTask(j, @myfun, 1, {x});
createTask(j, @myfun, 1, {x});
.
.
.
alltasks = get(j, 'Tasks');
set(alltasks, 'CaptureCommandWindowOutput', true)
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See Also Properties

Function, CommandWindowOutput
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ClusterMatlabRoot

Purpose Specify MATLAB root for cluster

Description ClusterMatlabRoot specifies the pathname to MATLAB for the cluster
to use for starting MATLAB worker processes. The path must be
available from all nodes on which worker sessions will run. When
using the generic scheduler interface, your scheduler script can
construct a path to the executable by concatenating the values of
ClusterMatlabRoot and MatlabCommandToRun into a single string.

Characteristics Usage Scheduler object

Read-only Never

Data type String

Values ClusterMatlabRoot is a string. It must be structured appropriately for
the file system of the cluster nodes. The directory must be accessible
as expressed in this string, from all cluster nodes on which MATLAB
workers will run. If the value is empty, the MATLAB executable must
be on the path of the worker.

See Also Properties

DataLocation, MasterName, MatlabCommandToRun, PathDependencies
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ClusterName

Purpose Name of Platform LSF cluster

Description ClusterName indicates the name of the LSF cluster on which this
scheduler will run your jobs.

Characteristics Usage LSF scheduler object

Read-only Always

Data type String

See Also Properties

DataLocation, MasterName, PathDependencies
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ClusterOsType

Purpose Specify operating system of nodes on which scheduler will start workers

Description ClusterOsType specifies the operating system of the nodes on which a
scheduler will start workers, or whose workers are already registered
with a job manager.

Characteristics Usage Scheduler object

Read-only For job manager or Microsoft Windows HPC
Server (or CCS) scheduler object

Data type String

Values The valid values for this property are 'pc', 'unix', and'mixed'.

• For Windows HPC Server, the setting is always 'pc'.

• A value of 'mixed' is valid only for distributed jobs with Platform
LSF or generic schedulers; or for distributed or parallel jobs with a
job manager. Otherwise, the nodes of the labs running a parallel job
with LSF, Windows HPC Server, PBS Pro, TORQUE, mpiexec, or
generic scheduler must all be the same platform.

• For parallel jobs with an LSF, PBS Pro, or TORQUE scheduler,
this property value is set when you execute the function
setupForParallelExecution, so you do not need to set the value
directly.

See Also Functions

createParallelJob, findResource, setupForParallelExecution

Properties

ClusterName, MasterName, SchedulerHostname
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ClusterSize

Purpose Number of workers available to scheduler

Description ClusterSize indicates the number of workers available to the scheduler
for running your jobs.

Characteristics Usage Scheduler object

Read-only For job manager object

Data type Double

Values For job managers this property is read-only. The value for a job manager
represents the number of workers registered with that job manager.

For local or third-party schedulers, this property is settable,
and its value specifies the maximum number of workers or labs
that this scheduler can start for running a job. A parallel job’s
MaximumNumberOfWorkers property value must not exceed the value
of ClusterSize.

Remarks If you change the value of ClusterVersion or SchedulerHostname,
this resets the values of ClusterSize, JobTemplate, and
UseSOAJobSubmission.

See Also Properties

BusyWorkers, IdleWorkers, MaximumNumberOfWorkers,
MinimumNumberOfWorkers, NumberOfBusyWorkers,
NumberOfIdleWorkers
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ClusterVersion

Purpose Version of HPC Server scheduler

Description ClusterVersion specifies which version of MicrosoftWindows HPC
Server scheduler you submit your jobs to.

Characteristics Usage Windows HPC Server scheduler object

Read-only Never

Data type String

Values This property can have the value 'CCS' (for CCS) or 'HPCServer2008'
(for HPC Server 2008).

Remarks If you change the value of ClusterVersion, this resets the values of
ClusterSize, JobTemplate, and UseSOAJobSubmission.

See Also Properties

JobDescriptionFile, JobTemplate, UseSOAJobSubmission
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codistributor2dbc.defaultBlockSize

Purpose Default block size for codistributor2dbc distribution scheme

Description dbs = codistributor2dbc.defaultBlockSize returns the default
block size for a codistributor2dbc distribution scheme. Currently
this returns the value 64. You can read this property only by using
dot-notation; not with the get function on the codistributor2dbc object.

Characteristics Usage codistributor2dbc object

Read-only Always

Data type Double

See Also Functions

codistributor2dbc, codistributor2dbc.defaultLabGrid

Properties

BlockSize, LabGrid

16-16



CommandWindowOutput

Purpose Text produced by execution of task object’s function

Description CommandWindowOutput contains the text produced during the execution
of a task object’s Function property that would normally be printed to
the MATLAB Command Window.

For example, if the function specified in the Function property
makes calls to the disp command, the output that would normally be
printed to the Command Window on the worker is captured in the
CommandWindowOutput property.

Whether to store the CommandWindowOutput is specified
using the CaptureCommandWindowOutput property. The
CaptureCommandWindowOutput property by default is logical 0 to save
network bandwidth in situations when the CommandWindowOutput is
not needed.

Characteristics Usage Task object

Read-only Always

Data type String

Values Before a task is evaluated, the default value of CommandWindowOutput
is an empty string.

Examples Get the Command Window output from all tasks in a job.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm);
createTask(j, @myfun, 1, {x});
createTask(j, @myfun, 1, {x});
.
.
alltasks = get(j, 'Tasks')
set(alltasks, 'CaptureCommandWindowOutput', true)
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submit(j)
outputmessages = get(alltasks, 'CommandWindowOutput')

See Also Properties

Function, CaptureCommandWindowOutput
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Computer

Purpose Information about computer on which worker is running

Description The Computer property of a worker is set to the string that would be
returned from running the computer function on that worker.

Characteristics Usage Worker object

Read-only Always

Data type String

Values Some possible values for the Computer property are GLNX86, GLNXA64,
MACI, PCWIN, and PCWIN64. For more information about specific values,
see the computer function reference page.

See Also Functions

computer MATLAB function reference page

Properties

HostAddress, Hostname, WorkerMachineOsType

16-19



Configuration

Purpose Specify configuration to apply to object or toolbox function

Description You use the Configuration property to apply a configuration to an
object. For details about writing and applying configurations, see
“Parallel Configurations for Cluster Access” on page 6-14.

Setting the Configuration property causes all the applicable properties
defined in the configuration to be set on the object.

Characteristics Usage Scheduler, job, or task object

Read-only Never

Data type String

Values The value of Configuration is a string that matches the name of
a configuration. If a configuration was never applied to the object,
or if any of the settable object properties have been changed since a
configuration was applied, the Configuration property is set to an
empty string.

Examples Use a configuration to find a scheduler.

jm = findResource('scheduler','configuration','myConfig')

Use a configuration when creating a job object.

job1 = createJob(jm,'Configuration','jobmanager')

Apply a configuration to an existing job object.

job2 = createJob(jm)
set(job2,'Configuration','myjobconfig')
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See Also Functions

createJob, createParallelJob, createTask, dfeval, dfevalasync,
findResource
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CreateTime

Purpose When task or job was created

Description CreateTime holds a date number specifying the time when a task or job
was created, in the format 'day mon dd hh:mm:ss tz yyyy'.

Characteristics Usage Task object or job object

Read-only Always

Data type String

Values CreateTime is assigned the job manager’s system time when a task
or job is created.

Examples Create a job, then get its CreateTime.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm);
get(j,'CreateTime')
ans =
Mon Jun 28 10:13:47 EDT 2004

See Also Functions

createJob, createTask

Properties

FinishTime, StartTime, SubmitTime
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CurrentJob

Purpose Job whose task this worker session is currently evaluating

Description CurrentJob indicates the job whose task the worker is evaluating at
the present time.

Characteristics Usage Worker object

Read-only Always

Data type Job object

Values CurrentJob is an empty vector while the worker is not evaluating
a task.

See Also Properties

CurrentTask, PreviousJob, PreviousTask, Worker
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CurrentTask

Purpose Task that worker is currently running

Description CurrentTask indicates the task that the worker is evaluating at the
present time.

Characteristics Usage Worker object

Read-only Always

Data type Task object

Values CurrentTask is an empty vector while the worker is not evaluating
a task.

See Also Properties

CurrentJob, PreviousJob, PreviousTask, Worker
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DataLocation

Purpose Specify directory where job data is stored

Description DataLocation identifies where the job data is located.

Characteristics Usage Scheduler object

Read-only Never

Data type String or struct

Values DataLocation is a string or structure specifying a pathname for the job
data. In a shared file system, the client, scheduler, and all worker nodes
must have access to this location. In a nonshared file system, only the
MATLAB client and scheduler access job data in this location.

If DataLocation is not set, the default location for job data is the
current working directory of the MATLAB client the first time you use
findResource to create an object for this type of scheduler. All settable
property values on a scheduler object are local to the MATLAB client,
and are lost when you close the client session or when you remove the
object from the client workspace with delete or clear all.

Use a structure to specify the DataLocation in an environment of mixed
platforms. The fields for the structure are named pc and unix. Each
node then uses the field appropriate for its platform. See the examples
below. When you examine a DataLocation property that was set by a
structure in this way, the value returned is the string appropriate for
the platform on which you are examining it.

The job data stored in the folder identified by DataLocation might
not be compatible between different versions of MATLAB Distributed
Computing Server. Therefore, DataLocation should not be shared
by parallel computing products running different versions, and each
version on your cluster should have its own DataLocation.

Examples Set the DataLocation property for a UNIX-based cluster.

sch = findResource('scheduler','name','LSF')
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set(sch, 'DataLocation','/depot/jobdata')

Use a structure to set the DataLocation property for a mixed platform
cluster.

d = struct('pc', '\\ourdomain\depot\jobdata', ...
'unix', '/depot/jobdata')

set(sch, 'DataLocation', d)

See Also Properties

HasSharedFilesystem, PathDependencies
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DestroyJobFcn

Purpose Specify function to run when destroying job on generic scheduler

Description DestroyJobFcn specifies a function to run when you call destroy
for a job running on a generic scheduler. This function lets you
communicate with the scheduler, to provide any instructions beyond
the normal toolbox action of deleting the job data from disk. To
identify the job for the scheduler, the function should include a call
to getJobSchedulerData.

For more information and examples on using these functions and
properties, see “Manage Jobs with Generic Scheduler” on page 8-50.

Characteristics Usage Generic scheduler object

Read-only Never

Data type Function handle

Values You can set DestroyJobFcn to any valid function handle, string of a
function name, or a cell array whose first element is one of these.

See Also Functions

destroy, getJobSchedulerData, setJobSchedulerData

Properties

CancelJobFcn, CancelTaskFcn, DestroyTaskFcn
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DestroyTaskFcn

Purpose Specify function to run when destroying task on generic scheduler

Description DestroyTaskFcn specifies a function to run when you call destroy
for a task running on a generic scheduler. This function lets you
communicate with the scheduler, to provide any instructions beyond
the normal toolbox action of deleting the task data from disk. To
identify the task for the scheduler, the function should include a call
to getJobSchedulerData.

For more information and examples on using these functions and
properties, see “Manage Jobs with Generic Scheduler” on page 8-50.

Characteristics Usage Generic scheduler object

Read-only Never

Data type Function handle

Values You can set DestroyTaskFcn to any valid function handle or a cell array
whose first element is a function handle.

See Also Functions

destroy, getJobSchedulerData, setJobSchedulerData

Properties

CancelJobFcn, CancelTaskFcn, DestroyJobFcn
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Dimension

Purpose Distributed dimension of codistributor1d object

Description dim = dist.Dimension returns the distribution dimension of the
codistributor object dist. The default value is the last nonsingleton
dimension, indicated by a value of 0. You can read this property only by
using dot-notation; not the get function.

Characteristics Usage codistributor1d object

Read-only Always

Data type Double

See Also Functions

codistributor1d

Properties

Partition
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EnvironmentSetMethod

Purpose Specify means of setting environment variables for mpiexec scheduler

Description The mpiexec scheduler needs to supply environment variables to the
MATLAB processes (labs) that it launches. There are two means
by which it can do this, determined by the EnvironmentSetMethod
property.

Characteristics Usage mpiexec scheduler object

Read-only Never

Data type String

Values A value of '-env' instructs the mpiexec scheduler to insert into the
mpiexec command line additional directives of the form -env VARNAME
value.

A value of 'setenv' instructs the mpiexec scheduler to set the
environment variables in the environment that launches mpiexec.
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Error

Purpose Task error information

Description If an error occurs during the task evaluation, Error contains the
MException object thrown. See the MException reference page for more
about the returned information.

Characteristics Usage Task object

Read-only Always

Data type MException object

Values The Error property is empty before an attempt to run a task.

When using a job manager, the Error property indicates if a worker has
crashed during task execution, but when using a different scheduler
Error does not indicate a crash.

The Error’s message and identifier contain the same information
as the task object properties ErrorMessage and ErrorIdentifier,
respectively.

Examples Examine a task’s Error property to determine if there was an error
during execution:

jm = findResource('scheduler','type','local');
j = createJob(jm);
t = createTask(j, @myfun, 1, argcell);
submit(j)
waitForState(j)
has_error = ~isempty(t.Error)

Retrieve the error MException object from a task.

jm = findResource('scheduler','type','local');
j = createJob(jm);
a = [1 2 3 4]; % Note: matrix not square.
t = createTask(j, @inv, 1, {a});
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submit(j)
waitForState(j)
e = get(t,'Error')
e =

MException

Properties:
identifier: 'MATLAB:square'

message: 'Matrix must be square.'
cause: {0x1 cell}
stack: [7x1 struct]

See Also Properties

ErrorIdentifier, ErrorMessage, Function
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ErrorIdentifier

Purpose Task error identifier

Description If an error occurs during the task evaluation, ErrorIdentifier
contains the identifier property of the MException thrown.

Characteristics Usage Task object

Read-only Always

Data type String

Values ErrorIdentifier is empty before an attempt to run a task, and
remains empty if the evaluation of a task function does not produce an
error or if the error did not provide an identifier. ErrorIdentifier has
the same value as the identifier property of the task’s Error.

When using a job manager, ErrorIdentifier indicates if a worker has
crashed during task execution, but when using a different scheduler
ErrorIdentifier does not indicate a crash.

Examples Retrieve the error identifier from a task object.

jm = findResource('scheduler','type','local');
j = createJob(jm);
a = [1 2 3 4]; % Note: matrix not square.
t = createTask(j, @inv, 1, {a});
submit(j)
waitForState(j)
e_id = get(t,'ErrorIdentifer')
e_id =
MATLAB:square

See Also Properties

Error, ErrorMessage, Function
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ErrorMessage

Purpose Message from task error

Description If an error occurs during the task evaluation, ErrorMessage contains
the message property of the MException thrown.

Characteristics Usage Task object

Read-only Always

Data type String

Values ErrorMessage is empty before an attempt to run a task, and remains
empty if the evaluation of a task object function does not produce an
error or if the error did not provide a message. ErrorMessage has the
same value as the message property of the task’s Error.

When using a job manager, ErrorMessage indicates if a worker has
crashed during task execution, but when using a different scheduler
ErrorMessage does not indicate a crash.

Examples Retrieve the error message from a task object.

jm = findResource('scheduler','type','local');
j = createJob(jm);
a = [1 2 3 4]; % Note: matrix not square.
t = createTask(j, @inv, 1, {a});
submit(j)
waitForState(j)
e_msg = get(t,'ErrorMessage')
e_msg =
Matrix must be square.

See Also Properties

Error, ErrorIdentifier, Function
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FailedAttemptInformation

Purpose Information returned from failed task

Description If a task reruns because of certain system failures, the task property
FailedAttemptInformation stores information related to the failure
and rerun attempts.

Note The FailedAttemptInformation property is available only when
using the MathWorks job manager as your scheduler.

Characteristics Usage Task object

Read-only Always

Data type Array of objects

Values The data type of FailedAttemptInformation is an array of objects, one
object for each rerun of the task. The property values of each resulting
object contain information about when the task was rerun and the error
that caused it.

See Also Properties

AttemptedNumberOfRetries, MaximumNumberOfRetries
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FileDependencies

Purpose Directories and files that worker can access

Description FileDependencies contains a list of directories and files that the
worker will need to access for evaluating a job’s tasks.

The value of the property is defined by the client session. You set the
value for the property as a cell array of strings. Each string is an
absolute or relative pathname to a directory or file. The toolbox makes a
zip file of all the files and directories referenced in the property. (Note:
If the files or directories change while they are being zipped, or if any of
the directories are empty, a failure or error can result.)

The first time a worker evaluates a task for a particular job, the
scheduler passes to the worker the zip file of the files and directories
in the FileDependencies property. On the worker machine, the file
is unzipped, and a directory structure is created that is exactly the
same as that accessed on the client machine where the property was
set. Those entries listed in the property value are added to the top of
the path in the MATLAB worker session. (The subdirectories of the
entries are not added to the path, even though they are included in the
directory structure.) To find out where the unzipping occurs on the
worker machine, use the function getFileDependencyDir in code that
runs on the worker. See Example 2, below.

When the worker runs subsequent tasks for the same job, it uses the
directory structure already set up by the job’s FileDependencies
property for the first task it ran for that job.

When you specify FileDependencies at the time of creating a job,
the settings are combined with those specified in the applicable
configuration, if any. (Setting FileDependencies on a job object after
it is created does not combine the new setting with the configuration
settings, but overwrites existing settings for that job.)

The transfer and unzipping of FileDependencies occurs for each
worker running a task for that particular job on a machine, regardless
of how many workers run on that machine. Normally, the file
dependencies are deleted from the worker machine when the job is
completed, or when the next job begins.
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Characteristics Usage Job object

Read-only After job is submitted

Data type Cell array of strings

Values The value of FileDependencies is empty by default. If a pathname that
does not exist is specified for the property value, an error is generated.

Remarks There is a default limitation on the size of data transfers via the
FileDependencies property. For more information on this limit, see
“Object Data Size Limitations” on page 6-48. For alternative means of
making data available to workers, see “Share Code” on page 8-29.

Examples Example 1

Make available to a job’s workers the contents of the directories fd1
and fd2, and the file fdfile1.m.

set(job1,'FileDependencies',{'fd1' 'fd2' 'fdfile1.m'})
get(job1,'FileDependencies')
ans =

'fd1'
'fd2'
'fdfile1.m'

Example 2

Suppose in your client MATLAB session you have the following folders
on your MATLAB path:

dirA
dirA\subdir1
dirA\subdir2
dirB
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Transfer the content of these folders to the worker machines, and add
all these folders to the paths of the worker MATLAB sessions. On the
client, execute the following code:

j = createJob(FileDependencies, {'dirA', 'dirB'})
% This includes the subfolders of dirA.

In the task function that executes on the workers, include the following
code:

%First find where FileDependencies are unzipped:
DepDir = getFileDependencyDir

%The top folders are already on the path, so add subfolders:
addpath(fullfile(DepDir,'dirA','subdir1'),...

fullfile(DepDir,'dirA','subdir2'))

See Also Functions

getFileDependencyDir, jobStartup, taskFinish, taskStartup

Properties

PathDependencies
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FinishedFcn

Purpose Specify callback to execute after task or job runs

Description FinishedFcn specifies the function file to execute when a job or task
completes its execution.

The callback executes in the local MATLAB session, that is, the session
that sets the property, the MATLAB client.

Notes The FinishedFcn property is available only when using the
MathWorks job manager as your scheduler.

The FinishedFcn property applies only in the client MATLAB session
in which it is set. Later sessions that access the same job or task object
do not inherit the setting from previous sessions.

Characteristics Usage Task object or job object

Read-only Never

Data type Function handle

Values FinishedFcn can be set to any valid MATLAB callback value.

The callback follows the same model as callbacks for Handle Graphics®,
passing to the callback function the object (job or task) that makes the
call and an empty argument of event data.

Examples Create a job and set its FinishedFcn property using a function handle
to an anonymous function that sends information to the display.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm, 'Name', 'Job_52a');

set(j, 'FinishedFcn', ...
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@(job,eventdata) disp([job.Name ' ' job.State]));

Create a task whose FinishFcn is a function handle to a separate
function.

createTask(j, @rand, 1, {2,4}, ...
'FinishedFcn', @clientTaskCompleted);

Create the function clientTaskCompleted.m on the path of the
MATLAB client.

function clientTaskCompleted(task,eventdata)
disp(['Finished task: ' num2str(task.ID)])

Run the job and note the output messages from the job and task
FinishedFcn callbacks.

submit(j)
Finished task: 1
Job_52a finished

See Also Properties

QueuedFcn, RunningFcn
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FinishTime

Purpose When task or job finished

Description FinishTime holds a date number specifying the time when a task or job
finished executing, in the format 'day mon dd hh:mm:ss tz yyyy'.

If a task or job is stopped or is aborted due to an error condition,
FinishTime will hold the time when the task or job was stopped or
aborted.

Characteristics Usage Task object or job object

Read-only Always

Data type String

Values FinishTime is assigned the job manager’s system time when the task or
job has finished. If the job or task is in the failed state, its FinishTime
property value is empty.

Examples Create and submit a job, then get its StartTime and FinishTime.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm);
t1 = createTask(j, @rand, 1, {12,12});
t2 = createTask(j, @rand, 1, {12,12});
t3 = createTask(j, @rand, 1, {12,12});
t4 = createTask(j, @rand, 1, {12,12});
submit(j)
waitForState(j,'finished')
get(j,'StartTime')
ans =
Mon Jun 21 10:02:17 EDT 2004
get(j,'FinishTime')
ans =
Mon Jun 21 10:02:52 EDT 2004
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See Also Functions

cancel, submit

Properties

CreateTime, StartTime, SubmitTime
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Function

Purpose Function called when evaluating task

Description Function indicates the function performed in the evaluation of a task.
You set the function when you create the task using createTask.

Characteristics Usage Task object

Read-only While task is running or finished

Data type String or function handle

See Also Functions

createTask

Properties

InputArguments, NumberOfOutputArguments, OutputArguments
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GetJobStateFcn

Purpose Specify function to run when querying job state on generic scheduler

Description GetJobStateFcn specifies a function to run when you call get,
waitForState, or any other function that queries the state of a job
running on a generic scheduler. This function lets you communicate
with the scheduler, to provide any instructions beyond the normal
toolbox action of retrieving the job state from disk. To identify
the job for the scheduler, the function should include a call to
getJobSchedulerData.

The value returned from the function must be a valid State for a job,
and replaces the value ordinarily returned from the original call to
get, etc. This might be useful when the scheduler has more up-to-date
information about the state of a job than what is stored by the toolbox.
For example, the scheduler might be aware of a failure before the
toolbox is aware.

For more information and examples on using these functions and
properties, see “Manage Jobs with Generic Scheduler” on page 8-50.

Characteristics Usage Generic scheduler object

Read-only Never

Data type Function handle

Values You can set GetJobStateFcn to any valid function handle or a cell array
whose first element is a function handle.

See Also Functions

get, getJobSchedulerData, setJobSchedulerData

Properties

State, SubmitFcn
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HasSharedFilesystem

Purpose Specify whether nodes share data location

Description HasSharedFilesystem determines whether the job data stored in
the location identified by the DataLocation property can be accessed
from all nodes in the cluster. If HasSharedFilesystem is false (0),
the scheduler handles data transfers to and from the worker nodes.
If HasSharedFilesystem is true (1), the workers access the job data
directly.

Characteristics Usage Scheduler object

Read-only For Windows HPC Server scheduler object

Data type Logical

Values The value of HasSharedFilesystem can be set to true (or logical 1) or
false (or logical 0). When you perform get on the property, the value
returned is logical 1 or logical 0.

See Also Properties

DataLocation, FileDependencies, PathDependencies
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HostAddress

Purpose IP address of host running job manager or worker session

Description HostAddress indicates the numerical IP address of the computer
running the job manager or worker session to which the job manager
object or worker object refers. You can match the HostAddress property
to find a desired job manager or worker when creating an object with
findResource.

Characteristics Usage Job manager object or worker object

Read-only Always

Data type Cell array of strings

Examples Create a job manager object and examine its HostAddress property.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

get(jm, 'HostAddress')
ans =

123.123.123.123

See Also Functions

findResource

Properties

Computer, Hostname, WorkerMachineOsType
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Hostname

Purpose Name of host running job manager or worker session

Description You can match the Hostname property to find a desired job manager
or worker when creating the job manager or worker object with
findResource.

Characteristics Usage Job manager object or worker object

Read-only Always

Data type String

Examples Create a job manager object and examine its Hostname property.

jm = findResource('scheduler','type','jobmanager', ...
'Name', 'MyJobManager')

get(jm, 'Hostname')
ans =
JobMgrHost

See Also Functions

findResource

Properties

Computer, HostAddress, WorkerMachineOsType
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ID

Purpose Object identifier

Description Each object has a unique identifier within its parent object. The ID
value is assigned at the time of object creation. You can use the ID
property value to distinguish one object from another, such as different
tasks in the same job.

Characteristics Usage Job object or task object

Read-only Always

Data type Double

Values The first job created in a job manager has the ID value of 1, and jobs are
assigned ID values in numerical sequence as they are created after that.

The first task created in a job has the ID value of 1, and tasks are
assigned ID values in numerical sequence as they are created after that.

Examples Examine the ID property of different objects.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm)
createTask(j, @rand, 1, {2,4});
createTask(j, @rand, 1, {2,4});
tasks = get(j, 'Tasks');
get(tasks, 'ID')
ans =

[1]
[2]

The ID values are the only unique properties distinguishing these two
tasks.
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See Also Functions

createJob, createTask

Properties

Jobs, Tasks
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IdleWorkers

Purpose Idle workers available to run tasks

Description The IdleWorkers property value indicates which workers are currently
available to the job manager for the performance of job tasks.

Characteristics Usage Job manager object

Read-only Always

Data type Array of worker objects

Values As workers complete tasks and assume new ones, the lists of workers
in BusyWorkers and IdleWorkers can change rapidly. If you examine
these two properties at different times, you might see the same worker
on both lists if that worker has changed its status between those times.

If a worker stops unexpectedly, the job manager’s knowledge of that as
a busy or idle worker does not get updated until the job manager runs
the next job and tries to send a task to that worker.

Examples Examine which workers are available to a job manager for immediate
use to perform tasks.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

get(jm, 'NumberOfIdleWorkers')

See Also Properties

BusyWorkers, ClusterSize, MaximumNumberOfWorkers,
MinimumNumberOfWorkers, NumberOfBusyWorkers,
NumberOfIdleWorkers
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InputArguments

Purpose Input arguments to task object

Description InputArguments is a 1-by-N cell array in which each element is an
expected input argument to the task function. You specify the input
arguments when you create a task with the createTask function.

Characteristics Usage Task object

Read-only While task is running or finished

Data type Cell array

Values The forms and values of the input arguments are totally dependent
on the task function.

Examples Create a task requiring two input arguments, then examine the task’s
InputArguments property.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm);
t = createTask(j, @rand, 1, {2, 4});
get(t, 'InputArguments')
ans =

[2] [4]

See Also Functions

createTask

Properties

Function, OutputArguments
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IsUsingSecureCommunication

Purpose True if job manager and workers use secure communication

Description The IsUsingSecureCommunication property indicates whether secure
communication is being used between the job manager and the
workers. The mdce_def file sets the parameter that controls secure
communication when the mdce process starts on the cluster nodes.

Secure communication is required when running with SecurityLevel
set to 3. It is optional at other security levels.

Characteristics Usage Job manager object

Read-only Always

Data type Boolean

See Also Functions

changePassword, clearLocalPassword

Properties

PromptForPassword, SecurityLevel, UserName
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JobData

Purpose Data made available to all workers for job’s tasks

Description The JobData property holds data that eventually gets stored in the local
memory of the worker machines, so that it does not have to be passed
to the worker for each task in a job that the worker evaluates. Passing
the data only once per job to each worker is more efficient than passing
data with each task.

Note, that to access the data contained in a job’s JobData property,
the worker session evaluating the task needs to have access to the job,
which it gets from a call to the function getCurrentJob, as discussed in
the example below.

Characteristics Usage Job object

Read-only After job is submitted

Data type Any type

Values JobData is an empty vector by default.

Examples Create job1 and set its JobData property value to the contents of
array1.

job1 = createJob(jm)
set(job1, 'JobData', array1)
createTask(job1, @myfunction, 1, {task_data})

Now the contents of array1 are available to all the tasks in the job.
Because the job itself must be accessible to the tasks, myfunction must
include a call to the function getCurrentJob. That is, the task function
myfunction needs to call getCurrentJob to get the job object through
which it can get the JobData property. So myfunction should contain
lines like the following:

cj = getCurrentJob
array1 = get(cj, 'JobData')
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See Also Functions

createJob, createTask
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JobDescriptionFile

Purpose Name of XML job description file for Microsoft Windows HPC Server
scheduler

Description The XML file you specify by the JobDescriptionFile property defines
the base state from which the job is created. The file must exist on
the MATLAB path or the property must specify the full path name
to the file.

Any job properties that are specified as part of MATLAB job objects
(e.g., MinimumNumberOfWorkers, MaximumNumberOfWorkers, etc., for
parallel or MATLAB pool jobs) override the values specified in the job
description file. Scheduler properties (e.g., nonempty JobTemplate
property) also override the values specified in the job description file.

For SOA jobs the values in the job description file are ignored.

For version 2 of Windows HPC Server 2008, the values for HPC Server
job properties specified in the job description file must be compatible
with the values in the job template that is applied to the job (either the
default job template or the job template specified by the JobTemplate
property). Incompatibilities between property values specified by the
job description file and the job template might result in an error when
you submit a job. For example, if the job template imposes property
restrictions that you violate in your job description file, you get an error.

For information about job description files, consult Microsoft online
documentation at:

http://technet.microsoft.com/en-us/library/cc972801(WS.10).aspx

Characteristics Usage Windows HPC Server scheduler object

Read-only Never

Data type String

See Also Properties

ClusterVersion, JobTemplate, UseSOAJobSubmission
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JobManager

Purpose Job manager that this worker is registered with

Description JobManager indicates the job manager that the worker that the worker
is registered with.

Characteristics Usage Worker object

Read-only Always

Data type Job manager object

Values The value of JobManager is always a single job manager object.

See Also Properties

BusyWorkers, IdleWorkers
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Jobs

Purpose Jobs contained in job manager service or in scheduler’s data location

Description The Jobs property contains an array of all the job objects in a scheduler.
Job objects will be in the order indicated by their ID property, consistent
with the sequence in which they were created, regardless of their
State. (To see the jobs categorized by state or the scheduled execution
sequence for jobs in the queue, use the findJob function.)

Characteristics Usage Job manager or scheduler object

Read-only Always

Data type Array of job objects

Examples Examine the Jobs property for a job manager, and use the resulting
array of objects to set property values.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j1 = createJob(jm);
j2 = createJob(jm);
j3 = createJob(jm);
j4 = createJob(jm);
.
.
.
all_jobs = get(jm, 'Jobs')
set(all_jobs, 'MaximumNumberOfWorkers', 10);

The last line of code sets the MaximumNumberOfWorkers property value
to 10 for each of the job objects in the array all_jobs.
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See Also Functions

createJob, destroy, findJob, submit

Properties

Tasks
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JobTemplate

Purpose Name of job template for HPC Server 2008 scheduler

Description JobTemplate identifies the name of a job template to use with your HPC
Server scheduler. The property value is not case-sensitive.

With HPC Server 2008, if you do not specify a value for the JobTemplate
property, the scheduler uses the default job template to run the job. Ask
your system administrator which job template you should use.

For SOA jobs, the specified job template used for submitting SOA jobs
must not impose any restrictions on the name of the job, otherwise
these jobs fail.

Characteristics Usage Windows HPC Server scheduler object

Read-only Never

Data type String

Values JobTemplate is an empty string by default. Job templates apply only
for HPC Server 2008 clusters, and your scheduler ClusterVersion
property must be set to 'HPCServer2008'. If ClusterVersion is set to
any other value, and you attempt to set JobTemplate to a nonempty
string, an error is generated and the property value remains as a
nonempty string.

Remarks If you change the value of ClusterVersion or SchedulerHostname,
this resets the values of ClusterSize, JobTemplate, and
UseSOAJobSubmission.

See Also Properties

ClusterVersion, JobDescriptionFile, UseSOAJobSubmission
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LabGrid

Purpose Lab grid of codistributor2dbc object

Description lbgrd = dist.LabGrid returns the lab grid associated with a
codistributor2dbc object dist. The lab grid is the row vector of length
2, [nprow, npcol], used by the ScaLAPACK library to represent the
nprow-by-npcol layout of the labs for array distribution. nprow times
npcol must equal numlabs.

For more information on 2dbc distribution and lab grids of distributed
arrays, see “2-Dimensional Distribution” on page 5-17.

Characteristics Usage codistributor2dbc object

Read-only Always

Data type Array of doubles

See Also Functions

codistributor2dbc, numlabs

Properties

BlockSize, Orientation
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MasterName

Purpose Name of Platform LSF master node

Description MasterName indicates the name of the LSF cluster master node.

Characteristics Usage LSF scheduler object

Read-only Always

Data type String

Values MasterName is a string of the full name of the master node.

See Also Properties

ClusterName
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MatlabCommandToRun

Purpose MATLAB command that generic scheduler runs to start lab

Description MatlabCommandToRun indicates the command that the scheduler uses
to start a MATLAB worker on a cluster node for a task evaluation.
To ensure that the correct MATLAB runs, your scheduler script can
construct a path to the executable by concatenating the values of
ClusterMatlabRoot and MatlabCommandToRun into a single string.

Characteristics Usage Generic scheduler object

Read-only Always

Data type String

Values MatlabCommandToRun is set by the toolbox when the scheduler object
is created.

See Also Properties

ClusterMatlabRoot, SubmitFcn
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MaximumNumberOfRetries

Purpose Specify maximum number of times to rerun failed task

Description If a task cannot complete because of certain system failures, the job
manager can attempt to rerun the task. MaximumNumberOfRetries
specifies how many times to try to run the task after such failures. The
task reruns until it succeeds or until it reaches the specified maximum
number of attempts.

Note The MaximumNumberOfRetries property is available only when
using the MathWorks job manager as your scheduler.

Characteristics Usage Task object

Read-only Never

Data type Double

Values The default value for MaximumNumberOfRetries is 1.

See Also Properties

AttemptedNumberOfRetries, FailedAttemptInformation
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MaximumNumberOfWorkers

Purpose Specify maximum number of workers to perform job tasks

Description With MaximumNumberOfWorkers you specify the greatest number of
workers to be used to perform the evaluation of the job’s tasks at any one
time. Tasks may be distributed to different workers at different times
during execution of the job, so that more than MaximumNumberOfWorkers
might be used for the whole job, but this property limits the portion of
the cluster used for the job at any one time.

Characteristics Usage Job object

Read-only After job is submitted

Data type Double

Values You can set the value to anything equal to or greater than the value of
the MinimumNumberOfWorkers property.

Examples Set the maximum number of workers to perform a job.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm);
set(j, 'MaximumNumberOfWorkers', 12);

In this example, the job will use no more than 12 workers, regardless
of how many tasks are in the job and how many workers are available
on the cluster.

See Also Properties

BusyWorkers, ClusterSize, IdleWorkers, MinimumNumberOfWorkers,
NumberOfBusyWorkers, NumberOfIdleWorkers
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MinimumNumberOfWorkers

Purpose Specify minimum number of workers to perform job tasks

Description With MinimumNumberOfWorkers you specify the minimum number
of workers to perform the evaluation of the job’s tasks. When the
job is queued, it will not run until at least this many workers are
simultaneously available.

If MinimumNumberOfWorkers workers are available to the job manager,
but some of the task dispatches fail due to network or node failures,
such that the number of tasks actually dispatched is less than
MinimumNumberOfWorkers, the job will be canceled.

Characteristics Usage Job object

Read-only After job is submitted

Data type Double

Values The default value is 1. You can set the value anywhere from 1 up to or
equal to the value of the MaximumNumberOfWorkers property.

Examples Set the minimum number of workers to perform a job.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm);
set(j, 'MinimumNumberOfWorkers', 6);

In this example, when the job is queued, it will not begin running tasks
until at least six workers are available to perform task evaluations.

See Also Properties

BusyWorkers, ClusterSize, IdleWorkers, MaximumNumberOfWorkers,
NumberOfBusyWorkers, NumberOfIdleWorkers
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MpiexecFileName

Purpose Specify pathname of executable mpiexec command

Description MpiexecFileName specifies which mpiexec command is executed to
run your jobs.

Characteristics Usage mpiexec scheduler object

Read-only Never

Data type String

Remarks See your network administrator to find out which mpiexec you should
run. The default value of the property points the mpiexec included in
your MATLAB installation.

See Also Functions

mpiLibConf, mpiSettings

Properties

SubmitArguments
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Name

Purpose Name of job manager, job, or worker object

Description The descriptive name of a job manager or worker is set when its
service is started, as described in "Customizing Engine Services" in the
MATLAB Distributed Computing Server System Administrator’s Guide.
This is reflected in the Name property of the object that represents the
service. You can use the name of the job manager or worker service
to search for the particular service when creating an object with the
findResource function.

You can configure Name as a descriptive name for a job object at any
time before the job is submitted to the queue.

Characteristics Usage Job manager object, job object, or worker object

Read-only Always for a job manager or worker object; after
job object is submitted

Data type String

Values By default, a job object is constructed with a Name created by
concatenating the Name of the job manager with _job.

Examples Construct a job manager object by searching for the name of the service
you want to use.

jm = findResource('scheduler','type','jobmanager', ...
'Name','MyJobManager');

Construct a job and note its default Name.

j = createJob(jm);
get(j, 'Name')
ans =

MyJobManager_job
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Change the job’s Name property and verify the new setting.

set(j,'Name','MyJob')
get(j,'Name')
ans =

MyJob

See Also Functions

findResource, createJob
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NumberOfBusyWorkers

Purpose Number of workers currently running tasks

Description The NumberOfBusyWorkers property value indicates how many workers
are currently running tasks for the job manager.

Characteristics Usage Job manager object

Read-only Always

Data type Double

Values The value of NumberOfBusyWorkers can range from 0 up to the total
number of workers registered with the job manager.

Examples Examine the number of workers currently running tasks for a job
manager.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

get(jm, 'NumberOfBusyWorkers')

See Also Properties

BusyWorkers, ClusterSize, IdleWorkers, MaximumNumberOfWorkers,
MinimumNumberOfWorkers, NumberOfIdleWorkers
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NumberOfIdleWorkers

Purpose Number of idle workers available to run tasks

Description The NumberOfIdleWorkers property value indicates how many workers
are currently available to the job manager for the performance of job
tasks.

If the NumberOfIdleWorkers is equal to or greater than the
MinimumNumberOfWorkers of the job at the top of the queue, that job
can start running.

Characteristics Usage Job manager object

Read-only Always

Data type Double

Values The value of NumberOfIdleWorkers can range from 0 up to the total
number of workers registered with the job manager.

Examples Examine the number of workers available to a job manager.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

get(jm, 'NumberOfIdleWorkers')

See Also Properties

BusyWorkers, ClusterSize, IdleWorkers, MaximumNumberOfWorkers,
MinimumNumberOfWorkers, NumberOfBusyWorkers
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NumberOfOutputArguments

Purpose Number of arguments returned by task function

Description When you create a task with the createTask function, you define how
many output arguments are expected from the task function.

Characteristics Usage Task object

Read-only While task is running or finished

Data type Double

Values A matrix is considered one argument.

Examples Create a task and examine its NumberOfOutputArguments property.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm);
t = createTask(j, @rand, 1, {2, 4});
get(t,'NumberOfOutputArguments')
ans =

1

This example returns a 2-by-4 matrix, which is a single argument. The
NumberOfOutputArguments value is set by the createTask function, as
the argument immediately after the task function definition; in this
case, the 1 following the @rand argument.

See Also Functions

createTask

Properties

OutputArguments
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Orientation

Purpose Orientation of codistributor2dbc object

Description DIST.Orientation returns the orientation associated with the LabGrid
of the codistributor2dbc object DIST. This orientation refers to how
the labs are organized within the lab grid. Supported orientation
values are 'row' and 'col'. You can read this property only by using
dot-notation; not the get function.

For more information on 2dbc distribution of arrays, see “2-Dimensional
Distribution” on page 5-17.

Characteristics Usage codistributor2dbc object

Read-only Always

Data type String

See Also Functions

codistributor2dbc

Properties

BlockSize, LabGrid
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OutputArguments

Purpose Data returned from execution of task

Description OutputArguments is a 1-by-N cell array in which each element
corresponds to each output argument requested from task evaluation.
If the task’s NumberOfOutputArguments property value is 0, or if the
evaluation of the task produced an error, the cell array is empty.

Characteristics Usage Task object

Read-only Always

Data type Cell array

Values The forms and values of the output arguments are totally dependent
on the task function.

Examples Create a job with a task and examine its result after running the job.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm);
t = createTask(j, @rand, 1, {2, 4});
submit(j)

When the job is finished, retrieve the results as a cell array.

result = get(t, 'OutputArguments')

Retrieve the results from all the tasks of a job.

alltasks = get(j, 'Tasks')
allresults = get(alltasks, 'OutputArguments')

Because each task returns a cell array, allresults is a cell array of
cell arrays.
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See Also Functions

createTask, getAllOutputArguments

Properties

Function, InputArguments, NumberOfOutputArguments
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ParallelSubmissionWrapperScript

Purpose Script that scheduler runs to start labs

Description ParallelSubmissionWrapperScript identifies the script for the LSF,
PBS Pro, or TORQUE scheduler to run when starting labs for a parallel
job.

Characteristics Usage LSF, PBS Pro, or TORQUE scheduler object

Read-only Never

Data type String

Values ParallelSubmissionWrapperScript is a string specifying the full path
to the script. This property value is set when you execute the function
setupForParallelExecution, so you do not need to set the value
directly. The property value then points to the appropriate wrapper
script in matlabroot/toolbox/distcomp/bin/util.

See Also Functions

createParallelJob, setupForParallelExecution, submit

Properties

ClusterName, ClusterMatlabRoot, MasterName, SubmitArguments
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ParallelSubmitFcn

Purpose Specify function to run when parallel job submitted to generic scheduler

Description ParallelSubmitFcn identifies the function to run when you submit a
parallel job to the generic scheduler. The function runs in the MATLAB
client. This user-defined parallel submit function provides certain job
and task data for the MATLAB worker, and identifies a corresponding
decode function for the MATLAB worker to run.

For more information, see “MATLAB Client Submit Function” on page
8-35.

Characteristics Usage Generic scheduler object

Read-only Never

Data type Function handle

Values ParallelSubmitFcn can be set to any valid MATLAB callback value
that uses the user-defined parallel submit function.

For more information about parallel submit functions and where to
find example templates you can use, see “Use the Generic Scheduler
Interface” on page 9-8.

See Also Functions

createParallelJob, submit

Properties

MatlabCommandToRun, SubmitFcn
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Parent

Purpose Parent object of job or task

Description A job’s Parent property indicates the job manager or scheduler object
that contains the job. A task’s Parent property indicates the job object
that contains the task.

Characteristics Usage Job object or task object

Read-only Always

Data type Job manager, scheduler, or job object

See Also Properties

Jobs, Tasks
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Partition

Purpose Partition scheme of codistributor1d object

Description par = dist.Partition returns the partition scheme of the
codistributor1d object dist, describing how the object would distribute
an array among the labs. You can read this property only by using
dot-notation; not the get function.

Characteristics Usage codistributor1d object

Read-only Always

Data type Array of doubles

Examples dist = codistributor1d(2, [3 3 2 2])
dist.Partition

returns [3 3 2 2] .

See Also Functions

codistributor1d

Properties

Dimension
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PathDependencies

Purpose Specify directories to add to MATLAB worker path

Description PathDependencies identifies directories to be added to the top of the
path of MATLAB worker sessions for this job. If FileDependencies
are also used, FileDependencies are above PathDependencies on the
worker’s path.

When you specify PathDependencies at the time of creating a job,
the settings are combined with those specified in the applicable
configuration, if any. (Setting PathDependencies on a job object after
it is created does not combine the new setting with the configuration
settings, but overwrites existing settings for that job.)

Characteristics Usage Scheduler job object

Read-only Never

Data type Cell array of strings

Values PathDependencies is empty by default. For a mixed-platform
environment, the strings can specify both UNIX-based and Microsoft
Windows-based paths; those not appropriate or not found for a
particular node generate warnings and are ignored.

Remarks For alternative means of making data available to workers, see “Share
Code” on page 8-29.

Examples Set the MATLAB worker path in a mixed-platform environment to use
functions in both the central repository (/central/funcs) and the
department archive (/dept1/funcs).

sch = findResource('scheduler','name','LSF')
job1 = createJob(sch)
p = {'/central/funcs','/dept1/funcs', ...

'\\OurDomain\central\funcs','\\OurDomain\dept1\funcs'}
set(job1, 'PathDependencies', p)
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See Also Properties

ClusterMatlabRoot, FileDependencies
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PreviousJob

Purpose Job whose task this worker previously ran

Description PreviousJob indicates the job whose task the worker most recently
evaluated.

Characteristics Usage Worker object

Read-only Always

Data type Job object

Values PreviousJob is an empty vector until the worker finishes evaluating
its first task.

See Also Properties

CurrentJob, CurrentTask, PreviousTask, Worker
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PreviousTask

Purpose Task that this worker previously ran

Description PreviousTask indicates the task that the worker most recently
evaluated.

Characteristics Usage Worker object

Read-only Always

Data type Task object

Values PreviousTask is an empty vector until the worker finishes evaluating
its first task.

See Also Properties

CurrentJob, CurrentTask, PreviousJob, Worker
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PromptForPassword

Purpose Specify if system should prompt for password when authenticating user

Description The PromptForPassword property is true by default, so that when you
access a job manager object, if you do not already have a password
stored, the system prompts you to enter it.

Setting PromptForPassword to false causes the system to generate an
error when a password is required. This can be useful when you have a
noninteractive script or function that programmatically accesses the job
manager, and you might prefer an error rather than a password prompt.

Characteristics Usage Job manager object

Read-only Always

Data type Boolean

See Also Functions

changePassword, clearLocalPassword

Properties

IsUsingSecureCommunication, SecurityLevel, UserName
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QueuedFcn

Purpose Specify function file to execute when job is submitted to job manager
queue

Description QueuedFcn specifies the function file to execute when a job is submitted
to a job manager queue.

The callback executes in the local MATLAB session, that is, the session
that sets the property.

Notes The QueuedFcn property is available only when using the
MathWorks job manager as your scheduler.

The QueuedFcn property applies only in the client MATLAB session in
which it is set. Later sessions that access the same job object do not
inherit the setting from previous sessions.

Characteristics Usage Job object

Read-only Never

Data type Function handle

Values QueuedFcn can be set to any valid MATLAB callback value.

Examples Create a job and set its QueuedFcn property, using a function handle to
an anonymous function that sends information to the display.

jm = findResource('scheduler','type','jobmanager', ...

'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm, 'Name', 'Job_52a');

set(j, 'QueuedFcn', ...

@(job,eventdata) disp([job.Name ' now queued for execution.']))

.

.

.
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submit(j)

Job_52a now queued for execution.

See Also Functions

submit

Properties

FinishedFcn, RunningFcn
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RcpCommand

Purpose Command to copy files from client

Description When using a nonshared file system, the command specified by this
property’s value is used on the cluster to copy files from the client
machine. The syntax of the command must be compatible with standard
rcp. On MicrosoftWindows operating systems, the cluster machines
must have a suitable installation of rcp.

Characteristics Usage PBS Pro or TORQUE scheduler object

Read-only Never

Data type String
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ResourceTemplate

Purpose Resource definition for PBS Pro or TORQUE scheduler

Description The value of this property is used to build the resource selection portion
of the qsub command, generally identified by the -l flag. The toolbox
uses this to identify the number of tasks in a parallel job, and you might
want to fill out other selection subclauses (such as the OS type of the
workers). You should specify a value for this property that includes the
literal string ^N^ , which the toolbox will replace with the number of
workers in the parallel job prior to submission.

Characteristics Usage PBS Pro or TORQUE scheduler object

Read-only Never

Data type String

Values You might set the property value as follows, to accommodate your
cluster size and to set the “wall time” limit of the job (i.e., how long it is
allowed to run in real time) to one hour:

• '-l select=^N^,walltime=1:00:00' (for a PBS Pro scheduler)

• '-l nodes=^N^,walltime=1:00:00' (for a TORQUE scheduler)

16-87



RestartWorker

Purpose Specify whether to restart MATLAB workers before evaluating job tasks

Description In some cases, you might want to restart MATLAB on the workers
before they evaluate any tasks in a job. This action resets defaults,
clears the workspace, frees available memory, and so on.

Characteristics Usage Job object

Read-only After job is submitted

Data type Logical

Values Set RestartWorker to true (or logical 1) if you want the job to restart
the MATLAB session on any workers before they evaluate their first
task for that job. The workers are not reset between tasks of the same
job. Set RestartWorker to false (or logical 0) if you do not want
MATLAB restarted on any workers. When you perform get on the
property, the value returned is logical 1 or logical 0. The default value
is 0, which does not restart the workers.

Examples Create a job and set it so that MATLAB workers are restarted before
evaluating tasks in a job.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm);
set(j, 'RestartWorker', true)
.
.
.
submit(j)

See Also Functions

submit
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RshCommand

Purpose Remote execution command used on worker nodes during parallel job

Description Used on only UNIX operating systems, the value of this property is the
command used at the beginning of running parallel jobs, typically to
start MPI daemon processes on the nodes allocated to run MATLAB
workers. The remote execution must be able to proceed without user
interaction, for example, without prompting for user credentials.

Characteristics Usage PBS Pro or TORQUE scheduler object

Read-only Never

Data type String
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RunningFcn

Purpose Specify function file to execute when job or task starts running

Description RunningFcn specifies the function file to execute when a job or task
begins its execution.

The callback executes in the local MATLAB client session, that is, the
session that sets the property.

Notes The RunningFcn property is available only when using the
MathWorks job manager as your scheduler.

The RunningFcn property applies only in the client MATLAB session in
which it is set. Later sessions that access the same job or task object do
not inherit the setting from previous sessions.

Characteristics Usage Task object or job object

Read-only Never

Data type Function handle

Values RunningFcn can be set to any valid MATLAB callback value.

Examples Create a job and set its QueuedFcn property, using a function handle to
an anonymous function that sends information to the display.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm, 'Name', 'Job_52a');
set(j, 'RunningFcn', ...

@(job,eventdata) disp([job.Name ' now running.']))
.
.
.
submit(j)
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Job_52a now running.

See Also Functions

submit

Properties

FinishedFcn, QueuedFcn
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SchedulerHostname

Purpose Name of host running Microsoft Windows HPC Server scheduler

Description SchedulerHostname indicates the name of the node on which the
Windows HPC Server (or CCS) scheduler is running.

Characteristics Usage Windows HPC Server scheduler object

Read-only Never

Data type String

Values SchedulerHostname is a string of the full name of the scheduler node.

Remarks If you change the value of SchedulerHostname, this resets the values of
ClusterSize, JobTemplate, and UseSOAJobSubmission.

See Also Properties

ClusterOsType

16-92



SecurityLevel

Purpose Security level controlling access to job manager and its jobs

Description The SecurityLevel property indicates the degree of security applied
to the job manager and its jobs. The mdce_def file sets the parameter
that controls security level when the mdce process starts on the cluster
nodes.

Characteristics Usage Job manager object

Read-only Always

Data type Double

Values The property values indicating security level and their effects are shown
in the following table.

Security
Level

Effect

0 No security. All users can access all jobs; the
AuthorizedUsers property of the job is ignored.

1 You are warned when you try to access other users’ jobs
and tasks, but can still perform all actions. You can
suppress the warning by adding your user name to the
AuthorizedUsers property of the job.
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Security
Level

Effect

2 Authentication required. You must enter a password
to access any jobs and tasks. You cannot access other
users’ jobs unless your user name is included in the job’s
AuthorizedUsers property.

3 Same as level 2, but in addition, tasks run on the
workers as the user to whom the job belongs. The user
name and password for authentication in the client
session need to be the same as the system password
used to log on to a worker machine. NOTE: This level
requires secure communication between job manager
and workers. Secure communication is also set in
the mdce_def file, and is indicated by a job manager’s
IsUsingSecureCommunication property.

The job manager and the workers should run at the same security level.
A worker running at too low a security level will fail to register with the
job manager, because the job manager does not trust it.

See Also Functions

changePassword, clearLocalPassword

Properties

AuthorizedUsers, IsUsingSecureCommunication,
PromptForPassword, UserName
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ServerName

Purpose Name of current PBS Pro or TORQUE server machine

Description ServerName indicates the name of the node on which the PBS Pro or
TORQUE scheduler is running.

Characteristics Usage PBS Pro or TORQUE scheduler object

Read-only Always

Data type String

See Also Properties

ClusterOsType
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StartTime

Purpose When job or task started

Description StartTime holds a date number specifying the time when a job or task
starts running, in the format 'day mon dd hh:mm:ss tz yyyy'.

Characteristics Usage Job object or task object

Read-only Always

Data type String

Values StartTime is assigned the job manager’s system time when the task
or job has started running.

Examples Create and submit a job, then get its StartTime and FinishTime.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm);
t1 = createTask(j, @rand, 1, {12,12});
t2 = createTask(j, @rand, 1, {12,12});
t3 = createTask(j, @rand, 1, {12,12});
t4 = createTask(j, @rand, 1, {12,12});
submit(j)
waitForState(j, 'finished')
get(j, 'StartTime')
ans =
Mon Jun 21 10:02:17 EDT 2004
get(j, 'FinishTime')
ans =
Mon Jun 21 10:02:52 EDT 2004
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See Also Functions

submit

Properties

CreateTime, FinishTime, SubmitTime
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State

Purpose Current state of task, job, job manager, or worker

Description The State property reflects the stage of an object in its life cycle,
indicating primarily whether or not it has yet been executed. The
possible State values for all Parallel Computing Toolbox objects are
discussed below in the “Values” section.

Note The State property of the task object is different than the State
property of the job object. For example, a task that is finished may be
part of a job that is running if other tasks in the job have not finished.

Characteristics Usage Task, job, job manager, or worker object

Read-only Always

Data type String

Values Task Object

For a task object, possible values for State are

• pending — Tasks that have not yet started to evaluate the task
object’s Function property are in the pending state.

• running — Task objects that are currently in the process of
evaluating the Function property are in the running state.

• finished — Task objects that have finished evaluating the task
object’s Function property are in the finished state.

• unavailable— Communication cannot be established with the job
manager.
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Job Object

For a job object, possible values for State are

• pending — Job objects that have not yet been submitted to a job
queue are in the pending state.

• queued — Job objects that have been submitted to a job queue but
have not yet started to run are in the queued state.

• running — Job objects that are currently in the process of running
are in the running state.

• finished— Job objects that have completed running all their tasks
are in the finished state.

• failed— Job objects when using a third-party scheduler and the job
could not run because of unexpected or missing information.

• destroyed— Job objects whose data has been permanently removed
from the data location or job manager.

• unavailable— Communication cannot be established with the job
manager.

Job Manager

For a job manager, possible values for State are

• running— A started job queue will execute jobs normally.

• paused — The job queue is paused.

• unavailable— Communication cannot be established with the job
manager.

When a job manager first starts up, the default value for State is
running.
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Worker

For a worker, possible values for State are

• running— A started job queue will execute jobs normally.

• unavailable — Communication cannot be established with the
worker.

Examples Create a job manager object representing a job manager service, and
create a job object; then examine each object’s State property.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

get(jm, 'State')
ans =

running
j = createJob(jm);
get(j, 'State')
ans =

pending

See Also Functions

createJob, createTask, findResource, pause, resume, submit
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SubmitArguments

Purpose Specify additional arguments to use when submitting job to Platform
LSF, PBS Pro, TORQUE, or mpiexec scheduler

Description SubmitArguments is simply a string that is passed via the bsub or qsub
command to the LSF, PBS Pro, or TORQUE scheduler at submit time,
or passed to the mpiexec command if using an mpiexec scheduler.

Characteristics Usage LSF, PBS Pro, TORQUE, or mpiexec scheduler
object

Read-only Never

Data type String

Values LSF Scheduler

Useful SubmitArguments values might be '-m "machine1 machine2"'
to indicate that your scheduler should use only the named machines to
run the job, or '-R "type==LINUX64"' to use only workers running
on 64-bit machines with a Linux operating system. Note that by
default the scheduler will attempt to run your job on only nodes with
an architecture similar to the local machine’s unless you specify '-R
"type==any"'.

PBS Pro or TORQUE Scheduler

A value of '-q queuename' submits the job to the queue specified by
queuename. A value of '-p 10' runs the job at priority level 10.

mpiexec Scheduler

The following SubmitArguments values might be useful when using an
mpiexec scheduler. They can be combined to form a single string when
separated by spaces.
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Value Description

-phrase MATLAB Use MATLAB as passphrase to connect with
smpd.

-noprompt Suppress prompting for any user
information.

-localonly Run only on the local computer.

-host <hostname> Run only on the identified host.

-machinefile
<filename>

Run only on the nodes listed in the specified
file (one hostname per line).

For a complete list, see the command-line help for the mpiexec
command:

mpiexec -help
mpiexec -help2

See Also Functions

submit

Properties

MatlabCommandToRun, MpiexecFileName
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SubmitFcn

Purpose Specify function to run when job submitted to generic scheduler

Description SubmitFcn identifies the function to run when you submit a job to the
generic scheduler. The function runs in the MATLAB client. This
user-defined submit function provides certain job and task data for
the MATLAB worker, and identifies a corresponding decode function
for the MATLAB worker to run.

For further information, see “MATLAB Client Submit Function” on
page 8-35.

Characteristics Usage Generic scheduler object

Read-only Never

Data type Function handle

Values SubmitFcn can be set to any valid MATLAB callback value that uses
the user-defined submit function.

For a description of the user-defined submit function, how it is used,
and its relationship to the worker decode function, see “Use the Generic
Scheduler Interface” on page 8-34.

See Also Functions

submit

Properties

MatlabCommandToRun
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SubmitTime

Purpose When job was submitted to queue

Description SubmitTime holds a date number specifying the time when a job was
submitted to the job queue, in the format
'day mon dd hh:mm:ss tz yyyy'.

Characteristics Usage Job object

Read-only Always

Data type String

Values SubmitTime is assigned the job manager’s system time when the job is
submitted.

Examples Create and submit a job, then get its SubmitTime.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm);
createTask(j, @rand, 1, {12,12});
submit(j)
get(j, 'SubmitTime')
ans =
Wed Jun 30 11:33:21 EDT 2004

See Also Functions

submit

Properties

CreateTime, FinishTime, StartTime
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Tag

Purpose Specify label to associate with job object

Description You configure Tag to be a string value that uniquely identifies a job
object.

Tag is particularly useful in programs that would otherwise need to
define the job object as a global variable, or pass the object as an
argument between callback routines.

You can return the job object with the findJob function by specifying
the Tag property value.

Characteristics Usage Job object

Read-only Never

Data type String

Values The default value is an empty string.

Examples Suppose you create a job object in the job manager jm.

job1 = createJob(jm);

You can assign job1 a unique label using Tag.

set(job1,'Tag','MyFirstJob')

You can identify and access job1 using the findJob function and the
Tag property value.

job_one = findJob(jm,'Tag','MyFirstJob');

See Also Functions

findJob
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Task

Purpose First task contained in MATLAB pool job object

Description The Task property contains the task object for the MATLAB pool
job, which has only this one task. This is the same as the first task
contained in the Tasks property.

Characteristics Usage MATLAB pool job object

Read-only Always

Data type Task object

See Also Functions

createMatlabPoolJob, createTask

Properties

Tasks
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Purpose Tasks contained in job object

Description The Tasks property contains an array of all the task objects in a job,
whether the tasks are pending, running, or finished. Tasks are always
returned in the order in which they were created.

Characteristics Usage Job object

Read-only Always

Data type Array of task objects

Examples Examine the Tasks property for a job object, and use the resulting array
of objects to set property values.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm);
createTask(j, ...)
.
.
.
createTask(j, ...)
alltasks = get(j, 'Tasks')
alltasks =

distcomp.task: 10-by-1
set(alltasks, 'Timeout', 20);

The last line of code sets the Timeout property value to 20 seconds for
each task in the job.
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See Also Functions

createTask, destroy, findTask

Properties

Jobs
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Timeout

Purpose Specify time limit to complete task or job

Description Timeout holds a double value specifying the number of seconds to wait
before giving up on a task or job.

The time for timeout begins counting when the task State property
value changes from the Pending to Running, or when the job object
State property value changes from Queued to Running.

When a task times out, the behavior of the task is the same as if the
task were stopped with the cancel function, except a different message
is placed in the task object’s ErrorMessage property.

When a job times out, the behavior of the job is the same as if the job
were stopped using the cancel function, except all pending and running
tasks are treated as having timed out.

Characteristics Usage Task object or job object

Read-only While running

Data type Double

Values The default value for Timeout is large enough so that in practice, tasks
and jobs will never time out. You should set the value of Timeout to the
number of seconds you want to allow for completion of tasks and jobs.

Examples Set a job’s Timeout value to 1 minute.

jm = findResource('scheduler','type','jobmanager', ...
'name','MyJobManager','LookupURL','JobMgrHost');

j = createJob(jm);
set(j, 'Timeout', 60)
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See Also Functions

submit

Properties

ErrorMessage, State
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Type

Purpose Type of scheduler object

Description Type indicates the type of scheduler object.

Characteristics Usage Scheduler object

Read-only Always

Data type String

Values Type is a string indicating the type of scheduler represented by this
object.

16-111



UserData

Purpose Specify data to associate with object

Description You configure UserData to store data that you want to associate with
an object. The object does not use this data directly, but you can access
it using the get function or dot notation.

UserData is stored in the local MATLAB client session, not in the job
manager, job data location, or worker. So, one MATLAB client session
cannot access the data stored in this property by another MATLAB
client session. Even on the same machine, if you close the client session
where UserData is set for an object, and then access the same object
from a later client session via the job manager or job data location, the
original UserData is not recovered. Likewise, commands such as

clear all
clear functions

will clear an object in the local session, permanently removing the data
in the UserData property.

Characteristics Usage Scheduler object, job object, or task object

Read-only Never

Data type Any type

Values The default value is an empty vector.

Examples Suppose you create the job object job1.

job1 = createJob(jm);

You can associate data with job1 by storing it in UserData.

coeff.a = 1.0;
coeff.b = -1.25;
job1.UserData = coeff
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get(job1,'UserData')
ans =

a: 1
b: -1.2500

16-113



UserName

Purpose User who created job or job manager object

Description On a job, the UserName property value is a string indicating the login
name of the user who created the job.

On a job manager object, the UserName property value indicates the
user who created the object or who is using the job manager object to
access jobs in its queue.

Characteristics Usage Job object or job manager object

Read-only Always for job object

Never for job manager object, but can be
password protected

Data type String

Examples Examine a job to see who created it.

get(job1, 'UserName')
ans =
jsmith

Change the user for a job manager object in your current MATLAB
session. Certain security levels display a password prompt.

jm = findResource('scheduler','type','jobmanager','name','central-jm');

set(jm, 'UserName', 'MyNewName')

See Also These references apply to using the UserName property for job manager
objects.

Functions

changePassword, clearLocalPassword

Properties

IsUsingSecureCommunication, PromptForPassword, SecurityLevel
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UseSOAJobSubmission

Purpose Allow service-oriented architecture (SOA) submission on HPC Server
2008 cluster

Description The value you assign to the UseSOAJobSubmission property specifies
whether to allow SOA job submissions for the scheduler object
representing a Microsoft Windows HPC Server 2008 cluster. If you
enable SOA submission, MATLAB worker sessions can each evaluate
multiple tasks in succession. If you disable SOA submission, a separate
MATLAB worker starts for each task.

Ensure that HPC Server 2008 is correctly configured to
run SOA jobs on MATLAB Distributed Computing Server.
For more details, see the online installation instructions at
http://www.mathworks.com/distconfig.

Note The MATLAB client from which you submit SOA jobs to the HPC
Server 2008 scheduler must remain open for the duration of these jobs.
Closing the MATLAB client session while SOA jobs are in the pending,
queued, or running state causes the scheduler to cancel these jobs.

Characteristics Usage Windows HPC Server scheduler object

Read-only Never

Data type Logical

Values UseSOAJobSubmission is false by default. SOA job submission works
only for HPC Server 2008 clusters, and your scheduler ClusterVersion
property must be set to 'HPCServer2008'. If ClusterVersion is set to
any other value, and you attempt to set UseSOAJobSubmission to true,
an error is generated and the property value remains false.
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Remarks If you change the value of ClusterVersion or SchedulerHostname,
this resets the values of ClusterSize, JobTemplate, and
UseSOAJobSubmission.

Examples Set the scheduler to allow SOA job submissions.

s = findResource('scheduler', 'type', 'hpcserver');
s.UseSOAJobSubmission = true;

See Also Properties

ClusterVersion, JobDescriptionFile, JobTemplate,
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Worker

Purpose Worker session that performed task

Description The Worker property value is an object representing the worker session
that evaluated the task.

Characteristics Usage Task object

Read-only Always

Data type Worker object

Values Before a task is evaluated, its Worker property value is an empty vector.

Examples Find out which worker evaluated a particular task.

submit(job1)
waitForState(job1,'finished')
t1 = findTask(job1,'ID',1)
t1.Worker.Name
ans =
node55_worker1

See Also Properties

Tasks
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WorkerMachineOsType

Purpose Specify operating system of nodes on which mpiexec scheduler will start
labs

Description WorkerMachineOsType specifies the operating system of the nodes that
an mpiexec scheduler will start labs on for the running of a parallel job.

Characteristics Usage mpiexec scheduler object

Read-only Never

Data type String

Values The only value the property can have is 'pc' or 'unix'. The nodes of
the labs running an mpiexec job must all be the same platform. The
only heterogeneous mixing allowed in the cluster for the same mpiexec
job is Intel® Macintosh-based systems with 32-bit Linux-based systems.

See Also Properties

Computer, HostAddress, Hostname
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Glossary

CHECKPOINTBASE
The name of the parameter in the mdce_def file that defines the location
of the job manager and worker checkpoint directories.

checkpoint directory
Location where job manager checkpoint information and worker
checkpoint information is stored.

client
The MATLAB session that defines and submits the job. This is the
MATLAB session in which the programmer usually develops and
prototypes applications. Also known as the MATLAB client.

client computer
The computer running the MATLAB client.

cluster
A collection of computers that are connected via a network and intended
for a common purpose.

coarse-grained application
An application for which run time is significantly greater than
the communication time needed to start and stop the program.
Coarse-grained distributed applications are also called embarrassingly
parallel applications.

codistributed array
An array partitioned into segments, with each segment residing in the
workspace of a different lab.

Composite
An object in a MATLAB client session that provides access to data
values stored on the labs in a MATLAB pool, such as the values of
variables that are assigned inside an spmd statement.

computer
A system with one or more processors.
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distributed application
The same application that runs independently on several nodes,
possibly with different input parameters. There is no communication,
shared data, or synchronization points between the nodes. Distributed
applications can be either coarse-grained or fine-grained.

distributed computing
Computing with distributed applications, running the application on
several nodes simultaneously.

distributed computing demos
Demonstration programs that use Parallel Computing Toolbox software,
as opposed to sequential demos.

DNS
Domain Name System. A system that translates Internet domain
names into IP addresses.

dynamic licensing
The ability of a MATLAB worker or lab to employ all the functionality
you are licensed for in the MATLAB client, while checking out only
an engine license. When a job is created in the MATLAB client
with Parallel Computing Toolbox software, the products for which
the client is licensed will be available for all workers or labs that
evaluate tasks for that job. This allows you to run any code on the
cluster that you are licensed for on your MATLAB client, without
requiring extra licenses for the worker beyond MATLAB Distributed
Computing Server software. For a list of products that are not
eligible for use with Parallel Computing Toolbox software, see
http://www.mathworks.com/products/ineligible_programs/.

fine-grained application
An application for which run time is significantly less than the
communication time needed to start and stop the program. Compare to
coarse-grained applications.

head node
Usually, the node of the cluster designated for running the job manager
and license manager. It is often useful to run all the nonworker related
processes on a single machine.
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heterogeneous cluster
A cluster that is not homogeneous.

homogeneous cluster
A cluster of identical machines, in terms of both hardware and software.

job
The complete large-scale operation to perform in MATLAB, composed
of a set of tasks.

job manager
The MathWorks process that queues jobs and assigns tasks to workers.
A third-party process that performs this function is called a scheduler.
The general term "scheduler" can also refer to a job manager.

job manager checkpoint information
Snapshot of information necessary for the job manager to recover from
a system crash or reboot.

job manager database
The database that the job manager uses to store the information about
its jobs and tasks.

job manager lookup process
The process that allows clients, workers, and job managers to find each
other. It starts automatically when the job manager starts.

lab
When workers start, they work independently by default. They can
then connect to each other and work together as peers, and are then
referred to as labs.

LOGDIR
The name of the parameter in the mdce_def file that defines the
directory where logs are stored.

MathWorks job manager
See job manager.
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MATLAB client
See client.

MATLAB pool
A collection of labs that are reserved by the client for execution of
parfor-loops or spmd statements. See also lab.

MATLAB worker
See worker.

mdce
The service that has to run on all machines before they can run a job
manager or worker. This is the engine foundation process, making sure
that the job manager and worker processes that it controls are always
running.

Note that the program and service name is all lowercase letters.

mdce_def file
The file that defines all the defaults for the mdce processes by allowing
you to set preferences or definitions in the form of parameter values.

MPI
Message Passing Interface, the means by which labs communicate with
each other while running tasks in the same job.

node
A computer that is part of a cluster.

parallel application
The same application that runs on several labs simultaneously, with
communication, shared data, or synchronization points between the
labs.

private array
An array which resides in the workspaces of one or more, but perhaps
not all labs. There might or might not be a relationship between the
values of these arrays among the labs.
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random port
A random unprivileged TCP port, i.e., a random TCP port above 1024.

register a worker
The action that happens when both worker and job manager are started
and the worker contacts job manager.

replicated array
An array which resides in the workspaces of all labs, and whose size and
content are identical on all labs.

scheduler
The process, either third-party or the MathWorks job manager, that
queues jobs and assigns tasks to workers.

spmd (single program multiple data)
A block of code that executes simultaneously on multiple labs in
a MATLAB pool. Each lab can operate on a different data set or
different portion of distributed data, and can communicate with other
participating labs while performing the parallel computations.

task
One segment of a job to be evaluated by a worker.

variant array
An array which resides in the workspaces of all labs, but whose content
differs on these labs.

worker
The MATLAB session that performs the task computations. Also known
as the MATLAB worker or worker process.

worker checkpoint information
Files required by the worker during the execution of tasks.
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