
Scientific Computing
V. School of Mathematics and Science

Introduction to

High-Performance Computing

Session 03

Basic Cluster Usage II:

Environment: File Systems, Modules,

Compiler and Toolchains

Scientific Computing
V. School of Mathematics and Science

HPC User Environment

230.03.2020 Introduction HPC - Session 03

the user environment on a HPC cluster consists of:

• the operating system (OS)
– e.g. RHEL Linux (all HPC systems in top500 have Linux-like OS)

– basic functionality (login, create and edit files, …)

• data storage
– one or more file systems

– temporary, short and long term storage

• software
– scientific applications

– libraries

– compiler

• job scheduler

Scientific Computing
V. School of Mathematics and Science

File Systems

330.03.2020 Introduction HPC - Session 03

Scientific Computing
V. School of Mathematics and Science

HPC File Systems

430.03.2020 Introduction HPC - Session 03

• typically on a HPC system different file systems are available

Name Description Features

$TMPDIR or

/scratch

temporary storage provided on a per

job basis, deleted after job

often local disk or similar

very fast I/O, up to a few

TB, no backup

$WORK temporary storage for job data, maybe

kept after job, typically parallel file

system attached to interconnect

fast, parallel I/O, up to PB,

no backup

$DATA mid-term storage for job output,

parallel filesystem or NFS

up to PB, maybe with

backup

$HOME NFS storage, long term and secure,

for program codes, initial conditions

few 100GB, full backup,

snapshots

$ARCH permanent archive, storage for

finished projects, tape library

few PB, possible slow

read

http://www.fz-juelich.de/ias/jsc/EN/Expertise/Datamanagement/JUDAC/Filesystems/filesystems_node.html

http://www.fz-juelich.de/ias/jsc/EN/Expertise/Datamanagement/JUDAC/Filesystems/filesystems_node.html

Scientific Computing
V. School of Mathematics and Science

File Systems

530.03.2020 Introduction HPC - Session 03

http://wiki.hpcuser.uni-oldenburg.de/index.php?title=File_system_and_Data_Management

• central Enterprise Spectrum Scale storage (ESS)
– used for HOME, DATA, GROUP and OFFSITE directories

– NFS mounted over 2x 10Gb Ethernet

– full backup and snapshot functionality

– can be mounted on local workstation using SMB

• shared parallel storage (GPFS)
– used for WORK directory only

– data transfer over FDR Infiniband

– no backup

– can also be mounted on local workstation using SMB

• local disks or SSDs for scratch
– CARL compute nodes have local storage (1-2TB per node)

– EDDY compute nodes have 1GB RAM disk (for compatibility)

– usable during job run time

https://wiki.hpcuser.uni-oldenburg.de/index.php?title=File_system_and_Data_Management

Scientific Computing
V. School of Mathematics and Science

Directory Structure

630.03.2020 Introduction HPC - Session 03

• on every filesystem ($HOME, $DATA, $WORK) users will
have their own subdirectory
– e.g. for $HOME

– default permissions prevent other users from seeing the contents
of their directory

– user can give permissions to others to access files or
subdirectory as needed (user‘s responsibility)

– file and directory access can be based on primary (the working
group) and secondary (e.g. the institute) Unix groups

– recommendation: keep access restricted on $HOME and if
needed share files/dirs. on $DATA or $WORK

drwx------ abcd1234 agsomegroup /user/abcd1234

https://wiki.hpcuser.uni-oldenburg.de/index.php?title=File_system_and_Data_Management#Managing_access_rights_of_your_folders

https://wiki.hpcuser.uni-oldenburg.de/index.php?title=File_system_and_Data_Management#Managing_access_rights_of_your_folders

Scientific Computing
V. School of Mathematics and Science

File Systems

File

System

Env.

Variable
Path Used for

Home $HOME /user/abcd1234 critical data that cannot easily be

reproduced (program codes, initial

conditions, results from data analysis)

Data $DATA /nfs/data/abcd1234 important data from simulations for

on-going analysis and mid term

(project duration) storage

Work $WORK /gss/work/abcd1234 data storage for simulation runtime,

pre- and post-processing, short term

(weeks) storage

Scratch $TMPDIR /scratch/<job-dir> temporary data storage during job

runtime

Offsite $OFFSITE /nfs/offsite/user/

abcd1234

long term storage for inactive data,

only available on login nodes

730.03.2020 Introduction HPC - Session 03

• HOME, DATA and OFFSITE have backup for disaster recovery and daily snapshots for file recovery

• special quota rule for WORK

Scientific Computing
V. School of Mathematics and Science

Quotas

• on every file system default quotas are in place

– HOME, DATA and OFFSITE have 1TB, 20TB and 25TB,

respectively

– WORK has 50TB

– maybe increased upon request (if resources are available)

• special quota on WORK

– in addition to hard limit above, WORK also has soft quota of 25TB

– if usage is over soft quota a grace period of 30 days is triggered

– after grace period no data can be written to WORK by user

➔ clean up your data on work regularly

830.03.2020 Introduction HPC - Session 03

https://wiki.hpcuser.uni-oldenburg.de/index.php?title=File_system_and_Data_Management#Quotas

https://wiki.hpcuser.uni-oldenburg.de/index.php?title=File_system_and_Data_Management#Quotas

Scientific Computing
V. School of Mathematics and Science

Group Directories

• group directories are available upon request

– storage on the ESS

– can be mounted via SMB (only version 2 or better)

– path: $GROUP or /nfs/group/agyourgroup

– should be used for data shared among members of the same

group, in particular to avoid multiple copies of the same file

– group leader is owner of directory

– default rights are set so that anyone in group can read and write

to group directory

930.03.2020 Introduction HPC - Session 03

Scientific Computing
V. School of Mathematics and Science

File System Shares

• you can mount your $HOME, $DATA and $WORK as well

as $OFFSITE and $GROUP directories on your local

workstation

• server address for mounting are

$HOME //smb.uni-oldenburg.de/hpc_home

$DATA //smb.uni-oldenburg.de/hpc_data

$WORK //smb.hpc.uni-oldenburg.de/hpc_work

$OFFSITE //smb.uni-oldenburg.de/hpc_offsite

$GROUP //smb.uni-oldenburg.de/<groupname>

– for Windows connect a network drive (and replace “/” with “\”)

– for Linux add information in /etc/fstab

1030.03.2020 Introduction HPC - Session 03

https://wiki.hpcuser.uni-oldenburg.de/index.php?title=Local_Mounting_of_File_Systems

https://wiki.hpcuser.uni-oldenburg.de/index.php?title=Local_Mounting_of_File_Systems

Scientific Computing
V. School of Mathematics and Science

File System Use

• applications with high I/O demands can put a lot of stress

on the used file system

• I/O-performance depends on the I/O profile

– I/O with few but large files is better than many small files

– sequential I/O is better than random access

• pick the right file system for your I/O profile

– local disks or SSDs are best for I/O with small block sizes

– parallel files system (WORK) is best for large files and parallel I/O

– HOME and DATA (and all NFS mounted directories) should be

avoided for I/O at runtime

simple I/O performance tests can be done with dd

1130.03.2020 Introduction HPC - Session 03

https://www.thomas-krenn.com/de/wiki/Linux_I/O_Performance_Tests_mit_dd

https://www.thomas-krenn.com/de/wiki/Linux_I/O_Performance_Tests_mit_dd

Scientific Computing
V. School of Mathematics and Science

Best Practices for File System Use

• if your job is doing heavy I/O use $WORK or $TMPDIR
– I/O bandwidth to $WORK is >10GB/s (shared for the whole cluster),

compared to 100MB/s at most to $HOME and $DATA

– try to use parallel I/O and avoid using many small files

– $TMPDIR is best for small files and random access (in particular on
the bignodes)

• keep your data on $WORK while it is being processed
– data that is currently not needed can be moved to $DATA

– consider creating compressed archives and organise your data

– only keep important data and delete as much as possible when a
project is finished

– use $GROUP if you frequently need to share data within your group
to avoid unneccessary copies of data

1230.03.2020 Introduction HPC - Session 03

Scientific Computing
V. School of Mathematics and Science

Final Remarks File Systems

• setting file permissions

– add execute (x) permission to directories to allow cd

– add read (r) permission to directories to all ls

– avoid adding write (w) permission for group or others on

directories (you cannot change ownership of files)

• checking quotas

– use the lastquota command to find out how much diskspace

your are using

– also weekly e-mails to all users

1330.03.2020 Introduction HPC - Session 03

Scientific Computing
V. School of Mathematics and Science

Software and Modules

1430.03.2020 Introduction HPC - Session 03

Scientific Computing
V. School of Mathematics and Science

Software

1530.03.2020 Introduction HPC - Session 03

• software is installed centrally on the cluster

– /cm/shared/uniol/software

– user can use preinstalled software

– software can be optimized for system

– own software can be installed too

• installed software includes

– compilers

– libraries (MPI, numerical libraries,…)

– scientific application

– overview and help in the HPC wiki

Scientific Computing
V. School of Mathematics and Science

Modules

1630.03.2020 Introduction HPC - Session 03

• Linux settings are defined by environment variables

– applications require correct settings of environment variables

$ echo $HOME # home directory

/user/lees4820

$ echo $PATH # where to look for applications

/cm/shared/apps/slurm/current/sbin:/cm/shared/apps/slurm/

current/bin:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/

sbin:/opt/ibutils/bin:/user/lees4820/.local/bin:/user/lee

s4820/bin

$ env # full list

HOSTNAME=hpcl002

TERM=xterm

. . .

Scientific Computing
V. School of Mathematics and Science

Modules

1730.03.2020 Introduction HPC - Session 03

• the environment settings for installed applications are

managed using modules

$ module list # show loaded modules

Currently Loaded Modules:

1) slurm/current 2) hpc-uniol-env

$ module av # show available modules

------------- /cm/shared/uniol/modules/core -------------------

hpc-uniol-env (L) slurm/current (L)

------------- /cm/shared/uniol/modules/bio --------------------

BCFtools/1.3.1 CD-HIT/4.6.4 SOAPdenovo2/r240

BEDTools/2.26.0 FASTX-Toolkit/0.0.14 Stacks/1.42

. . .

Scientific Computing
V. School of Mathematics and Science

Module Commands

• find modules
module available [module-name]

module spider [module-name]

– list all modules [with given module name]

– spider is case-insensitive and understands reg-exp

• load/unload
module load <module-name>

module remove <module-name>

– to return to a default state

module restore

• information about modules
module list

module help <module-name>

module spider <module-name>

1830.03.2020 Introduction HPC - Session 03

https://wiki.hpcuser.uni-oldenburg.de/index.php?title=User_environment_-_The_usage_of_module_2016

https://wiki.hpcuser.uni-oldenburg.de/index.php?title=User_environment_-_The_usage_of_module_2016

Scientific Computing
V. School of Mathematics and Science

Examples: Module Commands

$ module list

1) hpc-uniol-env 2) slurm/current

$ module load GCC/4.9.4

$ module list

1) hpc-uniol-env 2) slurm/current 3) GCC/4.9.4

4) …

$ module swap GCC/4.9.4 GCC/5.4.0

$ module restore

$ module purge

$ module load hpc-uniol-env

1930.03.2020 Introduction HPC - Session 03

Scientific Computing
V. School of Mathematics and Science

hpc-env Modules

• in the module core-section you can find a number of hpc-env
modules

– these modules provide some basic settings (e.g. $DATA, loading the Slurm
module) and make a specific module stack available

– the version corresponds to a specific GCC version and all modules in the
stack are based on this GCC version

– the non-version modules are older and not based on a specific GCC

– most software is installed in hpc-uniol-env and hpc-env/6.4

– if you login you will find hpc-uniol-env loaded, this can be changed (e.g.
with module save)

– only one hpc-env module can be loaded at any time

2030.03.2020 Introduction HPC - Session 03

$ ml av

------------ /cm/shared/uniol/modules/core ---------------

hpc-env/6.4 (D) hpc-uniol-env

hpc-env/8.1 hpc-uniol-new-env

hpc-env/8.2 (L)

Scientific Computing
V. School of Mathematics and Science

Modules

2130.03.2020 Introduction HPC - Session 03

• why use modules

– modules allows multiple versions of the same application to be

installed

– modules change all the environment settings as needed

– modules know about dependencies and conflicts

• modules and jobs

– modules have to be loaded within a job script (as needed)

– modules loaded when the job is submitted are remembered by

SLURM

(but you may submit a job later again with different modules

loaded)

Scientific Computing
V. School of Mathematics and Science

Compiler, Libraries and

Toolchains

2230.03.2020 Introduction HPC - Session 03

Scientific Computing
V. School of Mathematics and Science

Compiler

2330.03.2020 Introduction HPC - Session 03

• different compilers available (from vendors and also open-source)

– Intel compiler usally gives very good performance (icc and ifort)

– using different compilers may help to better understand your code

– some compiler support special hardware (e.g. GPUs by PGI)

– always load one compiler (don‘t use OS GCC)

---------- /cm/shared/uniol/modules/compiler -----------

CUDA-Toolkit/8.0.44 NAG_Fortran/5.2

GCC/4.9.4-2.25 PGI/12.10

GCC/5.4.0-2.26 PGI/15.10

GCC/6.2.0-2.27 (D) PGI/16.10 (D)

LLVM/3.8.1-goolf-5.2.01 icc/2016.3.210

LLVM/3.8.1-intel-2016b ifort/2016.3.210

LLVM/3.9.0-intel-2016b (D)

Scientific Computing
V. School of Mathematics and Science

Example: RandomWalk.cpp

2430.03.2020 Introduction HPC - Session 03

• download the code RandomWalk.cpp (and the other

RandomWalk files) from Stud.IP

– the code simulates a 2d random walk, each step of length one in

random direction, prints out distance from start after N steps

– expected distance is SQRT(N)

– compile with GCC or ICS

$ g++ RandomWalk.cpp –o RandomWalk

$ icpc RandomWalk.cpp –o RandomWalk

– run with one argument for seed, e.g.

$./RandomWalk 12345

– timing with

$ time ./RandomWalk 12345

or

Scientific Computing
V. School of Mathematics and Science

Libraries

• libraries are available as modules

– numerical libraries provide optimized solutions of general problems

2530.03.2020 Introduction HPC - Session 03

------------ /cm/shared/uniol/modules/numlib -------------

ATLAS/3.10.2 Octave/4.0.3

Armadillo/7.500.1 OpenBLAS/0.2.19

CLHEP/2.2.0.4-intel-2016b Qhull/2015.2

Eigen/3.2.9 ScaLAPACK/2.0.2

FFTW/3.3.5-gompi-5.2.01 SuiteSparse/4.5.3

FIAT/1.6.0-intel-2016b cuDNN/5.1-CUDA-8.0.44

GMP/6.1.1 (D) cvx/2.1

GSL/2.1 imkl/11.3.3.210

Hypre/2.11.1 leda/6.3

LinBox/1.4.0 maple/18

MATLAB/2016b maple/2016 (D)

MPFR/3.1.4 stata/13

NTL/9.8.1

Scientific Computing
V. School of Mathematics and Science

Example: Matrix-Matrix Multiplication

• basic linear algebra is available in many different

numerical libraries

– OpenBLAS, Lapack, MKL, …

– Basic Linear Algebra Subprograms (BLAS) contain e.g. a

General Matrix Multiplication (gemm) of the form:

𝐶 = 𝛼𝐴 ⋅ 𝐵 + 𝛽𝐶

– original version written in Fortran

– used in the mm.cpp example (cblas_dgemm is the C-interface for

double precision gemm)

2630.03.2020 Introduction HPC - Session 03

// A, B, and C are objects of class SqMatrix but A[0] etc. are

// pointers to first element in matrix which is what dgemm expects

cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,

n, n, n, alpha, A[0], n, B[0], n, beta, C[0], n);

Scientific Computing
V. School of Mathematics and Science

Toolchains

• some modules are called toolchains

– provide a collection of compiler, MPI, and/or numerical libraries

• examples:

– goolf: GCC, OpenMPI, OpenBLAS, ScaLAPACK, FFTW

– foss: free and open source software (same as goolf currently)

– gompi: GCC, OpenMPI

– intel: Intel compilers, MPI, MKL

2730.03.2020 Introduction HPC - Session 03

------------- /cm/shared/uniol/modules/toolchain ------------------

foss/2016b gompi/5.2.01 iimpi/2013b intel/2016b (D)

gimpi/6.2016 gompi/6.2.01 (D) iimpi/2016b (D)

gompi/4.1.10 goolf/5.2.01 intel/2013b

http://easybuild.readthedocs.io/en/latest/eb_list_toolchains.html

http://easybuild.readthedocs.io/en/latest/eb_list_toolchains.html

Scientific Computing
V. School of Mathematics and Science

Example: Matrix-Matrix Multiplication

• the code mm.cp uses OpenBLAS which is included in the goolf-toolchain

2830.03.2020 Introduction HPC - Session 03

$ ml restore

Resetting modules to system default

$ make clean

rm mm mm.o

$ make

g++ -O2 -c mm.cpp

mm.cpp:7:19: fatal error: cblas.h: No such file or directory

#include "cblas.h"

^

compilation terminated.

make: *** [mm.o] Error 1

$ ml foss

$ make

g++ -O2 -c mm.cpp

g++ -O2 -o mm mm.o -lopenblas

Scientific Computing
V. School of Mathematics and Science

Example: Matrix-Matrix Multiplication

• alternatively the code can be compiled with Intel MKL

– requires some code change (different header file)

– requires changes to Makefile (different libraries to link)

– result: code runs faster by 25%

2930.03.2020 Introduction HPC - Session 03

$ sacct -j 2591679 -o JobID,JobName,Partition,Elapsed,MaxRSS,State,ExitCode

JobID JobName Partition Elapsed MaxRSS State ExitCode

------------ ---------- ---------- ---------- ---------- ---------- --------

2591679 run_mm.job carl.p 00:06:21 COMPLETED 0:0

2591679.bat+ batch 00:06:21 7336K COMPLETED 0:0

2591679.0 mm 00:00:33 37600K COMPLETED 0:0

2591679.1 mm 00:00:32 113412K COMPLETED 0:0

2591679.2 mm 00:00:33 412420K COMPLETED 0:0

2591679.3 mm 00:00:32 1592064K COMPLETED 0:0

2591679.4 mm 00:04:09 6310656K COMPLETED 0:0

Scientific Computing
V. School of Mathematics and Science

Job Arrays

3030.03.2020 Introduction HPC - Session 03

Scientific Computing
V. School of Mathematics and Science

Job Arrays

3130.03.2020 Introduction HPC - Session 03

• task: run program isprime several (M) times

– different input parameter every time

– all input parameters are in file parameter.dat

– simple approach: make M copies of job script, modifiy the input

parameter in every file

– clever approach: task array as prepared in prime.job

– analysis after job array is completed e.g. with awk script

Scientific Computing
V. School of Mathematics and Science

Job Arrays

3230.03.2020 Introduction HPC - Session 03

• job or task arrays are defined by Slurm options

– range of tasks can be defined as from-to:increment

– multiple ranges with comma-separated list

– limiting the number of parallel tasks possible (if tasks have large

requirements)

$ cat array.job

. . .

settings for job array

#SBATCH --array 1-10:1%4 # define task array

format range:step%tasklimit

. . .

Scientific Computing
V. School of Mathematics and Science

Job Arrays

3330.03.2020 Introduction HPC - Session 03

• additional variable with task-ID is provided

can be used

– e.g. to number input or output files

– computation in bash (limited)

– read specific line from input file

$ cat prime.job

. . .

get paramter from file for each task

parameter=$(awk "NR==$SLURM_ARRAY_TASK_ID {print $1}" parameter.dat)

echo -n "Task $SLURM_ARRAY_TASK_ID tested if $parameter is prime? "

./isprime $parameter

. . .

Scientific Computing
V. School of Mathematics and Science

Job Arrays

3430.03.2020 Introduction HPC - Session 03

• job array are a powerful tool for task parallel jobs

– to be preferred over submitting many individual jobs

– each tasks in a job array should be sufficiently long (e.g. > 1h),

due to the overhead for a single task

• requires some strategy for post-processing

– often Linux tools can do the trick, more complex tasks may

require post-processing script in e.g. Python

• additional environment variables for first and last task

– however, tasks may not complete in the correct order

– alternatively job dependencies can be used

Scientific Computing
V. School of Mathematics and Science

awk

3530.03.2020 Introduction HPC - Session 03

• powerful Linux tool that searches the lines of a file for

patterns and performs an action on that line

– similar tools are grep (pattern matching) and sed (streaming edit)

– works well with data files (tables)

– uses a C-like syntax

• example: prime.awk

– reads all output files from the job array (using cat to combine

them)

– counts yes and no answers

– prints final result

http://www.gnu.org/software/gawk/manual/gawk.html

http://www.gnu.org/software/gawk/manual/gawk.html

Scientific Computing
V. School of Mathematics and Science

Job Arrays and Alternatives

• task-parallel jobs can be handled in different ways (from

simple to more complex approaches)

– single job containing a loop, useful if individual tasks only run for

a very short time

– job array (as shown before), simple and native approach

– single job using the parallel command, again useful if

individual tasks are short-running

– parallel (MPI-)program that implements a master-worker scheme,

useful e.g. if results from tasks generate new tasks

also see https://wiki.hpcuser.uni-oldenburg.de/index.php?title=How_to_Manage_Many_Jobs

3630.03.2020 Introduction HPC - Session 03

https://wiki.hpcuser.uni-oldenburg.de/index.php?title=How_to_Manage_Many_Jobs

Scientific Computing
V. School of Mathematics and Science

Exercises

3730.03.2020 Introduction HPC - Session 03

Scientific Computing
V. School of Mathematics and Science

Exercises

a. Try to compile and run the mm-code

a. Try to use different toolchains

b. Try to run a job script for an application

a. See next slide for specific example Orca

c. Try to run and compile the RandomWalk code

a. Try different compilers

b. Run multiple times as job array

3830.03.2020 Introduction HPC - Session 03

Scientific Computing
V. School of Mathematics and Science

Exercise: ORCA Job

3930.03.2020 Introduction HPC - Session 03

• examples for using installed software on the cluster can

be found in the HPC wiki

– e.g. ORCA (chemistry)

http://wiki.hpcuser.uni-oldenburg.de/index.php?title=ORCA_2016

– download the files for serial runs and submit job

– use ORCA 3.0.3

– the job script is rather complex

• module is loaded

• files are copied to $TMPDIR

• application is started from $TMPDIR

• output is copied to $WORK

http://wiki.hpcuser.uni-oldenburg.de/index.php?title=ORCA_2016

Scientific Computing
V. School of Mathematics and Science

Exercise: RandomWalk

4030.03.2020 Introduction HPC - Session 03

• task: run RandomWalk several (M=10) times to get the

average distance after N steps from multiple runs

– different seed every time

– each run as SLURM job

– write job script based on the example from the lecture

– think how to analyse after jobs are completed

• how to combine the output of M different jobs

