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Parallel Programming Models
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• two dominating programming models:
– OpenMP: uses directives to define work decomposition
– MPI: standardized message-passing interface

• other programming models
– HPF (high-performance Fortran)
– PGAS (Partitioned Global Address Space), e.g. Co-Array Fortran 

UPC (Unified Parallel C)
• programming models for compute devices

– CUDA
– OpenCL
– OpenACC
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What is OpenMP and why use it?
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• OpenMP is a standard programming model for shared 
memory parallelization
– portable across different shared memory architectures
– allows incremental parallelization
– based on compiler directives and a few library routines
– supports Fortran and C/C++

• easy approach to multi-threaded programming
– allows to exploit modern multi-core CPUs
– good performance gain for invested effort
– hybrid-parallelization with MPI-OpenMP 
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OpenMP Programming Model
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• OpenMP ist a shared memory model
• workload is distributed among threads
• variables can be

– shared among all threads
– duplicated for each thread (private)

• threads communicate by sharing variables
– unintended sharing can lead to race condition

• synchronization for execution control and to avoid data 
conflicts
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OpenMP Standard

• standard since 1997 (Fortran version 1.0)

• current standard is 4.5 (Nov 2015)
– supported in GCC 6.1, Intel 2017 and others
– older versions of OpenMP have more compilers to choose from

• active development to improve performance and to adapt 
to new hardware technologies
–  support for SIMD parallelism was added
– OpenMP on devices/accelerators (e.g. GPUs)
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http://www.openmp.org/ 



Scientific Computing
V. School of Mathematics and Science

OpenMP Execution Model

1127.03.2019 Introduction HPC - Session 05



Scientific Computing
V. School of Mathematics and Science

OpenMP Parallel Region Construct
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Example: OMP_HelloWorld
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• code available on HPC Wiki

#include <iostream>
#include <omp.h>

using namespace std;

int main () {

  #pragma omp parallel
  {
    cout << "Hello World from thread " 
         << omp_get_thread_num() << endl;
  } /* end omp parallel */

}
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Compiling and Running OpenMP Programs
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• compilation with an extra option, e.g.

– different compilers use different options

• before running may set environment for control

– default is to use all available cores

• running the program as usual

$ g++ -fopenmp OMP_HelloWorld.cpp -o OMP_HelloWorld
$ icpc -qopenmp OMP_HelloWorld.cpp -o OMP_HelloWorld

$ export OMP_NUM_THREADS=4

$ ./OMP_HelloWorld



Scientific Computing
V. School of Mathematics and Science

Running OpenMP Programs with SLURM

• basic job script

– OpenMP programs as single task (and single node)
– number of cores set by --cpus-per-task=<n> or -c <n>
– environment variable SLURM_CPUS_PER_TASK available cpus-per-

task has been set
– srun may used to create a separate job step (better accounting)
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#!/bin/bash

#SBATCH -p carl.p
#SBATCH -n 1                 # single task with
#SBATCH -c 8                 # cpus-per-task

# execute code 
export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK
srun ./OMP_HelloWorld

#!/bin/bash

#SBATCH -p carl.p
#SBATCH -n 1                 # single task with
#SBATCH -c 8                 # cpus-per-task

# execute code 
export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK
srun ./OMP_HelloWorld

http://www.openmp.org/
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OpenMP Programming
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• include library

• available library routines
– setting number of threads
– getting number of threads
– getting thread ID
– wall clock time 

#include <omp.h>

omp_set_num_threads() 
omp_get_num_threads() 
omp_get_thread_num()
omp_get_wtime() 
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OMP_HelloWorld2
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• what will happen here?
int main () {

  int threadID, nthreads;
  #pragma omp parallel
  {
    threadID = omp_get_thread_num();
    cout << "Hello World from thread " << threadID << endl;

    // wait for all threads
    #pragma omp barrier
    if (threadID==0) {
      nthreads = omp_get_num_threads();
      cout << "Using " << nthreads << " threads!" << endl;
    }
  } /* end omp parallel */
}
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Shared and Private Variables

1827.03.2019 Introduction HPC - Session 05

• in OMP_HelloWorld2 threadID is shared among all 
threads

• race condition
– every thread is writing to the same memory address
– final value unpredictable

• solution is to make threadID private 

#pragma omp parallel private(threadID)
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Clauses for Parallel Regions

1927.03.2019 Introduction HPC - Session 05

• private(variable list)
– each thread has its own copy of the variables in the list
– variables are not initialized (firstprivate does that)
– no change to variable outside of parallel region (lastprivate does 

that)

• shared(variable list)
– all threads shared the same variable
– typically initialized outside of the parallel region
– changes persist outside the parallel region
– be careful to avoid race conditions
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Shared and Private Variables
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• in OMP_HelloWorld2 threadID is shared among all 
threads

• race condition
– every thread is writing to the same memory address
– final value unpredictable

• solution is to make threadID private 

#pragma omp parallel private(threadID)


