
Scientific Computing
V. School of Mathematics and Science

Introduction to 
High-Performance Computing

Session 05

Introduction to OpenMP



Scientific Computing
V. School of Mathematics and Science

Parallel Programming Models

718.09.2019 Introduction HPC - Session 05

• two dominating programming models:
– OpenMP: uses directives to define work decomposition
– MPI: standardized message-passing interface

• other programming models
– HPF (high-performance Fortran)
– PGAS (Partitioned Global Address Space), e.g. Co-Array Fortran 

UPC (Unified Parallel C)
• programming models for compute devices

– CUDA
– OpenCL
– OpenACC



Scientific Computing
V. School of Mathematics and Science

What is OpenMP and why use it?

827.03.2019 Introduction HPC - Session 05

• OpenMP is a standard programming model for shared 
memory parallelization
– portable across different shared memory architectures
– allows incremental parallelization
– based on compiler directives and a few library routines
– supports Fortran and C/C++

• easy approach to multi-threaded programming
– allows to exploit modern multi-core CPUs
– good performance gain for invested effort
– hybrid-parallelization with MPI-OpenMP 



Scientific Computing
V. School of Mathematics and Science

OpenMP Programming Model

927.03.2019 Introduction HPC - Session 05

• OpenMP ist a shared memory model
• workload is distributed among threads
• variables can be

– shared among all threads
– duplicated for each thread (private)

• threads communicate by sharing variables
– unintended sharing can lead to race condition

• synchronization for execution control and to avoid data 
conflicts



Scientific Computing
V. School of Mathematics and Science

OpenMP Standard

• standard since 1997 (Fortran version 1.0)

• current standard is 4.5 (Nov 2015)
– supported in GCC 6.1, Intel 2017 and others
– older versions of OpenMP have more compilers to choose from

• active development to improve performance and to adapt 
to new hardware technologies
–  support for SIMD parallelism was added
– OpenMP on devices/accelerators (e.g. GPUs)

1027.03.2019 Introduction HPC - Session 05

http://www.openmp.org/ 



Scientific Computing
V. School of Mathematics and Science

OpenMP Execution Model

1127.03.2019 Introduction HPC - Session 05



Scientific Computing
V. School of Mathematics and Science

OpenMP Parallel Region Construct

1227.03.2019 Introduction HPC - Session 05



Scientific Computing
V. School of Mathematics and Science

Example: OMP_HelloWorld

1327.03.2019 Introduction HPC - Session 05

• code available on HPC Wiki

#include <iostream>
#include <omp.h>

using namespace std;

int main () {

  #pragma omp parallel
  {
    cout << "Hello World from thread " 
         << omp_get_thread_num() << endl;
  } /* end omp parallel */

}



Scientific Computing
V. School of Mathematics and Science

Compiling and Running OpenMP Programs

1427.03.2019 Introduction HPC - Session 05

• compilation with an extra option, e.g.

– different compilers use different options

• before running may set environment for control

– default is to use all available cores

• running the program as usual

$ g++ -fopenmp OMP_HelloWorld.cpp -o OMP_HelloWorld
$ icpc -qopenmp OMP_HelloWorld.cpp -o OMP_HelloWorld

$ export OMP_NUM_THREADS=4

$ ./OMP_HelloWorld



Scientific Computing
V. School of Mathematics and Science

Running OpenMP Programs with SLURM

• basic job script

– OpenMP programs as single task (and single node)
– number of cores set by --cpus-per-task=<n> or -c <n>
– environment variable SLURM_CPUS_PER_TASK available cpus-per-

task has been set
– srun may used to create a separate job step (better accounting)

1527.03.2019 Introduction HPC - Session 05

#!/bin/bash

#SBATCH -p carl.p
#SBATCH -n 1                 # single task with
#SBATCH -c 8                 # cpus-per-task

# execute code 
export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK
srun ./OMP_HelloWorld

#!/bin/bash

#SBATCH -p carl.p
#SBATCH -n 1                 # single task with
#SBATCH -c 8                 # cpus-per-task

# execute code 
export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK
srun ./OMP_HelloWorld

http://www.openmp.org/


Scientific Computing
V. School of Mathematics and Science

OpenMP Programming

1627.03.2019 Introduction HPC - Session 05

• include library

• available library routines
– setting number of threads
– getting number of threads
– getting thread ID
– wall clock time 

#include <omp.h>

omp_set_num_threads() 
omp_get_num_threads() 
omp_get_thread_num()
omp_get_wtime() 



Scientific Computing
V. School of Mathematics and Science

OMP_HelloWorld2

1727.03.2019 Introduction HPC - Session 05

• what will happen here?
int main () {

  int threadID, nthreads;
  #pragma omp parallel
  {
    threadID = omp_get_thread_num();
    cout << "Hello World from thread " << threadID << endl;

    // wait for all threads
    #pragma omp barrier
    if (threadID==0) {
      nthreads = omp_get_num_threads();
      cout << "Using " << nthreads << " threads!" << endl;
    }
  } /* end omp parallel */
}



Scientific Computing
V. School of Mathematics and Science

Shared and Private Variables

1827.03.2019 Introduction HPC - Session 05

• in OMP_HelloWorld2 threadID is shared among all 
threads

• race condition
– every thread is writing to the same memory address
– final value unpredictable

• solution is to make threadID private 

#pragma omp parallel private(threadID)



Scientific Computing
V. School of Mathematics and Science

Clauses for Parallel Regions

1927.03.2019 Introduction HPC - Session 05

• private(variable list)
– each thread has its own copy of the variables in the list
– variables are not initialized (firstprivate does that)
– no change to variable outside of parallel region (lastprivate does 

that)

• shared(variable list)
– all threads shared the same variable
– typically initialized outside of the parallel region
– changes persist outside the parallel region
– be careful to avoid race conditions



Scientific Computing
V. School of Mathematics and Science

Shared and Private Variables

2027.03.2019 Introduction HPC - Session 05

• in OMP_HelloWorld2 threadID is shared among all 
threads

• race condition
– every thread is writing to the same memory address
– final value unpredictable

• solution is to make threadID private 

#pragma omp parallel private(threadID)


