
Scientific Computing
V. School of Mathematics and Science

Introduction to

High-Performance Computing

Session 07

Performance Optimization

Scientific Computing
V. School of Mathematics and Science

Performance Modelling

216.03.2021 Introduction to HPC - Session 07

• the following slides are based on

– 2-day course during MCS Summer School 2014 given by Georg

Hager

– Book: G. Hager and G. Wellein:

Introduction to High Performance Computing for Scientists

and Engineers,
CRC Computational Science Series, 2010. ISBN 978-1439811924

http://www.hpc.rrze.uni-erlangen.de/HPC4SE/

https://moodle.rrze.uni-erlangen.de/course/view.php?id=311

http://www.hpc.rrze.uni-erlangen.de/HPC4SE/
https://moodle.rrze.uni-erlangen.de/course/view.php?id=311

Scientific Computing
V. School of Mathematics and Science

Machine

Code

Computer Software and Hardware

316.03.2021 Introduction to HPC - Session 07

Algorithm
Compiler

Libraries
Hardware

(Black Box)
Result

User‘s view

Hardware‘s view

Scientific Computing
V. School of Mathematics and Science

Modern Computer Architecture

416.03.2021 Introduction to HPC - Session 07

• today: dual-socket node

− multiple cores per socket/CPU

− ccNUMA architecture

− socket interconnect

Scientific Computing
V. School of Mathematics and Science

Detailed View Compute Core

516.03.2021 Introduction to HPC - Session 07

Execution Units Broadwell

• two EUs for FP instructions

• each EU can execute one

FP instruction at a time

execution units

(shown only for FP)

FP FMA

FP MUL

FP DIV

FP FMA

FP MUL

FP ADD

EU 0 EU 1

Scientific Computing
V. School of Mathematics and Science

Example: Divide Throughput

• in the Pi.cpp code the function f(x) has one division

– division is the dominant operation (other instructions can be

hidden)

– for n evaluations of f we get t = 𝑛 ⋅
𝑐

𝜈

– Broadwell CPUs need 𝑐 = 5 cycles/division (throughput) and

assuming turbo mode (clock speed 𝜈 = 2.5GHz) we would expect

𝑡 = 0.2s for 𝑛 = 108

616.03.2021 Introduction to HPC - Session 07

Scientific Computing
V. School of Mathematics and Science

Execution of Instructions

• programmer‘s view:

for (int i=0; i<N; i++)

A[i] = A[i] + B[i];

– user work:

N Flops (ADDs)

• hardware‘s view:

load r1 = A(i)

load r2 = B(i)

add r1 = r1 + r2

store A(i) = r1

inc i

branch top if i<N

716.03.2021 Introduction to HPC - Session 07

programm performs computation, FLOP is the basic work done

processor executes instructions, instructions is the basic work done

Scientific Computing
V. School of Mathematics and Science

Basic Compute Resources

• instruction execution

– primary resource for computations, hardware is designed to

increase instruction throughput as much as possible

– difficult for general purpose computing, what is a typical

workload?

• data movement

– consequence of instruction execution

– in the example two loads and one store (double 24 byte)

What is the bottleneck of an application?

16.03.2021 Introduction to HPC - Session 07 8

Scientific Computing
V. School of Mathematics and Science

Flop/s vs. Memory Bandwidth

• a floating-point operation (Flop) is the basic unit of work

– theoretical peak performance Intel Xeon E5-2650 v4

𝑃peak = 422.5 GFlop/s

– equivalent to 16 Flop/(core ⋅ cy)

• memory bandwidth

– maximum for Intel Xeon E5-2650 v4 is 76.8 GB/s
(https://ark.intel.com/products/91767/Intel-Xeon-Processor-E5-2650-v4-30M-Cache-2_20-GHz)

– equivalent to 35 Byte/cy

916.03.2021 Introduction to HPC - Session 07

(more info: http://sites.utexas.edu/jdm4372/tag/memory-bandwidth/)

https://ark.intel.com/products/91767/Intel-Xeon-Processor-E5-2650-v4-30M-Cache-2_20-GHz
http://sites.utexas.edu/jdm4372/tag/memory-bandwidth/

Scientific Computing
V. School of Mathematics and Science

Example Bandwidth Limited Execution

• consider the vector-triad

for (j=0; j<STREAM_ARRAY_SIZE; j++)

a[j] = b[j]+scalar*c[j];

– included in the STREAM benchmark (see https://www.cs.virginia.edu/stream/)

– 2 Flop/iteration and 24 Byte/iteration

– at 16 Flop/cy on a single core 192 Byte/cy are needed

➔ memory bandwidth is the limiting factor here

1016.03.2021 Introduction to HPC - Session 07

https://www.cs.virginia.edu/stream/

Scientific Computing
V. School of Mathematics and Science

STREAM Benchmark

• simple tool to measure memory bandwidth

– timing of bandwidth-limited vector operations

• some results

– single core bandwidth is about 20 GB/s

– maximum bandwidth measured is about 64 GB/s per socket and

128 GB/s per node (two sockets)

– about half of the cores are need to get (close to) maximum

bandwidth

1116.03.2021 Introduction to HPC - Session 07

https://www.cs.virginia.edu/stream/

https://www.cs.virginia.edu/stream/

Scientific Computing
V. School of Mathematics and Science

Parallel Speedup

1216.03.2021 Introduction to HPC - Session 07

version 1, very good scaling

version 2, almost no scaling

Scientific Computing
V. School of Mathematics and Science

Example

1316.03.2021 Introduction to HPC - Session 07

• 3d „Stencil“ update (Jacobi)

// serial
for (int i=1; i<Ni; i++)
for (int j=1; j<Nj; j++)
for (int k=1; k<Nk; k++)

y[i][j][k] = w * (x[i-1][j][k] + x[i+1][j][k]
+ x[i][j-1][k] + x[i][j+1][k]
+ x[i][j][k-1] + x[i][j][k+1]);

note that the order of the loops is important

(and depends on the ordering of multi-dimensional arrays in memory)

Scientific Computing
V. School of Mathematics and Science

Memory Access Patterns

1416.03.2021 Introduction to HPC - Session 07

Scientific Computing
V. School of Mathematics and Science

Hardware Locality

• compute nodes are increasingly complex

– ccNUMA architectures

• the hwloc library provides some tools to

(https://www.open-mpi.org/projects/hwloc/)

– obtain information about the node topology (lstopo)

– bind processes to specific

cores/sockets/…

– binding/pinning of threads

may improve performance
(hwloc-bind … <command>)

– difficult to decide, e.g. is it

better to use neighboring cores

or different sockets?

1516.03.2021 Introduction to HPC - Session 07

https://www.open-mpi.org/projects/hwloc/

Scientific Computing
V. School of Mathematics and Science

Parallel Performance

1616.03.2021 Introduction to HPC - Session 07

performance of version 2 is

better by factor of few

bandwidth limit

48 Byte/iter
ෝ= 9.6 GFlop/s

Scientific Computing
V. School of Mathematics and Science

How is the Hardware optimized for performance?

1716.03.2021 Introduction to HPC - Session 07

• speedup memory access with cache (see before)

• pipelining of arithmethic units

• instruction pipeline

• instruction level parallelism

• simultaneous multi-threading (SMT)

• SIMD processing

Scientific Computing
V. School of Mathematics and Science

Pipelining

1816.03.2021 Introduction to HPC - Session 07

Scientific Computing
V. School of Mathematics and Science

Pipelinig – 5 stage Multiplication

1916.03.2021 Introduction to HPC - Session 07

Scientific Computing
V. School of Mathematics and Science

simultaneous multi-threading (SMT)

2016.03.2021 Introduction to HPC - Session 07

Scientific Computing
V. School of Mathematics and Science

SIMD processing

2116.03.2021 Introduction to HPC - Session 07

Scientific Computing
V. School of Mathematics and Science

Processor Peak Performance

2216.03.2021 Introduction to HPC - Session 07

Floating Point (FP) Performance:

𝑃 = 𝑛core ⋅ 𝐹 ⋅ 𝑆 ⋅ 𝜈

𝑛core number of cores 12

𝐹 FP instructions per cycle 4

(2 FMA)

𝑆 FP ops / instruction 4

(256 Bit SIMD registers in AVX2)

𝜈 clock speed 2.2 GHz

(affected by turbo/AVX modes)

𝑷 = 𝟒𝟐𝟐. 𝟒 GFlop/s (dp)

Intel Xeon „Broadwell“

E5-2650 v4

But: 𝑷 = 𝟖. 𝟖 GFlop/s for serial, non-SIMD code

Scientific Computing
V. School of Mathematics and Science

Performance Bottleneck

2316.03.2021 Introduction to HPC - Session 07

• many floating point computation on little data

→ bound by the processing speed of the CPU

– possibly increase number of cores

– make use of SIMD processing

– note: recent CPU may have lower clock speed for AVX

• few floating point operation per data

→ bound by memory bandwidth

– change algorithm/parallelization to make better use of cache

– increase compute intensity

Scientific Computing
V. School of Mathematics and Science

Examples

• OMP_Pi

– how many CPU cycles are required for a DIV operation?

• STREAM

– determine memory bandwidth

• Stencil

– optimization vs. speedup

– memory access pattern

measuring/getting optimal performance may require

process binding

2416.03.2021 Introduction to HPC - Session 07

