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• the following slides are based on 

– 2-day course during MCS Summer School 2014 given by Georg 

Hager

– Book: G. Hager and G. Wellein:

Introduction to High Performance Computing for Scientists 

and Engineers,
CRC Computational Science Series, 2010. ISBN 978-1439811924

http://www.hpc.rrze.uni-erlangen.de/HPC4SE/

https://moodle.rrze.uni-erlangen.de/course/view.php?id=311

http://www.hpc.rrze.uni-erlangen.de/HPC4SE/
https://moodle.rrze.uni-erlangen.de/course/view.php?id=311
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Modern Computer Architecture
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• today: dual-socket node

− multiple cores per socket/CPU

− ccNUMA architecture

− socket interconnect
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Detailed View Compute Core
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Execution Units Broadwell

• two EUs for FP instructions

• each EU can execute one

FP instruction at a time

execution units

(shown only for FP)

FP FMA

FP MUL

FP DIV

FP FMA

FP MUL

FP ADD

EU 0 EU 1
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Example: Divide Throughput

• in the Pi.cpp code the function f(x) has one division

– division is the dominant operation (other instructions can be

hidden)

– for n evaluations of f we get t = 𝑛 ⋅
𝑐

𝜈

– Broadwell CPUs need 𝑐 = 5 cycles/division (throughput) and

assuming turbo mode (clock speed 𝜈 = 2.5GHz) we would expect

𝑡 = 0.2s for 𝑛 = 108
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Execution of Instructions

• programmer‘s view:

for (int i=0; i<N; i++)

A[i] = A[i] + B[i];

– user work: 

N Flops (ADDs)

• hardware‘s view:

load r1 = A(i)

load r2 = B(i)

add r1 = r1 + r2

store A(i) = r1

inc i

branch top if i<N
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programm performs computation, FLOP is the basic work done

processor executes instructions, instructions is the basic work done
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Basic Compute Resources

• instruction execution

– primary resource for computations, hardware is designed to

increase instruction throughput as much as possible

– difficult for general purpose computing, what is a typical

workload?

• data movement

– consequence of instruction execution

– in the example two loads and one store (double 24 byte)

What is the bottleneck of an application?

16.03.2021 Introduction to HPC - Session 07 8
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Flop/s vs. Memory Bandwidth

• a floating-point operation (Flop) is the basic unit of work

– theoretical peak performance Intel Xeon E5-2650 v4

𝑃peak = 422.5 GFlop/s

– equivalent to 16 Flop/(core ⋅ cy)

• memory bandwidth

– maximum for Intel Xeon E5-2650 v4 is 76.8 GB/s
(https://ark.intel.com/products/91767/Intel-Xeon-Processor-E5-2650-v4-30M-Cache-2_20-GHz)

– equivalent to 35 Byte/cy
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(more info: http://sites.utexas.edu/jdm4372/tag/memory-bandwidth/)

https://ark.intel.com/products/91767/Intel-Xeon-Processor-E5-2650-v4-30M-Cache-2_20-GHz
http://sites.utexas.edu/jdm4372/tag/memory-bandwidth/
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Example Bandwidth Limited Execution

• consider the vector-triad

for (j=0; j<STREAM_ARRAY_SIZE; j++)

a[j] = b[j]+scalar*c[j];

– included in the STREAM benchmark (see https://www.cs.virginia.edu/stream/)

– 2 Flop/iteration and 24 Byte/iteration

– at 16 Flop/cy on a single core 192 Byte/cy are needed

➔ memory bandwidth is the limiting factor here

1016.03.2021 Introduction to HPC - Session 07

https://www.cs.virginia.edu/stream/
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STREAM Benchmark

• simple tool to measure memory bandwidth

– timing of bandwidth-limited vector operations

• some results

– single core bandwidth is about 20 GB/s

– maximum bandwidth measured is about 64 GB/s per socket and

128 GB/s per node (two sockets)

– about half of the cores are need to get (close to) maximum

bandwidth
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https://www.cs.virginia.edu/stream/

https://www.cs.virginia.edu/stream/
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Parallel Speedup
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version 1, very good scaling

version 2, almost no scaling
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Example
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• 3d „Stencil“ update (Jacobi)

// serial
for (int i=1; i<Ni; i++)
for (int j=1; j<Nj; j++)
for (int k=1; k<Nk; k++)

y[i][j][k] = w * (   x[i-1][j][k] + x[i+1][j][k]
+ x[i][j-1][k] + x[i][j+1][k]
+ x[i][j][k-1] + x[i][j][k+1] );

note that the order of the loops is important

(and depends on the ordering of multi-dimensional arrays in memory)
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Memory Access Patterns
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Hardware Locality

• compute nodes are increasingly complex

– ccNUMA architectures

• the hwloc library provides some tools to

(https://www.open-mpi.org/projects/hwloc/)

– obtain information about the node topology (lstopo)

– bind processes to specific

cores/sockets/…

– binding/pinning of threads

may improve performance
(hwloc-bind … <command>)

– difficult to decide, e.g. is it

better to use neighboring cores

or different sockets?
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https://www.open-mpi.org/projects/hwloc/


Scientific Computing
V. School of Mathematics and Science

Parallel Performance
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performance of version 2 is

better by factor of few

bandwidth limit

48 Byte/iter
ෝ= 9.6 GFlop/s
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How is the Hardware optimized for performance?
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• speedup memory access with cache (see before)

• pipelining of arithmethic units

• instruction pipeline

• instruction level parallelism

• simultaneous multi-threading (SMT)

• SIMD processing
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Pipelining

1816.03.2021 Introduction to HPC - Session 07



Scientific Computing
V. School of Mathematics and Science

Pipelinig – 5 stage Multiplication
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simultaneous multi-threading (SMT)

2016.03.2021 Introduction to HPC - Session 07
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SIMD processing
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Processor Peak Performance
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Floating Point (FP) Performance:

𝑃 = 𝑛core ⋅ 𝐹 ⋅ 𝑆 ⋅ 𝜈

𝑛core number of cores 12

𝐹 FP instructions per cycle 4   

(2 FMA)

𝑆 FP ops / instruction 4

(256 Bit SIMD registers in AVX2)

𝜈 clock speed 2.2 GHz

(affected by turbo/AVX modes)

𝑷 = 𝟒𝟐𝟐. 𝟒 GFlop/s (dp)

Intel Xeon „Broadwell“

E5-2650 v4

But: 𝑷 = 𝟖. 𝟖 GFlop/s for serial, non-SIMD code
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Performance Bottleneck
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• many floating point computation on little data

→ bound by the processing speed of the CPU

– possibly increase number of cores

– make use of SIMD processing

– note: recent CPU may have lower clock speed for AVX

• few floating point operation per data

→ bound by memory bandwidth

– change algorithm/parallelization to make better use of cache

– increase compute intensity
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Examples

• OMP_Pi

– how many CPU cycles are required for a DIV operation?

• STREAM

– determine memory bandwidth

• Stencil

– optimization vs. speedup

– memory access pattern

measuring/getting optimal performance may require 

process binding 
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