Betriebseinheit fur
technisch-wissenschaftliche
Infrastruktur

Carl von Ossietzk
Universitat
Oldenburg

.

Introduction to
High-Performance Computlng

Session 03 ,
HPC Environment, Modules, Compiler, ;;; :
and Toolchains

T HPC User Environment

Oldenburg

the user environment on a HPC cluster consists of:

the operating system (OS)
— e.g. RHEL Linux (all HPC systems in top500 have Linux-like OS)
— basic functionality (login, create and edit files, ...)

data storage
— one or more file systems
— temporary, short and long term storage

software

— scientific applications
— libraries

— compiler

job scheduler

Introduction to HPC - Session 03

Carl von Ossietzky

Universitat
Oldenburg

File Systems

Introduction to HPC - Session 03

el HPC File Systems

Oldenburg

« typically on a HPC system different file systems are available

http://www.fz-juelich.de/ias/jsc/EN/Expertise/Datamanagement/ JUDAC/Filesystems/filesystems node.html

$TMPDIR or
/scratch

$WORK

$DATA

$HOME

$ARCH

temporary storage provided on a per job basis,
deleted after job
often local disk or similar

temporary storage for job data, maybe kept
after job, typically parallel file system attached
to interconnect

mid-term storage for job output, parallel
filesystem or NFS

NFS storage, long term and secure, for
program codes, initial conditions

permanent archive, storage for finished
projects, tape library

Introduction to HPC - Session 03

very fast 1/0O, up to a few TB, no
backup

fast, parallel 1/0, up to PB, no
backup

up to PB, maybe with backup

few 100GB, full backup,
snapshots

few PB, possible slow read

http://www.fz-juelich.de/ias/jsc/EN/Expertise/Datamanagement/JUDAC/Filesystems/filesystems_node.html

el File Systems

Oldenburg

http://wiki.hpcuser.uni-oldenburg.de/index.php?title=File system and Data Management

« central Enterprise Spectrum Scale storage (ESS)
— used for home, data, group and offsite directories
— NFS mounted over 2x 10Gb Ethernet
— full backup and snapshot functionality
— can be mounted on local workstation using SMB

« shared parallel storage (GPFS)
— used work directory only
— data transfer over FDR Infiniband
— no backup
— can also be mounted on local workstation using SMB

* local disks or SSDs for scratch
— CARL compute nodes have local storage (1-2TB per node)
— EDDY compute nodes have 1GB RAM disk (for compatibility)
— usable during job run time

Introduction to HPC - Session 03

https://wiki.hpcuser.uni-oldenburg.de/index.php?title=File_system_and_Data_Management

Carl von Ossietzky

Universitat
Oldenburg

Directory Structure

« on every filesystem ($HOME, $DATA, $WORK) users will have their
own subdirectory
— e.g. for $HOME

drwx------ abcd1234 agsomegroup /user/abcdl1234

— default permissions prevent other users from seeing the contents of their
directory

— user can give permissions to others to access files or subdirectory as
needed (user's responsibility)

— file and directory access can be based on primary (the working group) and
secondary (e.g. the institute) Unix groups

— recommendation: keep access restricted on $HOME and if needed share
files/dirs. on $DATA or $WORK

https://wiki.hpcuser.uni-oldenburg.de/index.php?title=File_system and Data Management#Managing_access _rights of your folders

Introduction to HPC - Session 03

https://wiki.hpcuser.uni-oldenburg.de/index.php?title=File_system_and_Data_Management#Managing_access_rights_of_your_folders

el File Systems

File Env.

critical data that cannot easily be
reproduced (program codes, initial
conditions, results from data
analysis)

Oldenburg

Home $HOME /user/abcd1234

important data from simulations for

Data $DATA /nfs/data/abcd1234 on-going analysis and mid term
(project duration) storage

data storage for simulation

Work $WORK /gss/work/abcd1234 runtime, pre- and post-processing,
short term (weeks) storage

temporary data storage during job

Scratch $TMPDIR /scratch/<job-dir> untime

long term storage for inactive data,
only available on login nodes

Offsite $OFFSITE /nfs/offsite/user/abcd1234

* $HOME, $DATA and $0FFSITE have backup for disaster recovery and daily snapshots for file
recovery
» guotas are use on all file systems to limit the amount of data that can be stored by a user

Introduction to HPC - Session 03

el Quotas

Oldenburg

https://wiki.hpcuser.uni-oldenburg.de/index.php?title=File system and Data Management#Quotas

« on every file system default quotas are in place
— $HOME, $DATA and $OFFSITE have 1TB, 20TB and 12.5TB, respectively
— the number of files is also limited ($HOME: 500k, $DATA: 1M, $OFFSITE: 250Kk)
— $WORK has 25TB and no limit on number of files
— maybe increased upon request (if resources are available)

« soft and hard quotas
— in addition to the soft limit above, there is also a higher hard limit
— if usage is over soft quota a grace period of 30 days is triggered
— after grace period no data can be written to the affected directory by user

=» check your usage with lastquota and clean up your data on work regularly

Introduction to HPC - Session 03

https://wiki.hpcuser.uni-oldenburg.de/index.php?title=File_system_and_Data_Management#Quotas

e Group Directories

Oldenburg

« group directories are available upon request
— storage on the ESS
— can be mounted via SMB (only version 2 or better)
— path: $GROUP or /nfs/group/agyourgroup

— should be used for data shared among members of the same group, in
particular to avoid multiple copies of the same file

— group leader is owner of directory

— default rights are set so that anyone in group can read and write to group
directory

Introduction to HPC - Session 03

o] File System Shares

Oldenburg

https://wiki.hpcuser.uni-oldenburg.de/index.php?title=Local Mounting of File Systems

e you can mount your $HOME, $DATA and $WORK as well as $OFFSITE
and $GROUP directories on your local workstation

« server address for mounting are

$HOME //smb.uni-oldenburg.de/hpc_home
$DATA //smb.uni-oldenburg.de/hpc_data
$WORK //smb.hpc.uni-oldenburg.de/hpc_work
$OFFSITE //smb.uni-oldenburg.de/hpc_offsite
$GROUP //smb.uni-oldenburg.de/<groupname>

— for Windows connect a network drive (and replace “/” with “\”)
— for Linux add information in /etc/fstab

Introduction to HPC - Session 03

https://wiki.hpcuser.uni-oldenburg.de/index.php?title=Local_Mounting_of_File_Systems

Carl von Ossietzky

Universitat
Oldenburg

File System Use

applications with high I/0 demands can put a lot of stress on the
used file system

|/O-performance depends on the I/O profile

— /O with few but large files is better than many small files
— sequential 1/O is better than random access

pick the right file system for your 1/O profile
— local disks or SSDs are best for I/0O with small block sizes
— parallel files system ($WORK) is best for large files and parallel I/O

— $HOME and $DATA (and all NFS mounted directories) should be avoided for
I/O at runtime

simple 1/O performance tests can be done with dd

https://www.thomas-krenn.com/de/wiki/Linux /0O Performance Tests mit dd

Introduction to HPC - Session 03

https://www.thomas-krenn.com/de/wiki/Linux_I/O_Performance_Tests_mit_dd

Carl von Ossietzky

Universitat
Oldenburg

File System Bandwidth Limits

6,75GB/s

\\\\
gy~ 40 — § — J—

ompute nodes
1111
Login nodes

/ Z,SGB/S

Ethernet network

y

125MB/s

SEEs

12, 5GB/s

Note, that the maximum bandwidth is shared for the whole node/cluster

Introduction to HPC - Session 03

G Best Practices for File System Use

Oldenburg

 if your job is doing heavy I/O use $WORK or $TMPDIR

— 1/O bandwidth to $WORK is more than 10GB/s (shared for the whole cluster),
compared to 125MB/s at most to $HOME and $DATA

— try to use parallel I/0 and avoid using many small files
— $TMPDIR is best for small files and random access (in particular in the
partitions mpcb.p and mpcp.p)
« keep your data on $WORK while it is being processed
— data that is currently not needed can be moved to $DATA
— consider creating compressed archives and organise your data

— only keep important data and delete as much as possible when a project is
finished

— use $GROUP if you frequently need to share data within your group to avoid
unneccessary copies of data

Introduction to HPC - Session 03

G Best Practices for File System Use

Oldenburg

« user-specific directories will be deleted when the account expires
— files are only kept for 180 days
— make sure you copy files you want to keep elsewhere (e.g. a group
directory)
* reducing your file system footprint

— the size but also the number of files count (especially if there is a backup)

— clean up your directories whenever you finish a project or no longer need
some files

— files you want to keep can be packed in an archive file

$ tar cf project.tar project/

$ zstd --rm project.tar

Introduction to HPC - Session 03

el Final Remarks File Systems

Oldenburg

« setting file permissions
— add execute (x) permission to directories to allow cd
— add read (r) permission to directories to allow 1s

— avoid adding write (w) permission for group or others on directories (you
cannot change ownership of files)

« checking guotas
— use the lastquota command to find out how much diskspace your are using
— also weekly e-mails to all users

Introduction to HPC - Session 03

Carl von Ossietzky
Universitat
Oldenburg

What will (not) change with the next cluster?

« every user will get a new $HOME and $WORK
— old directories will be available for migration period

« both $HOME and $WORK will be on a new parallel file system
— faster file 1/O over Infiniband
— snapshots and backup for $HOME but not for $WORK

« $DATA and $OFFISTE will be available as before
— also group directories $GROUP

* no local HDDs or SSDs anymore
— a $TMPDIR will be provided on a fast NVME-server

« |/O performance will increase for all directories
— probably a factor of two

Introduction to HPC - Session 03

Carl von Ossietzky

Universitat
Oldenburg

Software and Modules

Introduction to HPC - Session 03

T Using Installed Software

Oldenburg

« software is installed centrally on the
cluster

— main path: /cm/shared/uniol/software
— Installed applications are optimized for system

— can be used by all users (unless restricted by
license terms)

— own software can be installed, too, e.g. in
$HOME

 Installed software includes
— compilers
— libraries (MPI, numerical libraries,...)
— scientific application
— overview and help in the HPC wiki

Introduction to HPC - Session 03

Environment Modules

Oldenburg

« Linux settings are defined by environment variables

$ echo $HOME # home directory
/user/abcd1234
$ echo $PATH # where to look for applications

/cm/shared/apps/slurm/current/sbin:/cm/shared/apps/slurm/current/bin: /us
r/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/opt/ibutils/bin

$ env # full list
HOSTNAME=hpc 1002
TERM=xterm

— applications require correct settings of environment variables (e.g. the PATH-
variable)

— environment modules are used to make predefined changes to the
environment using the module-command

Introduction to HPC - Session 03

The module-command

Oldenburg

« the environment settings for installed applications are managed
using modules

— example: loading a module for SAMtools

$ module load SAMtools/1.9-GCC-8.3.0
$ samtools --version

samtools 1.9

Using htslib 1.9

Copyright (C) 2018 Genome Research Ltd.
$ which samtools

/samtools
[abcd1234@carl]$ echo $PATH

:/cm/shared/...

— after the module is loaded, the application can be used
— the variable $PATH has been modified (among other things)

Introduction to HPC - Session 03

The module-command

Oldenburg

« available modules can be displayed and searched for
— displaying all modules (also work with spider)

$ module available
/cm/shared/uniol/modules/8.3/bio

SAMtools/0.1.19-foss-2019b SAMtools/1.9-GCC-8.3.0 (L,D)

— very long list of available modules
— modules can be highlighted with (L) for loaded and/or with (D) for default
— add application name to get shorter list

« show currently loaded modules
$ module list

Currently Loaded Modules:
1) slurm/current 2) hpc-env/8.3 3) GCCcore/8.3.0

Introduction to HPC - Session 03

T The module-command

Oldenburg

https://wiki.hpcuser.uni-oldenburg.de/index.php?titlie=User environment - The usage of module 2016

 find modules

$ module available [module-name]

$ module spider [module-name]

— list all modules [with given module name]
— both commands are case-insensitive and understand regular expressions when using option -r

 Joad/unload

$ module load <module-name>
$ module remove <module-name>

— to return to a default state

S module restore

 information about modules

$ module list

$ module help <module-name>
$ module spider <module-name>

Introduction to HPC - Session 03

https://wiki.hpcuser.uni-oldenburg.de/index.php?title=User_environment_-_The_usage_of_module_2016

T The module-command

Oldenburg

$ module load SAMtools Python
$ module save mycollection
Saved current collection of modules to: "mycollection"
$ module purge

$ module restore mycollection

Restoring modules from user's mycollection

$ module list

Currently Loaded Modules:
1) slurm/current 7) ncurses/6.1-GCCcore-8.3.0
2) hpc-env/8.3 8) bzip2/1.0.8-GCCcore-8.3.0
3) GCCcore/8.3.0 9) XZ/5.2.4-GCCcore-8.3.0
4) z1ib/1.2.11-GCCcore-8.3.0 10) cURL/7.66.0-GCCcore-8.3.0
5) binutils/2.32-GCCcore-8.3.0 11) SAMtools/1.9-GCC-8.3.0

Introduction to HPC - Session 03

* you can define, save, and restore your own module collections

13) Tcl/8.6.9-GCCcore-8.3.0

14) SQLite/3.29.0-GCCcore-8.3.0

15) GMP/6.1.2-GCCcore-8.3.0

16) libffi/3.2.1-GCCcore-8.3.0

17) OpenSSL/1.1.1d-GCCcore-8.3.0
0

6) GCC/8.3.0 12) libreadline/8.0-GCCcore-8.3.0 18) Python/3.7.4-GCCcore-8.3.

— If no name is given for save or restore, the collection default is used

The ml-command

Oldenburg

e the module-command (as well as some subcommands) can be
abreviated

— any command module subcmd can be replaced with m1 subcmd

— the ml-command also may have different meanings depending on the
context

$ ml
Currently Loaded Modules:
1) slurm/current 2) hpc-env/8.3

/cm/shared/uniol/modules/core
slurm/current (L) hpc-env/8.3 (L)

$ ml SAMtools

Introduction to HPC - Session 03

hpc-env Modules

Oldenburg

* in the module core-section you can find a number of hpc-env modules

$ module available
/cm/shared/uniol/modules/core
hpc-env/6.4 (D) hpc-env/8.3 (L)

hpc-env/8.1 hpc-uniol-env
hpc-env/8.2 hpc-uniol-new-env

— these modules provide some basic settings (e.g. $DATA, loading the Slurm
module) and make a specific module stack available

— the version corresponds to a specific GCC version and all modules in the stack
are based on this GCC version

— the non-version modules are older and not based on a specific GCC
— most software is installed in hpc-uniol-env, hpc-env/6.4 and hpc-env/8.3

— 1f you login you will find hpc-uniol-env loaded, this can be changed (e.g. with
module save)

— only one hpc-env module can be loaded at any time

Introduction to HPC - Session 03

G| Modules

Oldenburg

 why use modules
— modules allows multiple versions of the same application to be installed
— modules change all the environment settings as needed
— modules know about dependencies and conflicts

« modules and jobs

— modules have to be loaded within a job script (as needed)

— modules loaded when the job is submitted are remembered by SLURM
(but you may submit a job later again with different modules loaded)

Introduction to HPC - Session 03

Compiler, Libraries and
Toolchains

Introduction to HPC - Session 03

Compiler

Oldenburg

« different compilers available (from vendors and also open-source)

/cm/shared/uniol/modules/compiler
CUDA-Toolkit/8.0.44 NAG_Fortran/5.2
GCC/4.9.4-2.25 PGI/12.10
GCC/5.4.0-2.26 PGI/15.10

GCC/6.2.0-2.27 (D) PGI/16.10
LLVM/3.8.1-goolf-5.2.01 icc/2016.3.210
LLVM/3.8.1-intel-2016b ifort/2016.3.210
LLVM/3.9.0-intel-2016b (D)

— Intel compiler usally gives very good performance (icc and ifort)

— using different compilers may help to better understand your code
— some compiler support special hardware (e.g. GPUs by PGI)

— always load one compiler (don‘t use OS GCQC)

Introduction to HPC - Session 03

S Example: RandomWalk.cpp

Oldenburg

 download the code RandomWalk.cpp (and the other RandomWalk
files) from Stud.IP

— the code simulates a 2d random walk, each step of lenght one in random
direction, prints out distance from start after N steps

— expected distance is SQRT(N)
— compile with GCC or ICS
$ gcc RandomWalk.cpp -o RandomWalk
$ ipcp RandomWalk.cpp -o RandomWalk
— run with one argument for seed, e.g.
$./RandomWalk 12345
— timing with
$ time ./RandomWalk 12345

Introduction to HPC - Session 03

T Libraries

Oldenburg

 J|ibraries are available as modules

— numerical libraries provide optimized solutions of general problems

/cm/shared/uniol/modules/numlib
ATLAS/3.10.2 Octave/4.0.3
Armadillo/7.500.1 OpenBLAS/0.2.19
CLHEP/2.2.0.4-intel-2016b Qhull/2015.2
Eigen/3.2.9 ScalLAPACK/2.0.2
FFTW/3.3.5-gompi-5.2.01 SuiteSparse/4.5.3
FIAT/1.6.0-intel-2016b cuDNN/5.1-CUDA-8.0.44

GMP/6.1.1 (D) cvx/2.1

GSL/2.1 imkl/11.3.3.210
Hypre/2.11.1 leda/6.3
LinBox/1.4.0 maple/18
MATLAB/2016b maple/2016
MPFR/3.1.4 stata/13
NTL/9.8.1

Introduction to HPC - Session 03

Example: Matrix-Matrix Multiplication

Oldenburg

« Dbasic linear algebra is available in many different numerical
libraries
— OpenBLAS, Lapack, MKL, ...

— Basic Linear Algebra Subprograms (BLAS) contain e.g. a General Matrix
Multiplication (gemm) of the form:
C=aA-B+fSC

— original version written in Fortran

— used in the mm. cpp example (cblas_dgemm is the C-interface for double
precision gemm)

cblas dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
n, n, n, alpha, A[0], n, B[0O], n, beta, C[0], n);

Introduction to HPC - Session 03

Toolchains

Oldenburg

http://easybuild.readthedocs.io/en/latest/eb list toolchains.html

« some modules are called toolchains

— provide a collection of compiler, MPI, and/or numerical libraries

/cm/shared/uniol/modules/toolchain
foss/2016b gompi/5.2.01 iimpi/2013b intel/2016b (D)

gimpi/6.2016 gompi/6.2.01 (D) iimpi/2016b (D)
gompi/4.1.10 goolf/5.2.01 intel/2013b

« examples:

— foss: free and open-source software, currently
GCC, OpenMPI, OpenBLAS, ScaLAPACK, FFTW

— fosscuda: same as foss with CUDA support
— gompi: GCC, OpenMPI
— intel: Intel compilers, MPI, MKL

Introduction to HPC - Session 03

http://easybuild.readthedocs.io/en/latest/eb_list_toolchains.html

G Example: Matrix-Matrix Multiplication

Oldenburg

 the code mm.cpp uses OpenBLAS which is included in the foss-toolchain

$ ml restore

Resetting modules to system default
$ make clean

rm mm mm.o

$ make

g++ -02 -c mm.cpp

mm.cpp:7:19: fatal error: cblas.h: No such file or directory
#include "cblas.h"

compilation terminated.

make: *** [mm.o] Error 1

$ ml foss

$ make

g++ -02 -c mm.cpp

g++ -02 -0 mm mm.o -lopenblas

<k

G Example: Matrix-Matrix Multiplication

Oldenburg

 alternatively, the code can be compiled with Intel MKL
— requires some code change (different header file)
— requires changes to Makefile (different libraries to link)
— result: code runs faster by 25%

$ sacct -j 2591679 -o JobID,JobName,Partition,Elapsed,MaxRSS,State,ExitCode
JobID JobName Partition Elapsed State ExitCode

2591679 run_mm. job . :06: COMPLETED
2591679.bat+ batch :06: COMPLETED
2591679. mm :00: 37600K COMPLETED
2591679. mm :00: 113412K COMPLETED
2591679. mm :00: 412420K COMPLETED
2591679. mm :00: 1592064K COMPLETED
2591679. mm :04: 6310656K COMPLETED

Introduction to HPC - Session 03

el \What will (not) change with the new cluster?

Oldenburg

 module commands and module usage will not change

— new versions of hpc-env modules

» foss-toolchain will be available in a recent version
— additional toolchain with AMD compiler (?)
— Is the intel-toolchain still useful (?)
— no extra *cuda-toolchain, instead CUDA can be loaded additionally

Introduction to HPC - Session 03

Advanced Job Management

Introduction to HPC - Session 03

ol Running Many Jobs

Oldenburg

* you may need to run a program on the HPC cluster many times
with different parameters

« example: run program isPrime several (M) times
— different input parameter (value to test) every time
— all input parameters are in file parameter.dat

« strategies:

— simple approach: make M copies of job script, modify the
Input parameter in every file, could be
automatized, not recommended

— loop approach: use a single job script with a loop
— Job array approach: use Slurm’s job array functionality

Introduction to HPC - Session 03

Running Many Jobs: Job Arrays

Oldenburg

 Job or task arrays are defined by Slurm option

$ cat array _job.sh

settings for job array

#SBATCH --array 1-10:1%4 # define task array
format range:step%tasklimit

— range of tasks can be defined as from-to:increment
— multiple ranges with comma-separated list

— limiting the number of parallel tasks is possible with %Ztasklimit (when
tasks have high resource requirements)

Introduction to HPC - Session 03

Job Arrays

Oldenburg

« the same job script is executed for each task in the array

« additional variable SLURM_ARRAY_TASK_ ID is provided

$ cat prime_ job.sh

get parameter from file for each task

parameter=$(awk "NR==$SLURM_ARRAY_TASK ID {print \$1}" parameter.dat)
echo -n "Task $SLURM_ARRAY TASK ID tested if $parameter is prime? "
./isPrime $parameter

the task-1D can be used
— e.g. to number input or output file
— read specific line from input file (as in the example above)

— computations in bash (limited)

Introduction to HPC - Session 03

o Job Arrays

Oldenburg

job array are a powerful tool for task parallel jobs
— to be preferred over submitting many individual jobs

— each tasks in a job array should be sufficiently long (e.g. > 1h), due to the
overhead for a single task

requires some strategy for post-processing

— often Linux tools can do the trick, more complex tasks may require post-
processing script in e.g. Python

additional environment variables for first and last task
— however, tasks may not complete in the correct order
— alternatively job dependencies can be used

Introduction to HPC - Session 03

Carl von Ossietzky a w k

Universitat
Oldenburg

http://www.gnu.org/software/gawk/manual/gawk.html

« powerful Linux tool that searches the lines of a file for patterns and
performs an action on that line
— similar tools are grep (pattern matching) and sed (streaming edit)
— works well with data files (tables)
— uses a C-like syntax

 example: prime.awk
— reads all output files from the job array (using cat to combine them)
— counts yes and no answers
— prints final result

Introduction to HPC - Session 03

http://www.gnu.org/software/gawk/manual/gawk.html

Carl von Ossietzky

Universitat
Oldenburg

Job Arrays: Do's and Don'ts

do use job arrays whenever you run many almost identical jobs
(e.g. parameter studies)

— don‘t automatically submit 100s or 1000s of jobs simultaneously

do limit the number of parallel running tasks if individual jobs
require a lot of resources

— there is a setting MaxJobsPerAccount=250 limiting the maximum number of
running jobs for your group

don’t parallelize very short jobs in a job array
— Individual tasks should run for minutes at the very least, better for hours
— group tasks for longer job run time and parallelize for groups

do test

don’t run tasks if you do not need to

Introduction to HPC - Session 03

ol Running Many Jobs

Oldenburg

* you may need to run a program on the HPC cluster many times
with different parameters

« example: run program isPrime several (M) times

— different input parameter (value to test) every time
— all input parameters are in file parameter.dat

« strategies:

— simple approach: make M copies of job script, modify the
Input parameter in every file, could be
automatized, not recommended

— loop approach: use a single job script with a loop
— job array approach: use Slurm’s job array functionality
— parallel approach: use the Linux command parallel

Introduction to HPC - Session 03

v The parallel Command

Oldenburg

https://www.gnu.org/software/parallel/

* the parallel command is a shell tool for executing
command in parallel

— available on the cluster as module

$ module load parallel

— example: run RandomWalk_task.sh ten times in parallel

$ parallel -N 1 -j 4 --joblog parallel.log ./RandomWalk task.sh {1} ::: {1..10}
Running RandomWalk with seed 2000 on hpcleol
Seed = 2000

Running RandomWalk with seed 4683 on hpcleol
Seed = 4683

Introduction to HPC - Session 03

https://www.gnu.org/software/parallel/

v The parallel Command

Oldenburg

https://www.gnu.org/software/parallel/

« the parallel command can be used in many different ways

— In the example

$ parallel -N 1 -j 4 --joblog parallel.log ./RandomWalk task.sh {1} ::: {1..10}

— arangeis given with : :: {1..10}, alternatively use ::: $(seq
10)

— with {} or {n} the value of the argument is passed to the task

— the option -N defines how many arguments are passed to the task
— the option -j defines how many tasks can run in parallel

— an additional logdfile is created with the option --joblog <logfile>

The use of the parallel command should be cited.

Introduction to HPC - Session 03

https://www.gnu.org/software/parallel/

ol Running Many Jobs

Oldenburg

« several approaches can be used to run many tasks on the cluster

loop approach: single job, post-processing could be included,
only serial processing, best used if tasks are
short (minutes) and total runtime not too long

job arrays: single sbatch, one job per task, parallel
processing on available resources, tasks
should run >1h, limit maximum number of tasks
running, overhead for starting tasks

parallel approach: single job, distributed resources can be used,
better control over used resources, little
overhead for starting tasks, scripts can be
adapted easily

also see https://wiki.hpcuser.uni-oldenburg.de/index.php?title=How to Manage Many Jobs

Introduction to HPC - Session 03

https://wiki.hpcuser.uni-oldenburg.de/index.php?title=How_to_Manage_Many_Jobs

Handling Many Output Files

Oldenburg

 Jobs or job arrays with many tasks in general also generate many
output files

— may degrade performance, use $WORK or $TMPDIR
— you may hit your file number quota

 If possible try to generate single output file
— might be difficult at job runtime but can be done afterwards

$ tar zcf RandomWalk.data.tar.gz RandomWalk*.data
$ rm RandomWalk *.data
$ tar -zxOf RandomWalk.data.tar.gz | awk -f RandomWalk.awk | sort -g

#steps expected mean std
10 3.162278 2.089732 1.232151
100 10.000000 9.985299 6.881550

Introduction to HPC - Session 03

Carl von Ossietzky

Universitat
Oldenburg

Job Dependencies

https://wiki.hpcuser.uni-oldenburg.de/index.php?titte=How to Use Job Dependencies

« Jobs can have a dependency on another job
— option: --dependency or short -d

— format: - -dependency <type>:<jobID>[,<jobID>..]
where <type> can be one of. afterany, afterok, afternotok

* ajob with a dependency will not start until the
predecessors have completed with the demanded status

— careful: make sure exit status is correct for your needs
— additional type after: jobs starts once predecessors have started

« a special dependency type is singleton

— all jobs with the same job name and from the same user have to
complete first, can be used to collect results

Introduction to HPC - Session 03

https://wiki.hpcuser.uni-oldenburg.de/index.php?title=How_to_Use_Job_Dependencies

Carl von Ossietzky

Universitat
Oldenburg

Exercises

Introduction to HPC - Session 03

Carl von Ossietzky

Universitat
Oldenburg

Exercises

1. Try to compile and run the mm-code
— Try to use different toolchains

2. Try to run a job script for an application
— See next slide for specific example Orca

3. Try to run and compile the RandomWalk-code

— Try different compilers
— Run multiple times as job array
— Run multiple time using the Linux parallel command

Introduction to HPC - Session 03

o] Example: ORCA Job

Oldenburg

« examples for using installed software on the cluster can be found
In the HPC wiiki

— e.g. ORCA (chemistry)
http://wiki.hpcuser.uni-oldenburg.de/index.php?title=ORCA 2016

— download the files for serial runs and submit job
— use ORCA 3.0.3

— the job script is rather complex

o module is loaded

o files are copied to $TMPDIR

o application is started from $TMPDIR

o output is copied to $SLURM_SUBMIT_DIR

Introduction to HPC - Session 03

http://wiki.hpcuser.uni-oldenburg.de/index.php?title=ORCA

ool Example: Many Random Walks

Oldenburg

« task: run RandomWalk several (M=10) times to get the average
distance after N steps from multiple runs

— different seed every time, provided in a file
— write job script run as one or more SLURM jobs

— think how to analyse data from M completed runs

o how to combine the output of M tasks

o maybe with awk script?

Introduction to HPC - Session 03

