
Introduction to
High-Performance Computing

Session 03

HPC Environment, Modules, Compiler,

and Toolchains

HPC User Environment

the user environment on a HPC cluster consists of:

• the operating system (OS)

‒ e.g. RHEL Linux (all HPC systems in top500 have Linux-like OS)

‒ basic functionality (login, create and edit files, …)

• data storage

‒ one or more file systems

‒ temporary, short and long term storage

• software

‒ scientific applications

‒ libraries

‒ compiler

• job scheduler

Introduction to HPC - Session 032

File Systems

Introduction to HPC - Session 033

HPC File Systems

• typically on a HPC system different file systems are available

Name Description Features

$TMPDIR or

/scratch

temporary storage provided on a per job basis,

deleted after job

often local disk or similar

very fast I/O, up to a few TB, no

backup

$WORK
temporary storage for job data, maybe kept

after job, typically parallel file system attached

to interconnect

fast, parallel I/O, up to PB, no

backup

$DATA
mid-term storage for job output, parallel

filesystem or NFS
up to PB, maybe with backup

$HOME
NFS storage, long term and secure, for

program codes, initial conditions

few 100GB, full backup,

snapshots

$ARCH
permanent archive, storage for finished

projects, tape library
few PB, possible slow read

http://www.fz-juelich.de/ias/jsc/EN/Expertise/Datamanagement/JUDAC/Filesystems/filesystems_node.html

Introduction to HPC - Session 034

http://www.fz-juelich.de/ias/jsc/EN/Expertise/Datamanagement/JUDAC/Filesystems/filesystems_node.html

File Systems

• central Enterprise Spectrum Scale storage (ESS)

‒ used for home, data, group and offsite directories

‒ NFS mounted over 2x 10Gb Ethernet

‒ full backup and snapshot functionality

‒ can be mounted on local workstation using SMB

• shared parallel storage (GPFS)

‒ used work directory only

‒ data transfer over FDR Infiniband

‒ no backup

‒ can also be mounted on local workstation using SMB

• local disks or SSDs for scratch

‒ CARL compute nodes have local storage (1-2TB per node)

‒ EDDY compute nodes have 1GB RAM disk (for compatibility)

‒ usable during job run time

Introduction to HPC - Session 035

http://wiki.hpcuser.uni-oldenburg.de/index.php?title=File_system_and_Data_Management

https://wiki.hpcuser.uni-oldenburg.de/index.php?title=File_system_and_Data_Management

Directory Structure

• on every filesystem ($HOME, $DATA, $WORK) users will have their

own subdirectory

‒ e.g. for $HOME

‒ default permissions prevent other users from seeing the contents of their

directory

‒ user can give permissions to others to access files or subdirectory as

needed (user‘s responsibility)

‒ file and directory access can be based on primary (the working group) and

secondary (e.g. the institute) Unix groups

‒ recommendation: keep access restricted on $HOME and if needed share

files/dirs. on $DATA or $WORK

drwx------ abcd1234 agsomegroup /user/abcd1234

https://wiki.hpcuser.uni-oldenburg.de/index.php?title=File_system_and_Data_Management#Managing_access_rights_of_your_folders

Introduction to HPC - Session 036

https://wiki.hpcuser.uni-oldenburg.de/index.php?title=File_system_and_Data_Management#Managing_access_rights_of_your_folders

File Systems

File

System

Env.

Variable
Path Used for

Home $HOME /user/abcd1234

critical data that cannot easily be

reproduced (program codes, initial

conditions, results from data

analysis)

Data $DATA /nfs/data/abcd1234
important data from simulations for

on-going analysis and mid term

(project duration) storage

Work $WORK /gss/work/abcd1234
data storage for simulation

runtime, pre- and post-processing,

short term (weeks) storage

Scratch $TMPDIR /scratch/<job-dir>
temporary data storage during job

runtime

Offsite $OFFSITE /nfs/offsite/user/abcd1234
long term storage for inactive data,

only available on login nodes

• $HOME, $DATA and $OFFSITE have backup for disaster recovery and daily snapshots for file

recovery

• quotas are use on all file systems to limit the amount of data that can be stored by a user

Introduction to HPC - Session 037

Quotas

• on every file system default quotas are in place

‒ $HOME, $DATA and $OFFSITE have 1TB, 20TB and 12.5TB, respectively

‒ the number of files is also limited ($HOME: 500k, $DATA: 1M, $OFFSITE: 250k)

‒ $WORK has 25TB and no limit on number of files

‒ maybe increased upon request (if resources are available)

• soft and hard quotas

‒ in addition to the soft limit above, there is also a higher hard limit

‒ if usage is over soft quota a grace period of 30 days is triggered

‒ after grace period no data can be written to the affected directory by user

➔ check your usage with lastquota and clean up your data on work regularly

https://wiki.hpcuser.uni-oldenburg.de/index.php?title=File_system_and_Data_Management#Quotas

Introduction to HPC - Session 038

https://wiki.hpcuser.uni-oldenburg.de/index.php?title=File_system_and_Data_Management#Quotas

Group Directories

• group directories are available upon request

‒ storage on the ESS

‒ can be mounted via SMB (only version 2 or better)

‒ path: $GROUP or /nfs/group/agyourgroup

‒ should be used for data shared among members of the same group, in

particular to avoid multiple copies of the same file

‒ group leader is owner of directory

‒ default rights are set so that anyone in group can read and write to group

directory

Introduction to HPC - Session 039

File System Shares

• you can mount your $HOME, $DATA and $WORK as well as $OFFSITE

and $GROUP directories on your local workstation

• server address for mounting are

$HOME //smb.uni-oldenburg.de/hpc_home

$DATA //smb.uni-oldenburg.de/hpc_data

$WORK //smb.hpc.uni-oldenburg.de/hpc_work

$OFFSITE //smb.uni-oldenburg.de/hpc_offsite

$GROUP //smb.uni-oldenburg.de/<groupname>

‒ for Windows connect a network drive (and replace “/” with “\”)

‒ for Linux add information in /etc/fstab

https://wiki.hpcuser.uni-oldenburg.de/index.php?title=Local_Mounting_of_File_Systems

Introduction to HPC - Session 0310

https://wiki.hpcuser.uni-oldenburg.de/index.php?title=Local_Mounting_of_File_Systems

File System Use

• applications with high I/O demands can put a lot of stress on the

used file system

• I/O-performance depends on the I/O profile

‒ I/O with few but large files is better than many small files

‒ sequential I/O is better than random access

• pick the right file system for your I/O profile

‒ local disks or SSDs are best for I/O with small block sizes

‒ parallel files system ($WORK) is best for large files and parallel I/O

‒ $HOME and $DATA (and all NFS mounted directories) should be avoided for

I/O at runtime

simple I/O performance tests can be done with dd
https://www.thomas-krenn.com/de/wiki/Linux_I/O_Performance_Tests_mit_dd

Introduction to HPC - Session 0311

https://www.thomas-krenn.com/de/wiki/Linux_I/O_Performance_Tests_mit_dd

File System Bandwidth Limits

Ethernet network

NFS File System

(e.g. $HOME)

Parallel File System

($WORK)

2,5GB/s

12,5GB/s

125MB/s

L
o
g
in

 n
o
d
e
s

C
o

m
p

u
te

n
o
d
e
s

FDR Infiniband network

6,75GB/s

Note, that the maximum bandwidth is shared for the whole node/cluster

Introduction to HPC - Session 0312

Best Practices for File System Use

• if your job is doing heavy I/O use $WORK or $TMPDIR

‒ I/O bandwidth to $WORK is more than 10GB/s (shared for the whole cluster),

compared to 125MB/s at most to $HOME and $DATA

‒ try to use parallel I/O and avoid using many small files

‒ $TMPDIR is best for small files and random access (in particular in the

partitions mpcb.p and mpcp.p)

• keep your data on $WORK while it is being processed

‒ data that is currently not needed can be moved to $DATA

‒ consider creating compressed archives and organise your data

‒ only keep important data and delete as much as possible when a project is

finished

‒ use $GROUP if you frequently need to share data within your group to avoid

unneccessary copies of data

Introduction to HPC - Session 0313

Best Practices for File System Use

• user-specific directories will be deleted when the account expires

‒ files are only kept for 180 days

‒ make sure you copy files you want to keep elsewhere (e.g. a group

directory)

• reducing your file system footprint

‒ the size but also the number of files count (especially if there is a backup)

‒ clean up your directories whenever you finish a project or no longer need

some files

‒ files you want to keep can be packed in an archive file

Introduction to HPC - Session 0314

$ tar cf project.tar project/ # create tar-file
to reduce number of files

$ zstd --rm project.tar # compress files for smaller size

Final Remarks File Systems

• setting file permissions

‒ add execute (x) permission to directories to allow cd

‒ add read (r) permission to directories to allow ls

‒ avoid adding write (w) permission for group or others on directories (you

cannot change ownership of files)

• checking quotas

‒ use the lastquota command to find out how much diskspace your are using

‒ also weekly e-mails to all users

Introduction to HPC - Session 0315

What will (not) change with the next cluster?

• every user will get a new $HOME and $WORK

‒ old directories will be available for migration period

• both $HOME and $WORK will be on a new parallel file system

‒ faster file I/O over Infiniband

‒ snapshots and backup for $HOME but not for $WORK

• $DATA and $OFFISTE will be available as before

‒ also group directories $GROUP

• no local HDDs or SSDs anymore

‒ a $TMPDIR will be provided on a fast NVME-server

• I/O performance will increase for all directories

‒ probably a factor of two

Introduction to HPC - Session 0316

Software and Modules

Introduction to HPC - Session 0317

Using Installed Software

• software is installed centrally on the

cluster

‒ main path: /cm/shared/uniol/software

‒ installed applications are optimized for system

‒ can be used by all users (unless restricted by

license terms)

‒ own software can be installed, too, e.g. in

$HOME

• installed software includes

‒ compilers

‒ libraries (MPI, numerical libraries,…)

‒ scientific application

‒ overview and help in the HPC wiki

Introduction to HPC - Session 0318

Environment Modules

• Linux settings are defined by environment variables

‒ applications require correct settings of environment variables (e.g. the PATH-

variable)

‒ environment modules are used to make predefined changes to the

environment using the module-command

Introduction to HPC - Session 0319

$ echo $HOME # home directory
/user/abcd1234
$ echo $PATH # where to look for applications
/cm/shared/apps/slurm/current/sbin:/cm/shared/apps/slurm/current/bin:/us
r/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/opt/ibutils/bin

$ env # full list
HOSTNAME=hpcl002
TERM=xterm
. . .

• the environment settings for installed applications are managed

using modules

‒ example: loading a module for SAMtools

‒ after the module is loaded, the application can be used

‒ the variable $PATH has been modified (among other things)

The module-command

$ module load SAMtools/1.9-GCC-8.3.0
$ samtools --version
samtools 1.9
Using htslib 1.9
Copyright (C) 2018 Genome Research Ltd.
$ which samtools
/cm/shared/uniol/software/8.3/SAMtools/1.9-GCC-8.3.0/bin/samtools
[abcd1234@carl]$ echo $PATH
/cm/shared/uniol/software/8.3/SAMtools/1.9-GCC-8.3.0/bin:/cm/shared/...

Introduction to HPC - Session 0320

The module-command

• available modules can be displayed and searched for

‒ displaying all modules (also work with spider)

‒ very long list of available modules

‒ modules can be highlighted with (L) for loaded and/or with (D) for default

‒ add application name to get shorter list

• show currently loaded modules

Introduction to HPC - Session 0321

$ module available
----------------- /cm/shared/uniol/modules/8.3/bio --------------------
. . .
SAMtools/0.1.19-foss-2019b SAMtools/1.9-GCC-8.3.0 (L,D)
. . .

$ module list
Currently Loaded Modules:
1) slurm/current 2) hpc-env/8.3 3) GCCcore/8.3.0 ...

The module-command

• find modules

‒ list all modules [with given module name]

‒ both commands are case-insensitive and understand regular expressions when using option -r

• load/unload

‒ to return to a default state

• information about modules

Introduction to HPC - Session 0322

$ module available [module-name]
$ module spider [module-name]

$ module load <module-name>
$ module remove <module-name>

$ module restore

$ module list
$ module help <module-name>
$ module spider <module-name>

https://wiki.hpcuser.uni-oldenburg.de/index.php?title=User_environment_-_The_usage_of_module_2016

https://wiki.hpcuser.uni-oldenburg.de/index.php?title=User_environment_-_The_usage_of_module_2016

The module-command

Introduction to HPC - Session 0323

• you can define, save, and restore your own module collections

‒ if no name is given for save or restore, the collection default is used

$ module load SAMtools Python # to load some modules
$ module save mycollection # to save currently loaded modules
Saved current collection of modules to: "mycollection"
$ module purge # unload all modules
$ module restore mycollection # restore previously saved collection
Restoring modules from user's mycollection
$ module list
Currently Loaded Modules:
1) slurm/current 7) ncurses/6.1-GCCcore-8.3.0 13) Tcl/8.6.9-GCCcore-8.3.0
2) hpc-env/8.3 8) bzip2/1.0.8-GCCcore-8.3.0 14) SQLite/3.29.0-GCCcore-8.3.0
3) GCCcore/8.3.0 9) XZ/5.2.4-GCCcore-8.3.0 15) GMP/6.1.2-GCCcore-8.3.0
4) zlib/1.2.11-GCCcore-8.3.0 10) cURL/7.66.0-GCCcore-8.3.0 16) libffi/3.2.1-GCCcore-8.3.0
5) binutils/2.32-GCCcore-8.3.0 11) SAMtools/1.9-GCC-8.3.0 17) OpenSSL/1.1.1d-GCCcore-8.3.0
6) GCC/8.3.0 12) libreadline/8.0-GCCcore-8.3.0 18) Python/3.7.4-GCCcore-8.3.0

The ml-command

• the module-command (as well as some subcommands) can be

abreviated

‒ any command module subcmd can be replaced with ml subcmd

‒ the ml-command also may have different meanings depending on the

context

Introduction to HPC - Session 0324

$ ml # same as module list
Currently Loaded Modules:
1) slurm/current 2) hpc-env/8.3

$ ml av # same as module available
. . .
------------------- /cm/shared/uniol/modules/core ---------------------

slurm/current (L) hpc-env/8.3 (L)
. . .
$ ml SAMtools # same as module load SAMtools

hpc-env Modules

• in the module core-section you can find a number of hpc-env modules

‒ these modules provide some basic settings (e.g. $DATA, loading the Slurm
module) and make a specific module stack available

‒ the version corresponds to a specific GCC version and all modules in the stack
are based on this GCC version

‒ the non-version modules are older and not based on a specific GCC

‒ most software is installed in hpc-uniol-env, hpc-env/6.4 and hpc-env/8.3

‒ if you login you will find hpc-uniol-env loaded, this can be changed (e.g. with
module save)

‒ only one hpc-env module can be loaded at any time

$ module available
------------ /cm/shared/uniol/modules/core ---------------
hpc-env/6.4 (D) hpc-env/8.3 (L)
hpc-env/8.1 hpc-uniol-env
hpc-env/8.2 hpc-uniol-new-env

Introduction to HPC - Session 0325

Modules

• why use modules

‒ modules allows multiple versions of the same application to be installed

‒ modules change all the environment settings as needed

‒ modules know about dependencies and conflicts

• modules and jobs

‒ modules have to be loaded within a job script (as needed)

‒ modules loaded when the job is submitted are remembered by SLURM

(but you may submit a job later again with different modules loaded)

Introduction to HPC - Session 0326

Compiler, Libraries and
Toolchains

Introduction to HPC - Session 0327

Compiler

• different compilers available (from vendors and also open-source)

‒ Intel compiler usally gives very good performance (icc and ifort)

‒ using different compilers may help to better understand your code

‒ some compiler support special hardware (e.g. GPUs by PGI)

‒ always load one compiler (don‘t use OS GCC)

---------- /cm/shared/uniol/modules/compiler -----------
CUDA-Toolkit/8.0.44 NAG_Fortran/5.2
GCC/4.9.4-2.25 PGI/12.10
GCC/5.4.0-2.26 PGI/15.10
GCC/6.2.0-2.27 (D) PGI/16.10 (D)
LLVM/3.8.1-goolf-5.2.01 icc/2016.3.210
LLVM/3.8.1-intel-2016b ifort/2016.3.210
LLVM/3.9.0-intel-2016b (D)

Introduction to HPC - Session 0328

Example: RandomWalk.cpp

• download the code RandomWalk.cpp (and the other RandomWalk

files) from Stud.IP

‒ the code simulates a 2d random walk, each step of lenght one in random

direction, prints out distance from start after N steps

‒ expected distance is SQRT(N)

‒ compile with GCC or ICS

$ gcc RandomWalk.cpp –o RandomWalk

$ ipcp RandomWalk.cpp –o RandomWalk

‒ run with one argument for seed, e.g.

$./RandomWalk 12345

‒ timing with

$ time ./RandomWalk 12345

Introduction to HPC - Session 0329

Libraries

• libraries are available as modules

‒ numerical libraries provide optimized solutions of general problems

------------ /cm/shared/uniol/modules/numlib -------------
ATLAS/3.10.2 Octave/4.0.3
Armadillo/7.500.1 OpenBLAS/0.2.19
CLHEP/2.2.0.4-intel-2016b Qhull/2015.2
Eigen/3.2.9 ScaLAPACK/2.0.2
FFTW/3.3.5-gompi-5.2.01 SuiteSparse/4.5.3
FIAT/1.6.0-intel-2016b cuDNN/5.1-CUDA-8.0.44
GMP/6.1.1 (D) cvx/2.1
GSL/2.1 imkl/11.3.3.210
Hypre/2.11.1 leda/6.3
LinBox/1.4.0 maple/18
MATLAB/2016b maple/2016 (D)
MPFR/3.1.4 stata/13
NTL/9.8.1

Introduction to HPC - Session 0330

Example: Matrix-Matrix Multiplication

• basic linear algebra is available in many different numerical

libraries

‒ OpenBLAS, Lapack, MKL, …

‒ Basic Linear Algebra Subprograms (BLAS) contain e.g. a General Matrix

Multiplication (gemm) of the form:

𝐶 = 𝛼𝐴 ⋅ 𝐵 + 𝛽𝐶

‒ original version written in Fortran

‒ used in the mm.cpp example (cblas_dgemm is the C-interface for double

precision gemm)

// A, B, and C are objects of class SqMatrix but A[0] etc. are

// pointers to first element in matrix which is what dgemm expects

cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,

n, n, n, alpha, A[0], n, B[0], n, beta, C[0], n);

Introduction to HPC - Session 0331

Toolchains

• some modules are called toolchains

‒ provide a collection of compiler, MPI, and/or numerical libraries

• examples:

‒ foss: free and open-source software, currently

GCC, OpenMPI, OpenBLAS, ScaLAPACK, FFTW

‒ fosscuda: same as foss with CUDA support

‒ gompi: GCC, OpenMPI

‒ intel: Intel compilers, MPI, MKL

------------- /cm/shared/uniol/modules/toolchain ------------------
foss/2016b gompi/5.2.01 iimpi/2013b intel/2016b (D)
gimpi/6.2016 gompi/6.2.01 (D) iimpi/2016b (D)
gompi/4.1.10 goolf/5.2.01 intel/2013b

http://easybuild.readthedocs.io/en/latest/eb_list_toolchains.html

Introduction to HPC - Session 0332

http://easybuild.readthedocs.io/en/latest/eb_list_toolchains.html

Example: Matrix-Matrix Multiplication

• the code mm.cpp uses OpenBLAS which is included in the foss-toolchain

$ ml restore
Resetting modules to system default
$ make clean
rm mm mm.o
$ make
g++ -O2 -c mm.cpp
mm.cpp:7:19: fatal error: cblas.h: No such file or directory
#include "cblas.h"

^
compilation terminated.
make: *** [mm.o] Error 1
$ ml foss
$ make
g++ -O2 -c mm.cpp
g++ -O2 -o mm mm.o -lopenblas

Introduction to HPC - Session 0333

Example: Matrix-Matrix Multiplication

• alternatively, the code can be compiled with Intel MKL

‒ requires some code change (different header file)

‒ requires changes to Makefile (different libraries to link)

‒ result: code runs faster by 25%

$ sacct -j 2591679 -o JobID,JobName,Partition,Elapsed,MaxRSS,State,ExitCode
JobID JobName Partition Elapsed MaxRSS State ExitCode

------------ ---------- ---------- ---------- ---------- ---------- --------
2591679 run_mm.job carl.p 00:06:21 COMPLETED 0:0
2591679.bat+ batch 00:06:21 7336K COMPLETED 0:0
2591679.0 mm 00:00:33 37600K COMPLETED 0:0
2591679.1 mm 00:00:32 113412K COMPLETED 0:0
2591679.2 mm 00:00:33 412420K COMPLETED 0:0
2591679.3 mm 00:00:32 1592064K COMPLETED 0:0
2591679.4 mm 00:04:09 6310656K COMPLETED 0:0

Introduction to HPC - Session 0334

What will (not) change with the new cluster?

• module commands and module usage will not change

‒ new versions of hpc-env modules

• foss-toolchain will be available in a recent version

‒ additional toolchain with AMD compiler (?)

‒ is the intel-toolchain still useful (?)

‒ no extra *cuda-toolchain, instead CUDA can be loaded additionally

Introduction to HPC - Session 0335

Advanced Job Management

Introduction to HPC - Session 0336

Running Many Jobs

• you may need to run a program on the HPC cluster many times

with different parameters

• example: run program isPrime several (M) times

‒ different input parameter (value to test) every time

‒ all input parameters are in file parameter.dat

• strategies:

‒ simple approach: make M copies of job script, modify the

input parameter in every file, could be

automatized, not recommended

‒ loop approach: use a single job script with a loop

‒ job array approach: use Slurm’s job array functionality

‒ parallel approach: use the Linux command parallel

Introduction to HPC - Session 0337

Running Many Jobs: Job Arrays

• job or task arrays are defined by Slurm option

‒ range of tasks can be defined as from-to:increment

‒ multiple ranges with comma-separated list

‒ limiting the number of parallel tasks is possible with %tasklimit (when

tasks have high resource requirements)

$ cat array_job.sh
. . .
settings for job array
#SBATCH --array 1-10:1%4 # define task array

format range:step%tasklimit
. . .

Introduction to HPC - Session 0338

Job Arrays

• the same job script is executed for each task in the array

• additional variable SLURM_ARRAY_TASK_ID is provided

the task-ID can be used

‒ e.g. to number input or output file

‒ read specific line from input file (as in the example above)

‒ computations in bash (limited)

$ cat prime_job.sh
. . .
get parameter from file for each task
parameter=$(awk "NR==$SLURM_ARRAY_TASK_ID {print \$1}" parameter.dat)
echo -n "Task $SLURM_ARRAY_TASK_ID tested if $parameter is prime? "
./isPrime $parameter
. . .

Introduction to HPC - Session 0339

Job Arrays

• job array are a powerful tool for task parallel jobs

‒ to be preferred over submitting many individual jobs

‒ each tasks in a job array should be sufficiently long (e.g. > 1h), due to the

overhead for a single task

• requires some strategy for post-processing

‒ often Linux tools can do the trick, more complex tasks may require post-

processing script in e.g. Python

• additional environment variables for first and last task

‒ however, tasks may not complete in the correct order

‒ alternatively job dependencies can be used

Introduction to HPC - Session 0340

awk

• powerful Linux tool that searches the lines of a file for patterns and

performs an action on that line

‒ similar tools are grep (pattern matching) and sed (streaming edit)

‒ works well with data files (tables)

‒ uses a C-like syntax

• example: prime.awk

‒ reads all output files from the job array (using cat to combine them)

‒ counts yes and no answers

‒ prints final result

Introduction to HPC - Session 0341

http://www.gnu.org/software/gawk/manual/gawk.html

http://www.gnu.org/software/gawk/manual/gawk.html

Job Arrays: Do‘s and Don‘ts

• do use job arrays whenever you run many almost identical jobs

(e.g. parameter studies)

‒ don‘t automatically submit 100s or 1000s of jobs simultaneously

• do limit the number of parallel running tasks if individual jobs

require a lot of resources

‒ there is a setting MaxJobsPerAccount=250 limiting the maximum number of

running jobs for your group

• don’t parallelize very short jobs in a job array

‒ individual tasks should run for minutes at the very least, better for hours

‒ group tasks for longer job run time and parallelize for groups

• do test

• don’t run tasks if you do not need to

Introduction to HPC - Session 0342

Running Many Jobs

• you may need to run a program on the HPC cluster many times

with different parameters

• example: run program isPrime several (M) times

‒ different input parameter (value to test) every time

‒ all input parameters are in file parameter.dat

• strategies:

‒ simple approach: make M copies of job script, modify the

input parameter in every file, could be

automatized, not recommended

‒ loop approach: use a single job script with a loop

‒ job array approach: use Slurm’s job array functionality

‒ parallel approach: use the Linux command parallel

Introduction to HPC - Session 0343

The parallel Command

• the parallel command is a shell tool for executing

command in parallel

‒ available on the cluster as module

‒ example: run RandomWalk_task.sh ten times in parallel

https://www.gnu.org/software/parallel/

$ module load parallel

$ parallel -N 1 -j 4 --joblog parallel.log ./RandomWalk_task.sh {1} ::: {1..10}

Running RandomWalk with seed 2000 on hpcl001
Seed = 2000
Running RandomWalk with seed 4683 on hpcl001
Seed = 4683

Introduction to HPC - Session 0344

https://www.gnu.org/software/parallel/

The parallel Command

• the parallel command can be used in many different ways

‒ in the example

‒ a range is given with ::: {1..10}, alternatively use ::: $(seq

10)

‒ with {} or {n} the value of the argument is passed to the task

‒ the option -N defines how many arguments are passed to the task

‒ the option -j defines how many tasks can run in parallel

‒ an additional logfile is created with the option --joblog <logfile>

$ parallel -N 1 -j 4 --joblog parallel.log ./RandomWalk_task.sh {1} ::: {1..10}

The use of the parallel command should be cited.

Introduction to HPC - Session 0345

https://www.gnu.org/software/parallel/

https://www.gnu.org/software/parallel/

Running Many Jobs

• several approaches can be used to run many tasks on the cluster

loop approach: single job, post-processing could be included,

only serial processing, best used if tasks are

short (minutes) and total runtime not too long

job arrays: single sbatch, one job per task, parallel

processing on available resources, tasks

should run >1h, limit maximum number of tasks

running, overhead for starting tasks

parallel approach: single job, distributed resources can be used,

better control over used resources, little

overhead for starting tasks, scripts can be

adapted easily

Introduction to HPC - Session 0346

also see https://wiki.hpcuser.uni-oldenburg.de/index.php?title=How_to_Manage_Many_Jobs

https://wiki.hpcuser.uni-oldenburg.de/index.php?title=How_to_Manage_Many_Jobs

Handling Many Output Files

• jobs or job arrays with many tasks in general also generate many

output files

‒ may degrade performance, use $WORK or $TMPDIR

‒ you may hit your file number quota

• if possible try to generate single output file

‒ might be difficult at job runtime but can be done afterwards

Introduction to HPC - Session 0347

$ tar zcf RandomWalk.data.tar.gz RandomWalk*.data # create a compressed tar-file
$ rm RandomWalk_*.data # delete small files
$ tar -zxOf RandomWalk.data.tar.gz | awk -f RandomWalk.awk | sort -g
#steps expected mean std
10 3.162278 2.089732 1.232151
100 10.000000 9.985299 6.881550
. . .

Job Dependencies

• jobs can have a dependency on another job

‒ option: --dependency or short -d

‒ format: --dependency <type>:<jobID>[,<jobID>…]

where <type> can be one of: afterany, afterok, afternotok

• a job with a dependency will not start until the

predecessors have completed with the demanded status

‒ careful: make sure exit status is correct for your needs

‒ additional type after: jobs starts once predecessors have started

• a special dependency type is singleton

‒ all jobs with the same job name and from the same user have to

complete first, can be used to collect results

https://wiki.hpcuser.uni-oldenburg.de/index.php?title=How_to_Use_Job_Dependencies

Introduction to HPC - Session 0348

https://wiki.hpcuser.uni-oldenburg.de/index.php?title=How_to_Use_Job_Dependencies

Exercises

Introduction to HPC - Session 0349

Exercises

1. Try to compile and run the mm-code

‒ Try to use different toolchains

2. Try to run a job script for an application

‒ See next slide for specific example Orca

3. Try to run and compile the RandomWalk-code

‒ Try different compilers

‒ Run multiple times as job array

‒ Run multiple time using the Linux parallel command

Introduction to HPC - Session 0350

Example: ORCA Job

• examples for using installed software on the cluster can be found

in the HPC wiki

‒ e.g. ORCA (chemistry)

http://wiki.hpcuser.uni-oldenburg.de/index.php?title=ORCA_2016

‒ download the files for serial runs and submit job

‒ use ORCA 3.0.3

‒ the job script is rather complex

o module is loaded

o files are copied to $TMPDIR

o application is started from $TMPDIR

o output is copied to $SLURM_SUBMIT_DIR

Introduction to HPC - Session 0351

http://wiki.hpcuser.uni-oldenburg.de/index.php?title=ORCA

Example: Many Random Walks

• task: run RandomWalk several (M=10) times to get the average

distance after N steps from multiple runs

‒ different seed every time, provided in a file

‒ write job script run as one or more SLURM jobs

‒ think how to analyse data from M completed runs

o how to combine the output of M tasks

o maybe with awk script?

Introduction to HPC - Session 0352

