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T HPC User Environment

Oldenburg

the user environment on a HPC cluster consists of:

the operating system (OS)
— e.g. RHEL Linux (all HPC systems in top500 have Linux-like OS)
— basic functionality (login, create and edit files, ...)

data storage
— one or more file systems
— temporary, short and long term storage

software

— scientific applications
— libraries

— compiler

job scheduler
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File Systems
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el HPC File Systems

Oldenburg

« typically on a HPC system different file systems are available

http://www.fz-juelich.de/ias/jsc/EN/Expertise/Datamanagement/ JUDAC/Filesystems/filesystems node.html

$TMPDIR or
/scratch

$WORK

$DATA

$HOME

$ARCH

temporary storage provided on a per job basis,
deleted after job
often local disk or similar

temporary storage for job data, maybe kept
after job, typically parallel file system attached
to interconnect

mid-term storage for job output, parallel
filesystem or NFS

NFS storage, long term and secure, for
program codes, initial conditions

permanent archive, storage for finished
projects, tape library
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very fast 1/0O, up to a few TB, no
backup

fast, parallel 1/0, up to PB, no
backup

up to PB, maybe with backup

few 100GB, full backup,
snapshots

few PB, possible slow read


http://www.fz-juelich.de/ias/jsc/EN/Expertise/Datamanagement/JUDAC/Filesystems/filesystems_node.html

el File Systems

Oldenburg

http://wiki.hpcuser.uni-oldenburg.de/index.php?title=File system and Data Management

« central Enterprise Spectrum Scale storage (ESS)
— used for home, data, group and offsite directories
— NFS mounted over 2x 10Gb Ethernet
— full backup and snapshot functionality
— can be mounted on local workstation using SMB

« shared parallel storage (GPFS)
— used work directory only
— data transfer over FDR Infiniband
— no backup
— can also be mounted on local workstation using SMB

* local disks or SSDs for scratch
— CARL compute nodes have local storage (1-2TB per node)
— EDDY compute nodes have 1GB RAM disk (for compatibility)
— usable during job run time
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https://wiki.hpcuser.uni-oldenburg.de/index.php?title=File_system_and_Data_Management
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Directory Structure

« on every filesystem ($HOME, $DATA, $WORK) users will have their
own subdirectory
— e.g. for $HOME

drwx------ abcd1234  agsomegroup /user/abcdl1234

— default permissions prevent other users from seeing the contents of their
directory

— user can give permissions to others to access files or subdirectory as
needed (user's responsibility)

— file and directory access can be based on primary (the working group) and
secondary (e.g. the institute) Unix groups

— recommendation: keep access restricted on $HOME and if needed share
files/dirs. on $DATA or $WORK

https://wiki.hpcuser.uni-oldenburg.de/index.php?title=File_system and Data Management#Managing_access _rights of your folders
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el File Systems

File Env.

critical data that cannot easily be
reproduced (program codes, initial
conditions, results from data
analysis)

Oldenburg

Home $HOME /user/abcd1234

important data from simulations for

Data $DATA /nfs/data/abcd1234 on-going analysis and mid term
(project duration) storage

data storage for simulation

Work $WORK /gss/work/abcd1234 runtime, pre- and post-processing,
short term (weeks) storage

temporary data storage during job

Scratch $TMPDIR /scratch/<job-dir> untime

long term storage for inactive data,
only available on login nodes

Offsite $OFFSITE /nfs/offsite/user/abcd1234

*  $HOME, $DATA and $0FFSITE have backup for disaster recovery and daily snapshots for file
recovery
» guotas are use on all file systems to limit the amount of data that can be stored by a user
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el Quotas

Oldenburg

https://wiki.hpcuser.uni-oldenburg.de/index.php?title=File system and Data Management#Quotas

« on every file system default quotas are in place
— $HOME, $DATA and $OFFSITE have 1TB, 20TB and 12.5TB, respectively
— the number of files is also limited ($HOME: 500k, $DATA: 1M, $OFFSITE: 250Kk)
— $WORK has 25TB and no limit on number of files
— maybe increased upon request (if resources are available)

« soft and hard quotas
— in addition to the soft limit above, there is also a higher hard limit
— if usage is over soft quota a grace period of 30 days is triggered
— after grace period no data can be written to the affected directory by user

=» check your usage with lastquota and clean up your data on work regularly
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e Group Directories

Oldenburg

« group directories are available upon request
— storage on the ESS
— can be mounted via SMB (only version 2 or better)
— path: $GROUP or /nfs/group/agyourgroup

— should be used for data shared among members of the same group, in
particular to avoid multiple copies of the same file

— group leader is owner of directory

— default rights are set so that anyone in group can read and write to group
directory
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o] File System Shares

Oldenburg

https://wiki.hpcuser.uni-oldenburg.de/index.php?title=Local Mounting of File Systems

e you can mount your $HOME, $DATA and $WORK as well as $OFFSITE
and $GROUP directories on your local workstation

« server address for mounting are

$HOME //smb.uni-oldenburg.de/hpc_home
$DATA //smb.uni-oldenburg.de/hpc_data
$WORK //smb.hpc.uni-oldenburg.de/hpc_work
$OFFSITE //smb.uni-oldenburg.de/hpc_offsite
$GROUP //smb.uni-oldenburg.de/<groupname>

— for Windows connect a network drive (and replace “/” with “\”)
— for Linux add information in /etc/fstab
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File System Use

applications with high I/0 demands can put a lot of stress on the
used file system

|/O-performance depends on the I/O profile

— /O with few but large files is better than many small files
— sequential 1/O is better than random access

pick the right file system for your 1/O profile
— local disks or SSDs are best for I/0O with small block sizes
— parallel files system ($WORK) is best for large files and parallel I/O

— $HOME and $DATA (and all NFS mounted directories) should be avoided for
I/O at runtime

simple 1/O performance tests can be done with dd

https://www.thomas-krenn.com/de/wiki/Linux /0O Performance Tests mit dd
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File System Bandwidth Limits
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Note, that the maximum bandwidth is shared for the whole node/cluster
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G Best Practices for File System Use
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 if your job is doing heavy I/O use $WORK or $TMPDIR

— 1/O bandwidth to $WORK is more than 10GB/s (shared for the whole cluster),
compared to 125MB/s at most to $HOME and $DATA

— try to use parallel I/0 and avoid using many small files
— $TMPDIR is best for small files and random access (in particular in the
partitions mpcb.p and mpcp.p)
« keep your data on $WORK while it is being processed
— data that is currently not needed can be moved to $DATA
— consider creating compressed archives and organise your data

— only keep important data and delete as much as possible when a project is
finished

— use $GROUP if you frequently need to share data within your group to avoid
unneccessary copies of data
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G Best Practices for File System Use

Oldenburg

« user-specific directories will be deleted when the account expires
— files are only kept for 180 days
— make sure you copy files you want to keep elsewhere (e.g. a group
directory)
* reducing your file system footprint

— the size but also the number of files count (especially if there is a backup)

— clean up your directories whenever you finish a project or no longer need
some files

— files you want to keep can be packed in an archive file

$ tar cf project.tar project/

$ zstd --rm project.tar
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el Final Remarks File Systems

Oldenburg

« setting file permissions
— add execute (x) permission to directories to allow cd
— add read (r) permission to directories to allow 1s

— avoid adding write (w) permission for group or others on directories (you
cannot change ownership of files)

« checking guotas
— use the lastquota command to find out how much diskspace your are using
— also weekly e-mails to all users

Introduction to HPC - Session 03




Carl von Ossietzky
Universitat
Oldenburg

What will (not) change with the next cluster?

« every user will get a new $HOME and $WORK
— old directories will be available for migration period

« both $HOME and $WORK will be on a new parallel file system
— faster file 1/O over Infiniband
— snapshots and backup for $HOME but not for $WORK

« $DATA and $OFFISTE will be available as before
— also group directories $GROUP

* no local HDDs or SSDs anymore
— a $TMPDIR will be provided on a fast NVME-server

« |/O performance will increase for all directories
— probably a factor of two
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Software and Modules
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T Using Installed Software

Oldenburg

« software is installed centrally on the
cluster

— main path: /cm/shared/uniol/software
— Installed applications are optimized for system

— can be used by all users (unless restricted by
license terms)

— own software can be installed, too, e.g. in
$HOME

 Installed software includes
— compilers
— libraries (MPI, numerical libraries,...)
— scientific application
— overview and help in the HPC wiki
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Environment Modules

Oldenburg

« Linux settings are defined by environment variables

$ echo $HOME # home directory
/user/abcd1234
$ echo $PATH # where to look for applications

/cm/shared/apps/slurm/current/sbin:/cm/shared/apps/slurm/current/bin: /us
r/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/opt/ibutils/bin

$ env # full list
HOSTNAME=hpc 1002
TERM=xterm

— applications require correct settings of environment variables (e.g. the PATH-
variable)

— environment modules are used to make predefined changes to the
environment using the module-command
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The module-command
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« the environment settings for installed applications are managed
using modules

— example: loading a module for SAMtools

$ module load SAMtools/1.9-GCC-8.3.0
$ samtools --version

samtools 1.9

Using htslib 1.9

Copyright (C) 2018 Genome Research Ltd.
$ which samtools

/samtools
[abcd1234@carl]$ echo $PATH

:/cm/shared/...

— after the module is loaded, the application can be used
— the variable $PATH has been modified (among other things)
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The module-command

Oldenburg

« available modules can be displayed and searched for
— displaying all modules (also work with spider)

$ module available
/cm/shared/uniol/modules/8.3/bio

SAMtools/0.1.19-foss-2019b SAMtools/1.9-GCC-8.3.0 (L,D)

— very long list of available modules
— modules can be highlighted with (L) for loaded and/or with (D) for default
— add application name to get shorter list

« show currently loaded modules
$ module list

Currently Loaded Modules:
1) slurm/current 2) hpc-env/8.3 3) GCCcore/8.3.0
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T The module-command

Oldenburg

https://wiki.hpcuser.uni-oldenburg.de/index.php?titlie=User environment - The usage of module 2016

 find modules

$ module available [module-name]

$ module spider [module-name]

— list all modules [with given module name]
— both commands are case-insensitive and understand regular expressions when using option -r

 Joad/unload

$ module load <module-name>
$ module remove <module-name>

— to return to a default state

S module restore

 information about modules

$ module list

$ module help <module-name>
$ module spider <module-name>
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T The module-command

Oldenburg

$ module load SAMtools Python
$ module save mycollection
Saved current collection of modules to: "mycollection"
$ module purge

$ module restore mycollection

Restoring modules from user's mycollection

$ module list

Currently Loaded Modules:
1) slurm/current 7) ncurses/6.1-GCCcore-8.3.0
2) hpc-env/8.3 8) bzip2/1.0.8-GCCcore-8.3.0
3) GCCcore/8.3.0 9) XZ/5.2.4-GCCcore-8.3.0
4) z1ib/1.2.11-GCCcore-8.3.0 10) cURL/7.66.0-GCCcore-8.3.0
5) binutils/2.32-GCCcore-8.3.0 11) SAMtools/1.9-GCC-8.3.0
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* you can define, save, and restore your own module collections

13) Tcl/8.6.9-GCCcore-8.3.0

14) SQLite/3.29.0-GCCcore-8.3.0

15) GMP/6.1.2-GCCcore-8.3.0

16) libffi/3.2.1-GCCcore-8.3.0

17) OpenSSL/1.1.1d-GCCcore-8.3.0
0

6) GCC/8.3.0 12) libreadline/8.0-GCCcore-8.3.0 18) Python/3.7.4-GCCcore-8.3.

— If no name is given for save or restore, the collection default is used



The ml-command

Oldenburg

e the module-command (as well as some subcommands) can be
abreviated

— any command module subcmd can be replaced with m1 subcmd

— the ml-command also may have different meanings depending on the
context

$ ml
Currently Loaded Modules:
1) slurm/current 2) hpc-env/8.3

/cm/shared/uniol/modules/core
slurm/current (L) hpc-env/8.3 (L)

$ ml SAMtools
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hpc-env Modules
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* in the module core-section you can find a number of hpc-env modules

$ module available
/cm/shared/uniol/modules/core
hpc-env/6.4 (D) hpc-env/8.3 (L)

hpc-env/8.1 hpc-uniol-env
hpc-env/8.2 hpc-uniol-new-env

— these modules provide some basic settings (e.g. $DATA, loading the Slurm
module) and make a specific module stack available

— the version corresponds to a specific GCC version and all modules in the stack
are based on this GCC version

— the non-version modules are older and not based on a specific GCC
— most software is installed in hpc-uniol-env, hpc-env/6.4 and hpc-env/8.3

— 1f you login you will find hpc-uniol-env loaded, this can be changed (e.g. with
module save)

— only one hpc-env module can be loaded at any time
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G| Modules
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 why use modules
— modules allows multiple versions of the same application to be installed
— modules change all the environment settings as needed
— modules know about dependencies and conflicts

« modules and jobs

— modules have to be loaded within a job script (as needed)

— modules loaded when the job is submitted are remembered by SLURM
(but you may submit a job later again with different modules loaded)

Introduction to HPC - Session 03




Compiler, Libraries and
Toolchains
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Compiler

Oldenburg

« different compilers available (from vendors and also open-source)

/cm/shared/uniol/modules/compiler
CUDA-Toolkit/8.0.44 NAG_Fortran/5.2
GCC/4.9.4-2.25 PGI/12.10
GCC/5.4.0-2.26 PGI/15.10

GCC/6.2.0-2.27 (D) PGI/16.10
LLVM/3.8.1-goolf-5.2.01 icc/2016.3.210
LLVM/3.8.1-intel-2016b ifort/2016.3.210
LLVM/3.9.0-intel-2016b (D)

— Intel compiler usally gives very good performance (icc and ifort)

— using different compilers may help to better understand your code
— some compiler support special hardware (e.g. GPUs by PGI)

— always load one compiler (don‘t use OS GCQC)
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S Example: RandomWalk.cpp

Oldenburg

 download the code RandomWalk.cpp (and the other RandomWalk
files) from Stud.IP

— the code simulates a 2d random walk, each step of lenght one in random
direction, prints out distance from start after N steps

— expected distance is SQRT(N)
— compile with GCC or ICS
$ gcc RandomWalk.cpp -o RandomWalk
$ ipcp RandomWalk.cpp -o RandomWalk
— run with one argument for seed, e.g.
$ ./RandomWalk 12345
— timing with
$ time ./RandomWalk 12345
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T Libraries

Oldenburg

 J|ibraries are available as modules

— numerical libraries provide optimized solutions of general problems

/cm/shared/uniol/modules/numlib
ATLAS/3.10.2 Octave/4.0.3
Armadillo/7.500.1 OpenBLAS/0.2.19
CLHEP/2.2.0.4-intel-2016b Qhull/2015.2
Eigen/3.2.9 ScalLAPACK/2.0.2
FFTW/3.3.5-gompi-5.2.01 SuiteSparse/4.5.3
FIAT/1.6.0-intel-2016b cuDNN/5.1-CUDA-8.0.44

GMP/6.1.1 (D) cvx/2.1

GSL/2.1 imkl/11.3.3.210
Hypre/2.11.1 leda/6.3
LinBox/1.4.0 maple/18
MATLAB/2016b maple/2016
MPFR/3.1.4 stata/13
NTL/9.8.1
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Example: Matrix-Matrix Multiplication

Oldenburg

« Dbasic linear algebra is available in many different numerical
libraries
— OpenBLAS, Lapack, MKL, ...

— Basic Linear Algebra Subprograms (BLAS) contain e.g. a General Matrix
Multiplication (gemm) of the form:
C=aA-B+fSC

— original version written in Fortran

— used in the mm. cpp example (cblas_dgemm is the C-interface for double
precision gemm)

cblas dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
n, n, n, alpha, A[0], n, B[0O], n, beta, C[0], n);
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Toolchains
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http://easybuild.readthedocs.io/en/latest/eb list toolchains.html

« some modules are called toolchains

— provide a collection of compiler, MPI, and/or numerical libraries

/cm/shared/uniol/modules/toolchain
foss/2016b gompi/5.2.01 iimpi/2013b intel/2016b (D)

gimpi/6.2016 gompi/6.2.01 (D) iimpi/2016b (D)
gompi/4.1.10 goolf/5.2.01 intel/2013b

« examples:

— foss: free and open-source software, currently
GCC, OpenMPI, OpenBLAS, ScaLAPACK, FFTW

— fosscuda: same as foss with CUDA support
— gompi: GCC, OpenMPI
— intel: Intel compilers, MPI, MKL
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G Example: Matrix-Matrix Multiplication

Oldenburg

 the code mm.cpp uses OpenBLAS which is included in the foss-toolchain

$ ml restore

Resetting modules to system default
$ make clean

rm mm mm.o

$ make

g++ -02 -c mm.cpp

mm.cpp:7:19: fatal error: cblas.h: No such file or directory
#include "cblas.h"

compilation terminated.

make: *** [mm.o] Error 1

$ ml foss

$ make

g++ -02 -c mm.cpp

g++ -02 -0 mm mm.o -lopenblas

<k




G Example: Matrix-Matrix Multiplication

Oldenburg

 alternatively, the code can be compiled with Intel MKL
— requires some code change (different header file)
— requires changes to Makefile (different libraries to link)
— result: code runs faster by 25%

$ sacct -j 2591679 -o JobID,JobName,Partition,Elapsed,MaxRSS,State,ExitCode
JobID JobName Partition Elapsed State ExitCode

2591679 run_mm. job . :06: COMPLETED
2591679.bat+ batch :06: COMPLETED
2591679. mm :00: 37600K COMPLETED
2591679. mm :00: 113412K COMPLETED
2591679. mm :00: 412420K COMPLETED
2591679. mm :00: 1592064K COMPLETED
2591679. mm :04: 6310656K COMPLETED
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el \What will (not) change with the new cluster?
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 module commands and module usage will not change

— new versions of hpc-env modules

» foss-toolchain will be available in a recent version
— additional toolchain with AMD compiler (?)
— Is the intel-toolchain still useful (?)
— no extra *cuda-toolchain, instead CUDA can be loaded additionally
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ol Running Many Jobs
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* you may need to run a program on the HPC cluster many times
with different parameters

« example: run program isPrime several (M) times
— different input parameter (value to test) every time
— all input parameters are in file parameter.dat

« strategies:

— simple approach: make M copies of job script, modify the
Input parameter in every file, could be
automatized, not recommended

— loop approach: use a single job script with a loop
— Job array approach: use Slurm’s job array functionality
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Running Many Jobs: Job Arrays
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 Job or task arrays are defined by Slurm option

$ cat array _job.sh

### settings for job array

#SBATCH --array 1-10:1%4 # define task array
# format range:step%tasklimit

— range of tasks can be defined as from-to:increment
— multiple ranges with comma-separated list

— limiting the number of parallel tasks is possible with %Ztasklimit (when
tasks have high resource requirements)
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Job Arrays
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« the same job script is executed for each task in the array

« additional variable SLURM_ARRAY_TASK_ ID is provided

$ cat prime_ job.sh

# get parameter from file for each task

parameter=$(awk "NR==$SLURM_ARRAY_TASK ID {print \$1}" parameter.dat)
echo -n "Task $SLURM_ARRAY TASK ID tested if $parameter is prime? "
./isPrime $parameter

the task-1D can be used
— e.g. to number input or output file
— read specific line from input file (as in the example above)

— computations in bash (limited)
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o Job Arrays
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job array are a powerful tool for task parallel jobs
— to be preferred over submitting many individual jobs

— each tasks in a job array should be sufficiently long (e.g. > 1h), due to the
overhead for a single task

requires some strategy for post-processing

— often Linux tools can do the trick, more complex tasks may require post-
processing script in e.g. Python

additional environment variables for first and last task
— however, tasks may not complete in the correct order
— alternatively job dependencies can be used
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http://www.gnu.org/software/gawk/manual/gawk.html

« powerful Linux tool that searches the lines of a file for patterns and
performs an action on that line
— similar tools are grep (pattern matching) and sed (streaming edit)
— works well with data files (tables)
— uses a C-like syntax

 example: prime.awk
— reads all output files from the job array (using cat to combine them)
— counts yes and no answers
— prints final result

Introduction to HPC - Session 03



http://www.gnu.org/software/gawk/manual/gawk.html

Carl von Ossietzky

Universitat
Oldenburg

Job Arrays: Do's and Don'ts

do use job arrays whenever you run many almost identical jobs
(e.g. parameter studies)

— don‘t automatically submit 100s or 1000s of jobs simultaneously

do limit the number of parallel running tasks if individual jobs
require a lot of resources

— there is a setting MaxJobsPerAccount=250 limiting the maximum number of
running jobs for your group

don’t parallelize very short jobs in a job array
— Individual tasks should run for minutes at the very least, better for hours
— group tasks for longer job run time and parallelize for groups

do test

don’t run tasks if you do not need to
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ol Running Many Jobs

Oldenburg

* you may need to run a program on the HPC cluster many times
with different parameters

« example: run program isPrime several (M) times

— different input parameter (value to test) every time
— all input parameters are in file parameter.dat

« strategies:

— simple approach: make M copies of job script, modify the
Input parameter in every file, could be
automatized, not recommended

— loop approach: use a single job script with a loop
— job array approach: use Slurm’s job array functionality
— parallel approach: use the Linux command parallel
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v The parallel Command
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https://www.gnu.org/software/parallel/

* the parallel command is a shell tool for executing
command in parallel

— available on the cluster as module

$ module load parallel

— example: run RandomWalk_task.sh ten times in parallel

$ parallel -N 1 -j 4 --joblog parallel.log ./RandomWalk task.sh {1} ::: {1..10}
Running RandomWalk with seed 2000 on hpcleol
Seed = 2000

Running RandomWalk with seed 4683 on hpcleol
Seed = 4683
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v The parallel Command

Oldenburg

https://www.gnu.org/software/parallel/

« the parallel command can be used in many different ways

— In the example

$ parallel -N 1 -j 4 --joblog parallel.log ./RandomWalk task.sh {1} ::: {1..10}

— arangeis given with : :: {1..10}, alternatively use ::: $(seq
10)

— with {} or {n} the value of the argument is passed to the task

— the option -N defines how many arguments are passed to the task
— the option -j defines how many tasks can run in parallel

— an additional logdfile is created with the option --joblog <logfile>

The use of the parallel command should be cited.
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ol Running Many Jobs

Oldenburg

« several approaches can be used to run many tasks on the cluster

loop approach: single job, post-processing could be included,
only serial processing, best used if tasks are
short (minutes) and total runtime not too long

job arrays: single sbatch, one job per task, parallel
processing on available resources, tasks
should run >1h, limit maximum number of tasks
running, overhead for starting tasks

parallel approach: single job, distributed resources can be used,
better control over used resources, little
overhead for starting tasks, scripts can be
adapted easily

also see https://wiki.hpcuser.uni-oldenburg.de/index.php?title=How to Manage Many Jobs
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Handling Many Output Files
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 Jobs or job arrays with many tasks in general also generate many
output files

— may degrade performance, use $WORK or $TMPDIR
— you may hit your file number quota

 If possible try to generate single output file
— might be difficult at job runtime but can be done afterwards

$ tar zcf RandomWalk.data.tar.gz RandomWalk*.data
$ rm RandomWalk *.data
$ tar -zxOf RandomWalk.data.tar.gz | awk -f RandomWalk.awk | sort -g

#steps expected mean std
10 3.162278 2.089732 1.232151
100 10.000000 9.985299 6.881550
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Job Dependencies

https://wiki.hpcuser.uni-oldenburg.de/index.php?titte=How to Use Job Dependencies

« Jobs can have a dependency on another job
— option: --dependency or short -d

— format: - -dependency <type>:<jobID>[,<jobID>..]
where <type> can be one of. afterany, afterok, afternotok

* ajob with a dependency will not start until the
predecessors have completed with the demanded status

— careful: make sure exit status is correct for your needs
— additional type after: jobs starts once predecessors have started

« a special dependency type is singleton

— all jobs with the same job name and from the same user have to
complete first, can be used to collect results
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Exercises
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Exercises

1. Try to compile and run the mm-code
— Try to use different toolchains

2. Try to run a job script for an application
— See next slide for specific example Orca

3. Try to run and compile the RandomWalk-code

— Try different compilers
— Run multiple times as job array
— Run multiple time using the Linux parallel command
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o] Example: ORCA Job

Oldenburg

« examples for using installed software on the cluster can be found
In the HPC wiiki

— e.g. ORCA (chemistry)
http://wiki.hpcuser.uni-oldenburg.de/index.php?title=ORCA 2016

— download the files for serial runs and submit job
— use ORCA 3.0.3

— the job script is rather complex

o module is loaded

o files are copied to $TMPDIR

o application is started from $TMPDIR

o output is copied to $SLURM_SUBMIT_DIR
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ool Example: Many Random Walks

Oldenburg

« task: run RandomWalk several (M=10) times to get the average
distance after N steps from multiple runs

— different seed every time, provided in a file
— write job script run as one or more SLURM jobs

— think how to analyse data from M completed runs

o how to combine the output of M tasks

o maybe with awk script?
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